Academia.eduAcademia.edu
Doubts of Physicists between Newton and Quantum Mechanics Abstract The classical physics was supp║sedly b║r═ i═ Newt║═’s times and quantum mechanics replaced it with its statistical approach. Ironically, one of the origins of those statistics was the insura═ces’ calculati║═ f║r b║ats ║f Newt║═’s frie═d a═d the g║dfather ║f his Pri═cipia, the astronomer E. Halley. The national and social structure of men and some women who made that transition possible is discussed. The physics involved is divided among the mechanics, optics, heat research, and electromagnetism with constant exchange of ideas among those branches of physics. Newton endorsed the first modern unification-integration among the phenomena previously considered different: the gravitation of bodies on the good old Earth and the gravitation of the celestial bodies. Probably the mechanics annexed the acoustics in approximately the same times. Benjamin Franklin as the last Colonial and first USA scientist (and diplomat) accomplished the next unification of lighting and static electricity of the Leyden jar. Volta integrated the chemical forces with electricity in his pile. The Dane Oersted jointed the magnetism and electricity and some dozen years later Faraday proved the reciprocal phenomenon which opened the field of modern electro-engineering industry which replaced the old-fashioned steam engines. Faraday’s spiritual heir Maxwell supposedly endorsed the most important conjunction among the rays of light, heat, electromagnetism, and ultraviolet light. The quantum mechanics gathered all physics, chemistry, and related fields under common sub-microscopic umbrella. In modern times, the weak nuclear force, or let us say interaction, was integrated with the electromagnetic force as the first unification which was straightforwardly ordained with Nobel Prize. As Einstein wished, many unifications of the theory of everything will eventually follow in the future. All that physics stuff at least in Western European interpretation began as four-part story of over-helming mechanics, much smaller research field of optics, and a couple of new-born electric-magnetism phenomena later joined by the research of heat. The calculable parts of mechanics and optics were explained in mathematical lectures until the suppression of Jesuits i═ Cath║lic la═ds which h║sted Jesuits’ sch║║ls. The electricity with heat research in many aspects belonged to the fields of physicians later turned chemists. No straightforward physics curricula besides the second year lectures of philosophical studies i═ Jesuits’ a═d similar schools of Catholic lends was offered before the French revolution. After the Jesuit gravediggers and Enlightenment French revolutionaries dethroned Aristotle, the physics got its four-fold field of research for a century and more, until quantum mecha═ics rui═ed the g║║d ║ld alm║st fi═ished classical physics with Kelvi═’s supp║sedly inoffensive clouds. The glory of classical physics with its finite certain world which will never emerge again is the sad story of present amusing essay. The rise and fall of European physics seems to be pure European story. In fact, it was not so. Not just because most of European compasses, clocks, and similar knowhow was borrowed from the Chinese, and the infinitesimal calculus seems to be the invention of early modern literati from India. The scientific accomplishments of the non-whites and females were never low, but the wars which Western Europeans won overseas up to the European internal wars called the First World War enabled the Western men to write the history as they pleased just because they had a power as the winners. The 21st century changed the winning team with contemporary economic winners of the Coloured East and also females of different colours or without any. The new winners will consequently rewrite the history of classical physics with the due praise given to their countrywomen and c║u═tryme═’s merits, past and future. Keywords: Physics, History of Physics, Newton, Quantum Mechanics. Contents Introduction Science before Newton Scie═ce i═ Newt║═’s Times a) Uprising of Mathematics b) Development of Physics c) Newt║═’s Pri═cipia F║u═dati║═s ║f the I═flue═ces ║f Newt║═’s Desce═da═ts a) Pe═etrati║═ ║f Newt║═’s ideas i═t║ C║═ti═e═tal Eur║pe b) Newt║═’s Ideas i═ the Lands Inhabited with Slovenes 1. Theoretical-Experimental Level of Science 2. Science in Space 3. Job of Scientist 4. Scientific Organizations c) Preservation & Development of Ideas hostile to Newtonians (Genesis of the new Paradigms) d) Imperialism of Mechanics-World-View in early 18th Century Late 18th Century – the Calm before Storm a) English-French Industrial-Political Revolution b) New Ideas in Science of Late 18th Century 19th Century New Scientific Ideas which Dismiss Pure Mechanical Worldview Ideas Inherited from the times of Flowering of Mechanical Worldview Paths t║ εaxwell’s Great I═tegrati║═ i═ Physics a) Development of Knowledge about Light Introduction 1. Absorption 2. Heat 3. Reflection 4. Refraction 5. Colour 6. Speed 7. Luminosity 8. Diffraction against Ancient Geometrical Optics 9. Polarization 10. I═terfere═ce agai═st Newt║═’s Particles ║f δight 11. Spectroscopes Conclusion on the Way to Transversal Electromagnetic Theory of Light b) Development of Research of Heat 1. Bettering of the Thermometers 2. Thermometric Units 3. Steam Engine 4. Phlogiston to Caloric, towards Ether for the Propagation of Heat 5. F║urier’s C║═ducti║═ ║f Heat as a Part ║f Tra═sp║rt Phe═║me═a 6. Car═║t’s A═alysis of Heat Engine Works 7. Poisson a═d Cauchy’s End of French Lead in Mathematical Analysis of Physics Phenomena 8. Thermodynamics Kinetic Theory as Universal Paradigm of Mechanical Theory of Heat 9. Entropy and Statistical Mechanics 10. Quantum Mechanics Incommensurability 11. Research of Heat Phenomena in Slavic Lands 12. Conclusion c) Development of Knowhow of Electric and Magnetism Introduction of the Physician of Virgin Queen Political-Economic Framework of the Beginnings of Modern Electromagnetism 17th Ce═tury ║f Gilbert’s Desce═da═ts i═ the First Ge═erati║═ ║f Researchers ║f Electricity Early 18th Century of the Second Generation of Researchers of Electricity Mid-18th Ce═tury ║f Fra═kli═’s Part ║f the Third Ge═eration of Researchers of Electricity Era of French Revolution with Electrostatics & Animal Electromagnetism for Parts of Third & Fourth Generation Electrodynamics of the Fourth and Fifth Generation of Researchers of Electricity Electromagnetism the Fifth and Sixth Generation of Researchers of Electricity εaxwell’s Great I═tegrati║═ i═ Physics Penetration of new Ideas in Scientifically Backwards Milieus: Case of Lands inhabited with Slovenes a) Introduction b) Model of Vortices from Descartes to Quantum Mechanics c) I. Šubic f║r the I═tr║ducti║═ ║f ε║der═ Physics Ideas i═ Sl║ve═ia═ Nati║═al Frame of late 19th Century d) Perspectives of a Small Nation e) Physics outside Western European Frame with Females for Leading Sciences of Anthropocene The Physicists (or Physics) in Ljubljana Inside Inner Austria Inner Austrian Physics among Slovenians and its Centre in Graz The Graz Jesuits in Connections with Ljubljana Jesuits Opus Magnum of Thomas Kuhn in Mid-European Eyes Genetics replaced physics (or researchers of genetics replace physicists) on the top of (highest-paid) science Theories of the Development of Sciences a) Historical Overview b) New E═d║rseme═ts (Auth║r’s Th║ughts ║═ Devel║pme═ts ║f Scie═ces) Conclusion Introduction The English term Sciences as something different from Humanities is much more useful for history of science compared to the Central-European division among natural sciences and s║cial scie═ces. I═ spite ║f s║me war failures the term “scie═ce” has a p║sitive c║══║tation and therefore both Central-European groups just want to be a part of that positive science. The history of (natural) sciences looks like the more complicated sort of the study of sciences. The logical presentation of science seems to be more common and better way of studying scientific topics compared to the historical studies. The aim of this study is to prove the opposite. If we push hard enough and learn the secrets of the history of science, the history of science emerges as the only competent way to the progress of scientific research, because it learns from its own mistakes performed by former scientists. And vice versa, the science and scientists who ignore their past developments tend to repeat the same mistakes which their academic ancestors already did. Maxwell’s i═tegrati║═ ║f all physics except the mecha═ics-gravitation was supposedly a fundamental achievement of the physics of 19th century.1 The development of knowhow about particular forces and phenomena of physics in previous centuries including Galileo2 l║║ks like a═ i═tr║ducti║═ t║ εaxwell’s great the║ry ║f (═early) everythi═g (except gravitati║═), pr║bably the greatest u═ificati║═ up t║ εaxwell’s date. Science before Newton What makes the modern science different from the wisdom of medieval Natural Historians? Whichever are the particular differences the fundamental difference should be mostly attributed to the greater use of repeatable experiments and mathematics for the theories of modern sciences endorsed into speeding communications networks. Which were the logical pushes for the turnover and what was its place in spaces and times? The wars which devastated Europe of the first half of 17th century and the spiritual changes which updated the scholastics of past times were simultaneous with the genesis of science of physics in space and time. The bettering of the old experimental tools went hand in hand with the inventions of new ones. 1. The more and more accurate clocks were endorsed3 after their borrowing from the Chinese areas. The European astronomers used the most accurate timekeepers and besides the mariners the astronomers endorsed the greatest support of soldiers and merchants. On the other side the accurate clocks enabled accurate description of the timing of natural events. For the first time in history the non-astronomical researchers introduced the time-components in their studies of the natural phenomena after the era of Humanism brought the new feelings of time and aesthetics symbolized by Francesco Petrarca of 14th century. The Hindus certainly always endorsed un-evitable time called kāla which is the same as the God himself.4 In the beginning the scientists were quite shy with the use of those ═║velties a═d Galile║’s 1 Heisenberg, 1998, 30. Galilei, Galileo. 1638. Dialogo. Leyden. 3 Pipunov, V.N, 1982. Istoria časov. Moskva. 4 Kohler, Alfred. 2011. Humanizem v Srednji Evropi, Tu felix Europa (ed. Rajšp, Vi═ce═c et all). Wien: Sl║ve═ski z═a═stve═i i═štitut/δjublja═a: ZRC SAZU, 22; Bhaktiveda═ta Swami Prabhupāda, 1992, 382. 2 assistants even preferred to sing periodically with no clocks hanging around. The consciousness about dynamic (time component) of natural phenomena finally spread into science only in the mid-19th century. The arrow of time was born for mysterious entropy and also for common folk not to be late at their work. The Japanese probably invented their nowadays famous accuracy with their state orders a half of century later and some remote tribes probably still try to live without the dictate of unmerciful clocks. 2. The development of production of objects of glass in Netherland and Venetian lands enabled the inventions of telescopes and microscopes around the year 1600.5 With them in that way the Europeans introduced the feelings of eternally small, eternally big and eternally far. The newly adopted feeling was endorsed into infinitesimal calculus which was borrowed from India a half of century with their decimal numerical system which included zero. This time the intermediate fellows were not Muslim Arabs whose monopoly on Eastern trade was challenged by the Portuguese Vasco de Gama in between, but the calculus was borrowed via the Jesuit missionaries under Portuguese flag. Newton and Leibnitz were both Protestants, but they were much quicker to use the Jesuits’ Indian novelties compared to their Catholic contemporaries in 1660-s. The mechanics with ballistics and astronomy with its teaching about the orientation in space profited the most from those novelties. The communications among scientists with their speeding of interchange of ideas endorsed the new way of thinking of those days Natural Philosophers which was almost savage towards the pure philosophical ways of thinking. It sounded like a joke for non-English speakers to hear about the rebellion of Natural Phil║s║phers agai═st the ║thers fr║m their ║w═ bra═ch because such a play ║f w║rds d║es═’t apply in other languages where scientists never called themselves something like Natural philosophers. In any case the English of those turbulent times baptized their new-born child with the funny name Experimental Philosophy in mid-17th century. Why did it happen exactly in those mid-17th century times of the ending Thirty Years European War and English preparation for the Glorious Revolution? The great changes in history look like that great and big just from the modern point of view. In fact there are a lot of different seemingly unimportant facts besides them which incidentally all push the wheel of history in the same direction. The truth is that even the modern physics did not emerge at once although we learned to limit its beginning into some particular pair of dates. Table 1: Early Modern Science Novelties New tools 1550 1600 5 Experiments Methods Telescope Astronomy microscope biology Experiment Organizations Theories Thinkers Moving of Copernicus Earth Galileo Cornelis Jacobszoon Drebbel (Drebel), Jakob Metius, Hans Lippershey or Zacharias in Netherlands around 1600. 1650 1700 Useful Mechanics clocks with optics string or pendulum Infinitesimal Calculus Academies Scientific Journals Optics, General Newton gravitation The century and a half between Copernicus’ De Revolutionibus and Newton’s Principia endorsed practically all era of the first scientific revolution. The scientific revolution challenged the chains which the Church Hierarchy used to subordinate the spirit of their worshipers and therefore also enabled the industrial revolution from 1760 to 1830. But the scientific revolution was certainly not a self-sufficient phenomenon. We should observe it in the frame of all contemporary cultural-intellectual development to which it belonged much more than nowadays. The experimental method prevailed in physics together with the abandonment of the scholastic methods in other areas of human thought with the debacle of counterreformation in the Northern Europe, with the sophistication of printing process, with J.B. Racin, J. Swift, J.S. Bach… Simultaneously the experimental method won its place in philosophy with F. Bacon, J. Locke, N. de Malebranche, D. Hume… The enlightened women and men were born from those changes. In which way they differentiated from their ancestors? The enlightened people were just one of the kinds of Europeans of 18th century. They made their ways to the cultural and intellectual top of societies of those days. The crisis of European thought which lead to the era of enlightenment therefore embraced only the privileged rich classes of the society. Those classes had so much French spirit worldwide that P. Hazard was able to put his Crisis of European Thought6 between two dates of French history. Namely, he chose the revocation of the edict of Nantes which enabled the waves of churches-related hatred in 1695, and the death of Louis XIV in 1715. The crisis of European Thought actually enabled the offensive of Versailles-related culture into European milieu of the wealthy. In 17th century, the spaces of women and men were determined by authorities and hierarchies. Locke’s ma═ already l║st his supposedly inborn ideas and built his own self in cooperation with the outer world. The focusing on the outer world and the importance of raison of mind were the fundamentals of enlightened people. The faith of the eternal progress of knowledge prevailed. The literati endorsed the faith of mathematical system of cosmos. The technical and supposed social and spiritual development annihilated the pedagogical charm of the past because the enlighteners were positive that the past, especially the medieval past, was much less valuable compared to the future. In the early 18th century the European confessed to himself for the first time that he (or she) surpassed his own antic idols. The culture became the fashion of enlightenment. The science grew up to become the profitable job but it was endorsed just as a part of the culture and not as the theory of the new better technologies. Only more remote centuries will show how the science should be used to raise great money from the big businesses in closer relation with industrial enterprises. In late 17th century the specific organizational novelties speeded up the exchange of information enabled the development of sciences: 6 Hazard, Paul. 1959. Ljubljana. 1. The groups of scientists in metropolis copied the Plato’s Academy of antique Athens. They raised the money needed from state administration in France or from the fellows themselves in England. 2. Journals. The very first weekly called La Gazette appeared in Paris in 1631. With the Richelieu’s supp║rt the physicia═ Thц║phraste Rea═║t (1585-1653) acted as editor. The newspapers about some particular events like the Solar Eclipses were printed even before in Carniola of those times together with earlier German Aviso Relato oder Zeitung, Nieuwe Tijdinghen Antewrden i═ A═twerp i═ Habsburgs’ Belgium, and in London The weekly news from Italy, Germany, ectr. The new journals for quicker communications were quickly e═d║rsed f║r Natural Hist║rical purp║ses ║f leadi═g δ║═d║═ a═d Paris ║fficial Ki═g’s gr║ups in Philosophical Transactions and Journal des Scavants in 1660-s. Those journals endorsed the reports from the academic gatherings along with the letters and polemics of collaborators including the foreigners. The density and speed of scientific communications were in fact the only exact enough measures for the quality of science produced in particular era of publishing which was still without the modern science citation index. The 1660-s was therefore the era when science climbed to the new stage of quality. The changed printing circumstances rearranged the ways of writing science which began to produce short communications and public experiments instead of big textbook-like products. The new ways also changed the content of scientific products which did not need to introduce the history of discussed field of research in its whole, but instead just gave the needed information about some specific novelties of interest. The footnotes and citations were rare and not accurate in modern sense. The changed way of communication between scientists was simultaneous with the specialization of scientists and probably both interacted among themselves. The specialization further developed up to the modern era. The scientific journals certainly published just the letters sent to the editors, rarely to the other researchers, but the private letters still kept their flavour. 3. Schools. The changes of social-economic background certainly also influenced the schooling. The 17th century centralization of state authorities raised the needs for educated skilled administrators who were also able to discuss at least some relevant scientific questions. The obligatory basic schooling was put forward also for the future educated farmers who will be able to use new invented ways of the better production of food in the era which believed that farming was the primary if not the only source of the wealth of the nation especially among the French physiocracy. The pioneer of physiocracy Quesnay openly confessed that in his Tableax Economiques he developed the mathematical way of Chinese Ideas mostly from the works of Fo Hij.7 The new European farming ways endorsed the American field products together with the newly invented materials and tools which were s║║═ ma═ufactured f║r farmers’ ═eeds. I═ pr║testa═t la═ds the ║bligat║ry basic sch║║li═g also had to enable farmers and everyone else to read the Bible. There is the interesting picture of the introduction of the obligatory basic schooling for both sexes in particular lands. The seemingly bad English score is eventually more or less just the results of the incompatible English school system.8 The Non-European educations and especially the Chinese system of state exam are clearly incompatible with early modern European educational systems. 7 8 Panikkar, 1967, 392. Durant, Will; Durant, Ariel. 1963. The Story of Civilization. New York, 8th part, p. 484. Table 2: Obligatory Basic Schooling for both Sexes The year of introduction of obligatory basic schooling Land 1565 1618 1619 1696 1698 1774 1876 Würte═berg Netherlands Duchy of Weimar Scotland France Austria England The real timing of the obligatory basic schooling in some European lands shows the early priority of Scotland which was bypassed by England around 1700. The French were English equals in the first place, but heavily lost the competition around 1700. The Slovenians inside the Austrian part of Habsburg Monarchy were heavily backwards until the First World War,9 but they still surpassed their southern neighbours in the Balkans. Scie═ce i═ Newt║═’s Times Somebody could challenge the thesis that the experimental physics so early became the fundament of every research and even thinki═g i═ physics, a═d the experime═ts’ mathematical twin became the tool of every acceptable scientific explanation of the natural events. The focus is here put on the fundamental scientific research in physics and much less on their technical use in industrial production. The science and especially the science of physics spent a lot of time before it was basically connected to the industrial enterprises in electronic era therefore the development of technology was still on the level of try-and-fail in Thomas Edis║═’s m║de a ce═tury a═d a half after Newt║═ passed away. The process ║f t║tal mathematics’ i═flue═ces bega═ i═ physics i═ the first place a═d later spread to the similar branches of scientific research. It is still not welcomed and endorsed in all branches of the Natural Sciences including biology. Maybe it will never be endorsed worldwide which is probably welcomed as the kind of diversity of scientific approaches. The new horizons opened and enabled the pioneering authorities for authoritative leadership of many centuries to come. Newton was the scientific leader in 17th and 18th centuries. He became an icon of modern science which can therefore be examined from the standpoint of Newt║═’s fa═s described by the p║et Alexander Pope. Chaunu, P. 1982. L'Europe des Lumiéres. Paris; Melik, Vasilij. 1968. Ob stoletnici zakona o osnovnem š║lstvu, Kronika 3: 168; Melik, Vasilij. 1981. Družba ═a Sl║ve═skem v predmarč═i d║bi. Obdobje romantike v slovenskem jeziku, književnosti in kulturi (ed. Paternu, Boris). Ljubljana: Univerza. 9 a) Uprising of Mathematics The probability calculus developed from the theories of games which were very influential in European high societies of 17th century. The other origin of those statistics and probabilities was the i═sura═ces’ calculati║═ f║r b║ats ║f Newt║═’s frie═d a═d the g║dfather ║f his Principia, the astronomer E. Halley. The absolutist centralized European states with their general military obligations supported the demographic statistics and with them the statistical methods in mathematics. In the same times the mechanical physics world view developed, but both fields did not actually meet for two centuries up to the second half of 19th century. The needs of mechanical physics research called for some new mathematical approach which could play the same role in mechanics as did the telescope and microscope in similar fields of research. The idea of eternally small or eternally big therefore did not catch its wind just in the biology or astronomy. The numeric sets of numbers carried it into mathematics and the need to calculate the areas of uneven rotated bodies carried it into mechanics in the form of infinitesimal calculus. Huygens and the English mathematicians used the India-Invented calculus to solve particular problems until Newton and Leibniz gave it the general form used as the microscope for the dealing with mechanics and astronomy. b) Development of Physics The quantitative experiments and the Calculus as mathematical microscope brought many novelties into old-fashioned Aristotle’s physics which Galileo and Descartes already criticized heavily. The present analysis is based on approach to the two broad ideas which ruled over the physics of those days and were still in charge a century and half later. The first of them was about ether viewed as matter which carried the forces or matter through the space. The second idea was based on principles which supposedly dealt with some aspects of matter as is the quantity of heat, electricity, magnetism, or light. 1) In Aristotle’s system ether was the fifth element of the world, the fundament of Olympic heaven. Descartes therefore just borrowed the name from the Greeks because his ether was basically just earthy and cosmic matter to be found everywhere. The ability for quick, in Descartes’ ║pi═i║═ even momentous transmission of pressures caused by mutually reciprocal acting of emitter and receiver, was the main character feature of ether which gave it the central role in predominant scientific thinking of 18th century. Descartes used his theory of ether to explain the optical phenomena which were much more interesting and clear to his contemporary users of telescopes and microscopes compared to magnetism, electricity, heat, or even gravitation. Later in the 18th century also those forces received similar ether-based explanations. In the first generation of Englishmen who were educated in newborn mechanical spirit, the mechanical explanations already spread to all known forces of heat, light, electricity, magnetism, cosmic gravitation, earth gravitation, and in some cases even on the area of living forces. The acoustic forever became a part of the narrow area of mechanics with the air as a medium for the spreading of force. Robert Boyle was among the first researchers of ethers on common basis. He figured out that the heat, light, magnetism, electricity, and gravitational attraction easily spread through vacuum, but the sound did not. In that way the common fundament for all kind of ethers was endorsed very early although it was clear that some of them like electrical and magnetic ether were much more related to each other compared to the rest. There were also some linguistic pr║blems because the term “ether (aether)” was als║ used for particular chemical compound in most of European languages including English. In English and some other languages the term “eternal” is used for infinitely long time. In common pejorative speech of Slovenian an several other languages the ether (aether) is even today the media for broadcasting of the wireless. The eternal speed of the spread through the ether was always somewhat doubtful in spite of Descartes’ eff║rts. The Dane in service of French King Louis XIV, Olaf Römer, was the first who authoritatively measured the speed of light. His success followed after his calculations of irregularities of the moving of Jupiter’s moons with the help and under tutorship of the member of one of most famous family of physicist-astronomers, the Italian Cassini. In Parisian Observatory Römer rightfully and bravely figured out that the particular Jupiter’s moon is one time closer and next time farer from the Earth on its orbit around Jupiter. The light reflected fr║m the Jupiter’s m║║═ theref║re did ═║t always fly over the same distance to the Earth. The ║ptics e═abled Römer t║ calculate the l║═gitude ║f Jupiter’s satellite. The difference of times which the light needed to reach the Earth from opposite points of the orbit ║f Jupiter’s satellite caused the deformed shape of observed orbit. From those data Römer calculated the speed of light, although Cassini wished him to postpone the publication u═til m║re calculati║═s a═d ║bservati║═s were ║btai═ed. But Römer was i═ hurry with his new pr║jects already i═ mi═d. Römer published the measured value of the speed of light which was for one half higher compared to the other later measureme═ts. Römer ║btai═ed his result in vivid correspondence with Huygens who enabled the publication of its translation in London Phil.Trans. But the British did ═║t pay much atte═ti║═ t║ Römer’s results f║r a l║═g time before Bradley’s parallax measurements because Newton and his followers endorsed the knowledge of finite speed of light intuitively. Newton’s m║st i═flue═tial a═d readable w║rk was the u═ificati║═ ║f Earth’s gravitati║═ a═d interplanetary gravitation on the common foundation. In 1600 already William Gilbert dreamed about the similar unification on magnetic basis. It is hard to believe that several other literati did not pursuit similar ideas before Newton. But Newton was the only one who developed the proofs for his idea from astronomical data with the help of infinitesimal calculus. His work was the very first great generalization in physics because he unified f║rever the research fields which seemed separate bef║re him, m║stly because ║f Arist║tle’s separation of Sub-lunar Earthly phenomena from the nebular phenomena above Moon. Only the much later prove that the meteorites flied from extra-lunar spaces to the Earth finally pr║ved Arist║tle’s mistake. Even the modern manned astronautic flight still put Moon as the limit of their travels and therefore they still provide some space for the future surprises. In the basis of the experiments of Hooke, Huygens, Boyle and Römer, Newton also developed new and less doubtful theory of light. Newt║═’s light ║btained its colors because of the features of matter it touches. The new way of thinking was in full opposition to the εedieval a═d Alahaze═ Arabic’s ║ptics based ║═ the physi║l║gy ║f eye, in some case even with the eye as source of light. In was also in full opposition to the theories of colors based on pai═ter’s experie═ces with all c║l║rs devel║ped with the c║mbi═ati║═ ║f tw║ “fu═dame═tal” colors. Hooke and Huygens endorsed pai═ter’s p║i═t alth║ugh Hooke and Huygens were not friends and quarreled on the priority of the invention of clocks. Huygens’ connection with painters is somewhat oblivious because he was well educated Dutch and had many connections with the Dutch baroque painters including Rubens. Newton’s pr║║fs were straight-forward and therefore Hooke prevented their mutual e═d║rseme═t up t║ H║║ke’s death in 1703. Only in 1704 Newton finally published his Optics where he endorsed the luminiferous ether not similar to ether needed for the spread of gravitational force. The gravitation namely spreads with║ut measurable dilatati║═ t║ be disti═guished fr║m light’s obliviously finite speed. Even today there is no useful measurement of the speed of gravitational disturbance. According to Newton even magnetic and electric forces had their own functions of distance different from 1/r2 which is valid for the force of gravitation, Therefore magnetic and electric forces also needed their own sort of ether for spreading. A century after Newton Coulomb certainly proved the relation F≡1/r2 also for magnetic and electric forces, but Coulomb’s electr║statics was ═ever c║═sidered as maj║r bl║w t║ Newt║═’s w║rldview c║mparable t║ T. Y║u═g’s wave theory of optics developed a decade later on the other side of the Channel. ii) The idea of principles was tightly connected to the alchemical past of science. In the modern way of thinking the principle could mean the certain affinity of matter to the certain feature or force. If the matter has a lot of some principle it is therefore very acceptable for certain sort of fluid without weight called imponderable. The principle could be equivalent to the fluid itself up to some point. The fluid of that kind without any weight is not available for experimental measurements. That fact makes it a strange guest in modern highly positivistic description of the world of physics i═ the frame ║f P║pper‘s the║ry ║f falsificati║═. The closely related were the imponderable fluid and the principle of burning in the theory of heat. In 1716 Stahl10 introduced the phlogiston as the principle which described the affinity of a body for heat. In all more sophisticated cases of the second half of 18th century the states of heat raised from bound heat (phlogiston), over freed heat (electricity) up to the free (heat).11 In 18th century the Phlogiston developed from Stahl a═d his teacher Becher’s imaginary principle into the carrier of particular physics feature. The researchers tried to determine the features of phlogiston in the developing quantitative chemistry with the weighting of matter before and after the reaction. For the scientists devoted to experiments like Scheele or Priestley, the discovery of oxygen between the years 1771 and 1774 did not raise considerable doubts about the features of phlogiston. In 1772, after the advice of J. Watt, Lavoisier announced to Parisian Academy that the phlogiston should have a negative weight according to the recent measurements. That unhappy and up to then never considered feature gave a fatal blow to the phlogiston theory and therefore helped its descendant, the theory of imponderable fluid needed for the spread of heat which was called caloric. With the phlogiston as heat-fluid itself dismissed, the question of medium carrying the heat from one body to another became even more important. Lavoisier cleverly enough developed the theory of caloric which ruled for at least half of a century in spite of the opposition of Priestley and his circle which died away together with the good old phlogiston theory. The question of the intermediate ether for the distribution of heat was not satisfactorily solved Stahl, Georg Ernest. 1716. Zufällige Geda═ke═ u═d ═ützliche Beda═ke═ über de═ Streit v║═ de═ s║ge═annten Sulphure (Sulfur). Leipzig. 11 Cavallo, Tiberius. 1782. A Complete Treatise on Electricity in theory and Practice with Original Experiments. London, second paragraph. 10 probably up to Maxwell times not far from the point when Einstein, born several months bef║re εaxwell’s death, questi║═ed the existe═ce ║f all kinds of ethers. The principles were also endorsed in astronomical-astrological Imperial ways of Frederick III (1415-1493) and his family-formula of Habsburgs AEIOU, or in medicines of court alchemists of Rudolf II Scotsman Alexander Sethos (Seton), and the nearly hatred upon the Walle═stei═’s astr║l║ger Gi║va══i Battista Se══║ (Ze═no). A year before Frederick’s birth the Empress Barbara of Cilli was crowned as the wife of the emperor Sigmund of Luxemburg. She was also a known alchemist probably pictured together with Veronica, the murdered wife of her brother, in a church of St. Ivan in Iva═ić εilja═ski not far from the village Desenice. Barbara’s brother Frederick II of Cilli had a contradictory relation to faith considering his unsuccessful pilgrimage to Rome when in the same year 1429 his son Ulrich II made a pilgrimage to Santiago di Compostela in Spain with the founds provided by Barbara. Ulrich’s w║uld-be father–in-law in marriage that never materialized, Transylvanian Duke Ivan Hunyadi, defended the fortress of Senj (Segnia) area against Turks in 1448 and Zadar (Zara) two years later. Iva═’s ║lder s║═ Ladislaus, the brother of the legendary Slovenian ki═g εatjaž, killed Ulrich in Beograd on 9/11/1456.12 Already in late 17th century even less important nobles in the vicinity of Russian Imperial court had their personal astrologers, among them the favorite of Sophia, the sister of the Emperor Peter I who became very a═gry ║═ his pers║═al astr║l║ger whe═ the Imperial cr║w═ failed fr║m the S║phia’s head, a═d S║phia felt i═t║ Peter’s disgrace.13 c) Newt║═’s Pri═cipia Newton certainly never became a rationalist in spite of the fact that he was proclaimed as a rationalist in later centuries. He was deeply religious Unitarian related to mystics and alchemy. His scientific antagonists Huygens and Bernoullis were much closer to contemporary physicists because they did not endorse any unclear forces and phenomena of nature. Newton’s greater publicati║═ Principia and Optics were the works of master in spite of his shortcomings. The Principia copied Euclid’s m║del with axioms (propositions), corollaries and scholiums. The reading was polished to the peak to disable any critiques of Newton’s a═tag║═ists. The mathematics used was complicated enough making many contemporary literati unable to read the book. The very title of the piece endorsed the Philosophy of Nature which was not really discussed in the book. Such extravagant title was used primarily to promote the better selling, probably on the advice of Newt║═’s friend and patron E. Halley who took care of selling of the first edition printed in 300 to 400 copies. The use of the very term Principia probably endorsed some alchemistic related principle which Newton in fact preferred to hide differently from R, Boyle. Buster, Feliks J. 2011. Habsburšk║ gesl║ A.E.I.O.U. k║t huma═istič═a dedišči═a. Tu felix Europa (ed. Rajšp, Vi═ce═c et all). Wie═: Sl║ve═ski z═a═stve═i i═štitut/δjublja═a: ZRC SAZU, 207; Strube, Wilhelm & Helga. 1992. Kepler in general. Maribor: Obzorja, 26, 137; Fugger Germadnik, Rolanda. 2014. Grofje in knezi Celski. Celje: Pokrajinski muzej, 69, 89, 94, 13; Srša, Iva═. 2009. Imaju li zid═e slike u crkvi sv. Iva═a u Iva═iću εilja═sk║m i skrive═║ z═ače═je? Kaj, časopis za književnost, umetnost, kulturu (Zagreb). 1-2: 65, 79-80, 84-85; Albanese, Gabriella; Figliuolo, Bruno. 2014. Giannozzo Manetti a Venezia 1448-1450. Venezia: Istituto Veneto di Scienze, Lettere ed Arti, 198, 272. 13 Tolstoj, Aleksej. Petar I. Beograd. 12 Newton began with postulating his three laws of mechanics among which probably just the last third was a novelty postulating the equality of action and reaction. That law echoed the formalization and broadening of the method used for solving the technological problems where we measure the acting force while we diminish the speed. Newton described the aim of his efforts: »The duty of mathematician is to find the force which will curve the orbit (of pla═et) exactly i═ right am║u═t…« Newton solved the proposed problem in three stages. The geometry was for him a part of mechanics. Therefore he used his handy method to prove that the nebular phenomena really appear in certain relations among each other. To reach that goal he used approximations, among them the limit of torus whose width diminished down to zero.14 In the beginning of paragraph he indorsed the infinitesimal calculus with the help of unlimitedly thickening rectangles, which is still used in modern courses of integral Calculus for the beginners. But Newton nowhere used in his Principia the mathematical form of integral calculus which he himself introduced in the late 1660-s. He probably considered it to new and unknown for the use in such important book as was Principia. In the second book Newton dealt with mechanical systems. From the simple and less probable cases he switched to the more complicated problems of real industrial world. In the first place he discussed resistivity (viscosity) as a well-known variable proportional to the velocity. In next stage he switched to the proportionality with the square of velocity, and on the very end he endorsed the proportionality related to the polynomials which endorsed both previously discussed possibilities. In that way he approached the real nature step by step. Newton’s stile was certai═ly ge║metrically quite demanding but in no way so much sharply official as sometimes are the modern books. Newton on come occasion endorsed the fairly storytelling from which the reader was informed, among others, how Newton lost his notes ║═ experime═ts used t║ pr║ve the existe═ce ║f the “luminiferous” ether. In that way the definitions and corollaries smoothly spread to the experiments and mechanical models which were sometimes somewhat erroneous according to the modern point of view. The second b║║k e═ded with the fi═al critique ║f Newt║═’s a═tag║═ists wh║se v║rtices-model Newton sharply criticized. He mentioned only Bernoulli, but Newtonov’s critique als║ i═cluded Huygens and Descartes. Newton opened his third book with his laws of good philosophical approach (Regula Philosophiciendi): 1. The true and enough data are also the needed ones; 2. The same phenomena endorse equal causes; 3. The features which are endorsed in all available experiments are universal. Next Newton discussed our Solar system: the Sun, planets, satellites, and comets. He tried to prove that their central forces are equivalents of gravity on the Earth. Newton dismissed the magnetic force antagonistic to gravitational theory which W. Gilbert tried to endorse as the movable agent of planets nearly a century earlier. Newton used several rough observations showing that the magnetic force is proportional to 1/r3 and not to 1/r2 of gravitation. Newton did not include stars in his system because he postulated that everybody agree with the supposition of unmovable center of gravity of our Solar system. Newton paid a special 14 Chaunu, 1982, 23; Newton, Isaac. 1687. Philosophiae Naturalis Principia Mathematica. London, 133. attention to the problems of comets and together with Halley tried to get rid of any prophetic mystics of the comets. Newton concluded his Principles in great pompous General Scholium focusing on the deep meaning of the experimental philosophy and endorsed several mystic-faith visions. The Principia was not the only writing of its kind although it was probably the most perfect of them all. Among others Huygens wrote Discours de la cause de la pesanteur15 and other less known authors edited similar books. The Principia eventually overshadowed all the rest. Why? The first reason is outside the physics-mathematical contents of the Principia and the second is clear in comparison with Huygens’ w║rk. Newton was the idol of Royal Society, especially after Hooke passed away in 1703. In time to come the Principia was able to penetrate in the continental Europe as the carrier of all advantages of English society and economy. The Principia became almost the most important part of English cultural-scientific achievements of 18th century comparable even to Shakespeare although on different level. It spread to the continental Europe parallel to English industrial novelties, especially the textile ones. The theory of physics certainly does not win the day only because of its political backing. It is true that the Protestant Huygens after the evocation of edict of Nantes received far less support from his spiritual adopted Parisian homeland. What were the failures of Huygens’s analysis of the causes of gravity compared to Newton’s Principia? Huygens’ Discours was printed on only 40 pages and was in deed just the appendix for a lot more voluminous Huygens’ b║║k Horologium Oscilalatorum. It was not a real self-sustained booklet. The style which Huygens used was not equal to Newton’s Pri═cipia, alth║ugh Huygens also endorsed geometrical proofs. Huygens researched much deeper because he wished to research the very causes of gravity and not only the laws which govern it. Therefore Huygens also did not understand why Newton ignored those questions with his Hipotheses non fingo. He was especially angry on Newton’s pr║p║siti║═ ║f ═ebular ether which supposedly enabled extremely quick displacement of gravitational and/of light disturbances. In Huygens opinion such ether would be a great obstacle for the orbiting of planets, and Huygens certainly had his point. According to Huygens the heavier bodies quicker rotate their inner parts and the lighter do the same more slowly. That was the supposed source of the difference in gravity which otherwise attract all the masses equally. The inner vortices of bodies always pull down the masses above itself. It pulls them more heavily if it is quicker. Huygens used that Cartesian model also to explain the genesis of Earth which the vortices pulled down because the Earth was heavier compared to its surroundings. According to Huygens the velocities of the vortices in greater planets were even close to the speed of light because he calculated the velocities of the vortices by replacing the case of vortices with the seemingly similar case of pendulum with the length equal to the diameters of vortices. Huygens’s the║ry did ═║t meet much success. The later experiments seemingly did not support it at all. In its time it was certainly the fair antagonist to Newton’s the║ry. Newton 15 Newton, 1687, 3: 281, 348-369; Huygens, Christiaan. 1690. Discours de la cause de la pesanteur. Leyden. simply ignored it and introduced his own gravitational force without even trying to explain its source. The sharpest critics thought that Newton introduced again the recently dismissed scholastic way of thinking which always spread some alarm among the folks who did the job of getting rid of old-fashion ideas even of it was oblivious that Newton is not backing the good old Aristotle wh║ was still i═flue═tial i═ Jesuits’ cath║lic sch║║ls. Newt║═’s case was saved by his own countryman, who were not afraid of scholastics that much, and who proclaimed Newton as a national pride-her║. Which were Newt║═’s m║tives? Whichever explanation he could have provided for gravitation it would prove to be untrue in some future point of history of physics, as he predicted very well. Theref║re Newt║═’s Hipotheses non fingo was a═ expressi║═ ║f careful ma═ wh║ did═’t wa═t t║ sp║il the rest ║f ║f the b║║k with few pretentious sentences which would obliviously put some shadow on the whole book in the future. The great erudite Principia became the unending source of admiration for those who were unable to read its complicated mathematics. The others found in Principia the sources of new ideas for applied mathematics. In spite of the early euphoria the scholarly reprinting of Principia was concluded in mid-18th century while Newton’s Optics kept its readers also in the 19th century and many copy its style of queries even nowadays. The modern reprinting of all books share different motives and is primarily the product of modern interests in the history of science. C║═temp║rary physicists prefer t║ use m║der═ i═terpretati║═s ║f Newt║═‘s work while the philosophers still love to read the original writings of great philosophers. The books of later authors, especially Lagrange’s Mecanique analitique first published just before the French Revolution in 1788, completely over-passed the Principia which transformed from textbook into a legend. F║u═dati║═s ║f the I═flue═ces ║f Newt║═’s Desce═da═ts a) Pe═etrati║═ ║f Newt║═’s ideas i═t║ C║═ti═e═tal Eur║pe The exchange of ideas among the literati of 17th century was not quick and strong enough to prevent the simultaneous growth of concurrent controversial ideas on so small area as was (Western) Europe of those times. The national feelings were another obstacle for the endorsement of new ideas and they are probably connected with the psychology of the individuals.16 Voltaire stated that French were unable to endorse the idea of orange-shape Earth developed by the Dutchman Huygens and Englishman Newton. The Parisian antagonists of orange-shaped Earth were also foreigners, namely the Italians of Cassinifamily. It will be probably cleverer to ask why Newton’s mechanical physics penetrated the Europe at all, and not to discuss why it penetrated so slowly. The continental Europe never endorsed all aspects of Newton’s scie═ces a═d it ═ewer accepted Newton’s clumsy ═║tati║═ ║f differential calculus. Bernoullis, Euler and other socalled Cartesians developed to strong ideas to let Newton rule in all parts of physics. Only the efforts of Voltaire, the translator of Principia (1759) Madame de Chatelet, D'Alembert, Buffon, and their friends enthroned Newton’s phil║s║phy ║f experime═ts a═d the m║st part ║f his mechanical physics with the exception of the ideas which were already disproved by experiments. The key roles in popularization of science were always played by the 16 Jung, Carl Gustav. 2015. Rdeča knjiga Liber Novus. Ljubljana: Beletrina, 71. philosophical and popular works on physics, for example by Algarotti's Freemasonic Newt║═’s Scie═ce f║r Dames which Algar║tti sh║wed t║ V║ltaire a═d εadame de Chatelet already in 1755. Madame de Chatelet knew very well that she as a female had only one chance to open the (masculine) door of sciences i═ spite ║f Ju═g’s stateme═ts ║f the combinations of female-male souls17 where the most virile man has the soul of a woman the most feminine woman has a male soul.18 The combinations of souls probably did not help much to the women in pursuit of their scientific careers. The antagonists criticized even the main Newton’s supp║siti║═ ab║ut the spread ║f the f║rce of gravity in the shape of expanding concentric balls. Newton’s supp║siti║═ had the mathematical foundation, so they tried to disprove it with the help of experiments. Newton’s descripti║═ ║f f║rces did ═║t e═d║rse all ═atural phe═║me═a. He ignored those submicroscopic forces which connected physics and chemistry and nobody was able to describe them simple enough. Theref║re several adaptati║═s ║f Newt║═’s f║rce law were announced. In 1748 Buffon kept the good old 1/r2 model, but he suggested that on small distances there were discrepancies because of the different shapes of molecules. In 1758 and 1763 R. B║šk║vić19 tried to solve the problem of the changing of gravitational and other forces combined by replacing the analytical solvable notation in the form of equitation with the geometrical curve which hardly had any analytical presentation. In such theory the differential Calculus had no real role which was probably also connected with the Jesuit B║šk║vić’s unsatisfactory mathematical education accomplished in Collegio Romano. The problem ║f f║rces which c║══ects the parts ║f b║dies was left u═s║lved i═ spite ║f B║šk║vić’s point-like centers of forces. No accurate enough experiments were provided to enable the right questions to be asked and to try the hypotheses. Only the thermodynamics provided some basic models which are known today under the name of “(Ideal) Gas δaws” I═ 1873 Van der Waals offered somewhat more complicated equitation to describe the relations between the pressure, volume, and temperature of the gas also near the phase transition.20 Even he endorsed just the equitation of second order. It was even harder to describe the submicroscopic forces in solid state although already the first electrolytic experiments proved their electric nature. b) Newt║═’s Ideas i═ the δa═ds I═habited with Sl║ve═es The quicker communications of scientific achievements did not miss the lands inhabited with Slovenians in second half of 17th century. In 1678 Ljubljana got the printer again a century after the Protestant one was dissolved. In 1701 the Academy Operosorum was established in Italian example, but it worked just for 23 years. In 1781 it was reestablished with B║šković’s followers as were F.S. Karpe and Anton Ambschell included. But the reestablishment happened to be abortive. Jung, Carl Gustav. 2015. Rdeča knjiga Liber Novus. Ljubljana: Beletrina, 75. Jung, 2015, 227. 19 B║šk║vić, Rudjer J║sip. 1763. Theoria Philosophiae Naturalis redacta ad unicam legem virium in natura existentium. Venetia. 20 Van der Waals, Johannes Diderik. 1873. Over de continuiteit van den gas. en Vloeistoftoestand. Disertacija, Leyden. 17 18 The generation working before the French revolution pushed Carniola and other Habsburg hereditary lands out of scholastic into the modern science. In the times of Newton’s scie═ce from 1665 to 1704 and its French echo in 1740-s the Jesuits in Laibach (Ljubljana) still discussed m║stly Kircher’s pr║blems ║f g═║m║═ with s║me m║re Cartesia═ features ║f the Jesuit Honoratio Faber (Fabri). The science in those backwards countries had four interesting properties: 1. Theoretical-Experimental Level of Science a) Although Newton’s i═tellectual desce═da═ts did ═║t use Leibniz’ ═║tati║═ ║f differential calculus to describe the theoretical mechanical vision of nature, the central part of research moved towards the descriptive natural sciences which included the research of living matter and also minerals. It brought the strong appeal for systematization and classification which were the main ideas of the second part of 18th century even if they did not play the leading roles in humanistic sciences of 19th century.21 The mathematics itself was still a part of Natural Scie═ces especially the applied Euler’s mathematics ║f 18th century, and just slowly developed in something special on the very border of the artistic achievements. Table 3: Systematization and Classification in Sciences Year Author Field of Classification 1580-1600 1718 17351758 1778 1770-1783 1774 1785 17811789 1792 1830-1832 1863 1950- Tycho Brahe лtie══e-Fra═ç║is Geoffroy l'Aînц (1672-1751) Carl Linnaeus Axel Fredrik Cronstedt Buffon Buffon Buffon William Herschel A.G. Werner Lavoisier Lavoisier and Laplace Charles Lyell Mendeleev Stars Chemical Affinities Plants and Animals Minerals (also from chemistry viewpoint) Geological Eras Birds Minerals according to Linnaeus Minerals Stars Chemical Compounds Measures and Weights Geological Eras Chemical Elements Elementary Particles 21 Crary, 2012, 155. b) In the area of experiments the hydrodynamics joined the optics, astronomy and chemistry.22 Later all were overshadowed by the experiments with electricity which were cheap enough especially when Leiden Jars became available in 1740-s. 2. Science in Space The centers of scientific research slowly spread from Paris and London to the Northeast of Berlin, Stockholm, and Petersburg. The Absolute Rulers used brain-drain to attract scientists with better working circumstances. One of the main factors was the pride and concurrence among rulers who were quite willing to pay a lot to get the company of scientific genies of their era. The science of applied mathematics also became directly useful for technologies, or indirectly in the universities. The science was still not the productive force directly involved in selling of new technologies. Up to 19th century the new machines were mostly designed by the self-taught craftsmen who were not particularly versed in mathematics. Galileo, Hooke, E. Halley (1700),23 D. Bernoulli (1738), J. Priestley (1767), Fourier,24 and even Newton were among the first to put forward the supposed technological usefulness of their scientific research. 3. Job of Scientist The character ║f descriptive ═atural scie═ces appr║ached cl║sely the physicia═s’ way ║f thought: a) Most physicians did not endorse the infinitesimal calculus and even less the other branches of higher mathematics. b) The physicians always understood the life in all its complexity. Therefore most of the physicians were never fans of Descartes-Lametrie’s simplified mechanical description of life. c) Some physicians had to work in the geographical areas without real Universities or Academies. In that way they endorsed some scientific novelties in backward countries like Carniola with the little help of the Jesuits as were the botanist Franc Wulfen or engineer turned general of the Jesuits, Gabriel Gruber. d) The study of medicine brought up the most naturalists. Besides the academicians and professors also physicians began to play major role in science also because in Catholic 22 Bernoulli, Daniel. 1738. Hidrodinamica. Strasbourg. The translation of 10th book on kinetic theory: 1857. Poggendorff's Annalen der Chemie. 99: 315. 23 Halley, Edmund. 1695. The True Theory of the Tides Extracted from that Admired Treatise of Mr. Isaac Newton, Intituled, Philosophia Naturalis Principia Mathematica: being a discourse presented with that book to the late King James. Phil. Trans. 19: 445-457; Priestley, Joseph. 1767. The History and Present State of Electricity. London. French translation: 1771. 24 Fourier, Joseph. 1822. Théorie analytique de chaleur. Paris. Europe after the obligatory studies of philosophy the medicine was the only university faculty involved in Natural Sciences while the faculties of law or theology were not. 4. Scientific Organizations The Academies really multiplied only after early 18th centuries when they were also endorsed in scientifically somewhat backwards countries including the Central Europe. Many of them kept their continuity and are still operative nowadays. In mid-18th century the farming became a kind of obsession of intellectuals and they began to establish the Agricultural societies which endorsed the roles of Academies wherever the real proper academies did not flower in mid-European space. With s║me c║urage it is p║ssible t║ say that the “S║ciety for Agriculture a═d Useful Arts” established i═ Car═i║la i═ 1767, endorsed many properties of western academies including the prize-winning yearly announced questions to which many scientists applied. It also edited weekly, although just for two years, and published several yearly anthologies.25 The new scientific ideas penetrated into Carniola only after the local nobles in Estates General gathered enough money to make the relevant experiments in good enough equipped laboratories. In 1754 in Ljubljana the Jesuit established the physics-applied mathematics school laboratory where they tried the Leiden Jar just few years after it was invented. Newton’s ideas bega═ t║ fl║urish i═ Cartesia═ Paris only after 1732 when Pierre Louis Maupertius in front of Paris Academy defe═ded the paper ║═ Newt║═’s attracti║═s. I═ those circumstances the late endorsement of Newtonians in Ljubljana was to be expected. The Carniolans probably never endorsed a real profound Cartesian intermezz║. B║šk║vić’s three visits in Ljubljana Jesuit College helped to establish the modern physics in those areas c) Preservation & Development of Ideas hostile to Newtonians (Genesis of the new Paradigms) The development of sciences was never a straightforward or even planed process even in SSSR. There were always so many unpredicted turnarounds witnessing the chaotic networks behind the scene. The history of science shows a regulated face just from the historical distance when the crossroads and misinterpretations are forgotten. The past looser and his misinterpretations almost never deserves a reprint because future researchers are just not interested in mistakes, they prefer the winners. That sad fact does not mean that onetime losers will be losers forever in spite of the fact that the memory of their achievements will 25 Sammling and Weekly. fade quickly and their works will soon became hard to find in spite of the web facilities. That is why people and scientists in particular tend to repeat the mistakes of their past generations. Historia Magistra vitae est, but no working scientists (or politician) ever learned anything from the history because that sentence probably applies only to historians. In science (as in politics) many parallel ideas develop simultaneously, but just several of them were preserved for the future generations. What is much worse, the preserved ones are not always the best ones they are just the more successful winning ones. The quality and success do not match in life and even less in science. When the same old once beaten ideas emerge again, nobody remembers their past experience except historians, and the history repeats itself with all its errors. After Hooke’s death in 1703 Newton’s wi══i═g ideas were no more under any threat in England. In the Continental Europe Newton’s a═tag║═ists kept their p║wer much l║═ger. Only in 1743 D'Alembert wrote that the Cartesian sect is already much weakened. The majority of leading mainstream scientists did not oppose straightforwardly Newton’s ideas until Einstein’s era i═ spite ║f i═termediate Goethe’s the║ry ║f c║l║rs. Anyway somewhat silently several Newton’s ideas pr║ved t║ be wr║═g, am║═g them his sharp critique ║f m║del of vortices which was never approved by his contemporaries Johann and Jacob Bernoulli, and after 1820 secretly also by Ampчre. The same g║es f║r the Newt║═’s the║ry of light which Euler criticized in mid-18th century with chromatic aberration included. Later Thomas Young and Fresnel alm║st c║mpletely aba═d║═ed Newt║═’s viewp║i═ts. The French tra═slated Newt║═’s Pri═cipia with the delay ║f seve═ decades alth║ugh Jean-Paul Marat translated Optics (1787) s║║═ after εadame de Chatelet’s Pri═cipia. The delay in tra═slati║═ ║blivi║usly mea═t that Newt║═’s ideas als║ spread i═ C║═ti═e═tal Eur║pea═ space full of other ideas including Cartesian and Jesuit scholastics with considerable delay. The delay allowed the French to develop a considerably better standpoint for their ideas’ late crossing of Cannel back to good old Britain. Therefore Newton’s way of doing science entered the Continental Europe as the finished polite system and did not need to change or integrate in contrast to its savage antagonists as it happened before to Newton during his duels with Hooke and similar fellows of late 17th century England. F║r Newt║═’s E═gla═d i═ Newt║═’s case »Nem║ Pr║pheta i═ Patria Sua« did not apply. In spite of that or maybe for that reason many Newtonians in the Continental Europe soon became more devoted worshipers of Newton compared to any Englishman including Newton himself. Certainly Newtonians did not spread in Continental European vacuum. Newton’s ideas just w║═ the t║p positions of the already developed mathematics and mechanics of Cartesians and Leibniz. As a mixture, the Continental Newtonians were much more successful in 18th century which made the British William Whewell s║ sad whe═ he realized his c║u═try’s failures ║f the recent decades. Om 18th century the French lost several wars and battles against English and Dutch which endorsed national antagonism which supported the delays in accepting English ideas among French. On the other side the antagonisms between nations were never strong enough to prevent the French import of English technology. The exception was eventually Napoleonic Continental Blockade but even Napoleon decorated H. Davy in wartimes. The international political quarrels could never out-weight the material profits of merchants who tend to introduce the advanced technologies. The politics could obstacle the imports of foreign sciences which are seemingly much more related (and treating) to state ideology compared to the seemingly neutral technology. The Chinese or Japanese learned about that very well duri═g their early e═c║u═ters with the Jesuits’ missi║═aries. It is certai═ly much harder to judge the rightfulness of scientific theory compared to the oblivious success and profit of technological novelties. The sciences of the past did not have many straightforward impacts on technologies.26 The physics and theories of corresponding technologies are different subjects and they just tend to fit together in modern global era of Athropocene. Therefore the technological use of modern scientific achievements always show considerable delay which probably diminished in modern times. The changing patterns of those delays are very hard to determine because the researchers use particular scientific theories in several different scientific fields, times, and geographical spaces. We can just roughly determine the average delays of technological use of particular achievements of physics, and those delays are certainly not the same in all geographical surroundings. And there were certainly not always just delays because the English steam engine production was a predecessor of its own scientific explanation because the Frenchman S. Car═║t’s scie═tific expla═ati║═ ║f steam engine process emerged with a delay of many decades. Table 4: The Intervals between Scientific Inventions and their Technological Use Demogra phical statistics 15-40 years after the probabilit y calculus Refracti on telescop e 12 years after the emission theory of light Tides 5- Water 12 pups and years, fountains and the 2-5 years shape of after hydrodyna Earth mics 45-50 years after Newton ’s theory of gravity Undulation and emission theory of light Infinitesimal Calculus Probability Calculus Lighting rod and electricity cures in medicine 10 years after electrosta tics New chemical elements 515 years a═d V║lta’s battery 10 years after Galva═i’s (animal) electrodyna mics Photogr Telegraph 15aphy 20 years, 28-35 telephone 60 years years, and and Edis║═’s lamp spectral 65-70 years analysis after electromagnetis 55-60 m years after the undulati on theory of light Undulation theory Thermodynamics Théorie analitique Hydrodynamics Electrostatics; electrodynamics Inner combustio n engine 10-50 years after thermodyn amics Hertz’s waves and wireless radiotelegraphy 30 years after electromag netism Statistical mechanics Quantum Mechanics Nuclear Physics Elementary Particles Electromagnetism Theory of gravitation Theory of relativity 1700 1800 1900 d) Imperialism of Mechanics-World-View in early 18th Century In areas where 350 years ago the exact sciences emerged the mechanic way of thinking relied on its social-industrial foundations. In the same time it was the output of the inner logic of the development of sciences. 1. The social climates behind sciences in general and in particular case of early 18th century nursed two components which are almost impossible to separate exactly. On one side there 26 Nuclear reactor and bomb 2530 years after theory of relativity or 10-15 years after nuclear physics Channel, D.F. 1982. Harmony between Theory and Practice: engineering Science of W.J.M. Rankine. Technology and Culture. 23/1: 39-52; Rainoff, T.J. 1929. Wave–like fluctuations of creative productivity in the development of West-European Physics in the XVIIIth and XIXth Centuries. ISIS, 12/38: 287-397. was a political situation and on the other side there were the prevailing theories of society which on their own ways more or less approached the methods of exact sciences. Which was the social-economic situation? Which prevailing theories of society supported the genesis of mechanic worldview of exact sciences in the early 18th century? The early 18th century was an era when the Western Europeans forever drew the borders of other continents and began to enchain and tie strongly the newly found foreign nations with the Christian Faith and economic exploitation. For another century and a half USA and Japan did not penetrate into European centers of decisions-making and the growth of economy of those times was completely in European hands. Utrecht peace in 1713 did not just symbolize the failure of century long French aggressive politics whose swan song was Louis XIV. The peace also announced a new approach of Europeans to the economically weaker societies. The Iberian economic system was slowly driven out and replaced by the more successful systems of Dutch and British. In those times the economically strong states of England, the newly freed Holland and to some extent France developed their productive technologies and exploitation of workers, especially in textile industries. They needed the customers for their surpluses. Because the South America was too tightly under Iberian shoes which did not dare much for domestic economic growth, the efforts of developing Protestant Western European economies focused predominantly into the Far East of India, Indonesia, and China with Japan closed to all but few Dutch and with slowly collapsing Ottoman empire in between. Far-Easterners offered the lands with huge human potential and in India the weak central authorities were unable to resist organizationally and technologically more advanced European forces of army and technologies. Leibniz introduced to Europe a fashion for Chinese government after he talked with the China-Based Jesuit missionary Grimaldi upon Grimaldi’s return to Europe. The Jesuits held Confucius in high esteem as he was endorsed before Christ. The Jesuits used Confucius to defend their standpoints in the quarrels of rites which they eventually lost.27 V║ltaire was als║ a fa═ ║f the Chi═ese G║ver═me═t while Fц═цl║═ a═d the rebel Jean-Jacques Rousseau disliked the Chinese.28 Unlike China, where at least a weak central government always existed in India the imperial central government was completely dissolved already around 1740.29 A century later in 1848 the British defeated the latest Indian Sikh kingdom, but the Indians did not obey anyway.30 In 1857, the Lord Elgin as the first English ambassador to China used Indian bases and in the Opium War burned Summer Palace in Beijing. Even a century later the Chinese neither forgot, not forgave.31 In 1639 the period of inflamed Islamic missionary activity is Indonesia began against Hindus and also as the preparation against the predicted penetration of Christianity. The humiliated people under the yoke of the Portuguese saw a solution only in the teachings of Islam.32 The Portuguese were a kind of heirs of the Genovese, who were ousted by the Venetians in the Mediterranean region where the Venetian state economic policy fought against the Genoese private initiative. The Portuguese more hostile heirs were the Dutch, who begged in China, humiliated in front of the Japanese, but were extremely cruel in the rest of the world where their descendants in 27 Panikkar, Kavalam Madhava. 1967. Azija in zahodno gospostvo. Pregled dobe Vasca da Game v azijski zgodovini 1498-1945. δjublja═a: Držav═a zal║žba Sl║ve═ije, 320. 28 Pa═ikkar, 1967, 392; Audeguy, Stцpha═e. 2013. Edi═i si═, δjublja═a: Sa═je, 104. 29 Panikkar, 1967, 112. 30 Panikkar, 1967, 95. 31 Panikkar, 1967, 127. 32 Panikkar, 1967, 104-105. South Africa endorsed the apartheid up to th modern era. Most of the Dutch merchants were without religious zeal which was a primary motive for many Portuguese.33 The Portuguese were driven out from most of their colonies, but still proudly kept their Chinese missions u═til P║mbal’s debacle a═d left their language to Brazilians. The hard circumstances in manufactures of growing industrial settlements gave birth to the new armies of English workers daily. The majority of population still survived in direct contact with agriculture in which the relations between people and objects do not change that quickly. Some changes were endorsed anyway in mid-18th century when the iron plow began to replace its wooden ancestor and more profitable American potato replaced less useful European domestic crops. The crop rotation and fertilization also flourished with the growth of general education of the population. The huge masses ║f farmers’ childre═ had t║ be released from their villages for their work in city manufactures and later factories. That was possible only after the considerable bettering of farming where the less hands began to feed more mouths. The agricultural revolution was a condition sine qua non for industrial revolution on the Western and late also in the mid-Europe. In early 18th century the scientific work was certainly not tightly related to the ways of life of manual workers. The occupations of scientists fluctuated between the medicine and more academic ties with courts, academies, and universities. The era when no forces besides the mechanics served the industrial production processes34 supported the mechanic worldviews of scientists. The steam engines which used other processes besides pure mechanics even in England predominated only in the second half of 18th century. Before the steam engines nobody was able to imagine any useful machine whose working processes needed anything but pure mechanic explanations i═ spite ║f Her║═’s mecha═ical t║ys ║f Alexa═dria. In several scientific circles already emerged some not purely mechanical ideas about magnets, electricity, or even heat. Most of all the explanation of life itself went beyond the pure mechanic frames even in the works of the count Buffon. The life was not pure mechanic in spite of the extreme Cartesia═s’ Huma═-Machines or Robots although Harvey described the blood circulation in hydrodynamics frames in earlier century. The physicians defended their own views on life and their social roles were too important to allow physicists or even philosophers to dictate their worldview to physicians. 2. The inner logics of science enables the acceptable explanations of all at least partly related natural phenomena by the scientific theory which is the most successful in given point of time-space. That »imperialistic« explanation grew until the incompatible natural phenomena did not find the theory which fits better, or more commonly vice versa, until the theory finds the phenomena that is the scientists who research the given phenomena. Certainly the particular scientific theories are not involved in this process, but the process effect whole braches of sciences as are optics, electricity, or chemistry. The newly promoted successful branch of sciences greatly spread in the beginning because its protagonists try the new ways of explaining the phenomena which previously seemed to be quite successfully explained with the former branch. Sooner or later some balance is acquired, but it was later ruined when some third branch of science enters the stage. 33 34 Panikkar, 1967, 108. Kuz═ec║v, B║ris Grig║revič. 1966. Od Galilea do Einsteina. Moskva. Translation: Beograd, 198. The mechanical forces of cosmic gravitation and terrestrial gravitation could be the first branch of science which followed the described model. In the mid-18th century the electric force emerged as the concurrence. For the description of later distribution of phenomena which were explained with particular branches of sciences such a model is probably too simple to be useful. In the space of time of less than a century the mutually networked forces were borrowed from chemistry, later from optic and electromagnetism, and finally from the science of heat. Table 5: The century began with genesis of Newton’s Principia published in 1687 and ended about 1750 with the theory and praxis of electricity of Benjamin Franklin and his fellows. It witnessed the large influences of gravitation force model and its mechanic sub-models on related and not closely related natural phenomena Mechanics (gravity force) Astronomy (gravity force) Merging From 1650 to 1687 in England In second quarter of 18th century in Continental Europe Models Vortices; Statics Laws of Balance (pendulums etc.); spread of force as concentric ball F≈r-2 Phenomena tried to explain with the mechanical models Living matter; Heat; Electricity; Magnetism; Light; Sound; Fragrances; Atoms; Ether The question of influence of society and technology on sciences is not the easy one to answer. Probably it is easier to figure out the reciprocal influences of developing mechanicastronomic sciences on mechanistic worldview. In 18th century Buffon, Laplace, and probably even B║šk║vić endorsed the opinion that the data of momentous places and velocities of all bodies determine the past and the future of the world. That was a real peak of the faith in the mathematical-mechanical nature of the world which already emerged in Galile║’s thi═ki═g. That faith faded only in late 19th century when the statistical mechanics especially in its developed form figured out that such mechanical-deterministic description of nature is not useful for the groups of numerous particles. The billions of data still overshadow even the abilities of modern computers. There is no straight-forward proof against the deterministic worldview. There is just a clear vision that such deterministic description will be impossible complicated even for modern computers. In the early 18th century the researching scientists mostly still believed that God have created the world according to mechanical paths and plans. They thought, as some people still do, that the roads to knowledge leads across more and more perfect and complicated mathematics. Late 18th Century – the Calm before Storm a) English-French Industrial-Political Revolution 1. The English industrial revolution triggered the organizational and technological changes in economy which supported the resettlement of agricultural folk into industrial centers supplied by the energy of water (and wind) besides early steam-engines. The steam engine was the first greater sometimes even potable carrier and possibly also the producer of mechanical energy which used a lot of fuel. In 19th century the steam engines enabled the move of whole industrial complexes from water-supplies to the more movable reserves of coal. With those changes in geographical space the industrial production grew enormously. The traditional English agrarian structures died out because of the resettlements. The social structure of English science changed already a century before the industrial revolution which caused even today hardly understandable break between science and industry complexes. In 18th century there was no great enthusiasm among the leading scientists for the analysis of work of steam engines which was developed by the engineers who did not care for deeper physics involved in their machine work. In spite of the connections with the Lunar Society of Erasmus Darwin and J. Priestley, or his relations with J. Robison a═d R║bis║═’s teacher Joseph Black in University of Edinburg, J. Watt was still a typical engineer of his era comparable to the later W. Siemens and Thomas Alva Edison. The ignorance of steam engines still does not prove that the scientists of the late 18th century did not care for their connections with technology which was bringing the direct material benefits. It is more probable that the successful and proud technologies of steam engines did not seek the scientific explanations of phenomena on its path. Until after the research of Sadi Carnot was slowly spread even the engineers decided it is time for the innovative scientifically supported technology. The problem of steam engine was therefore mostly described by the engineers in their own slang. The physics did not explain the work of steam engine although the simple mathematical apparatus which Sadi Carnot used in 1824 was available for quite a long time before him.35 Carnot’s theory of steam engine was not accepted for a long time mostly because it was not immediately clear which groups will provide the readers. The object of Car═║t’s research was the e═gi═eers’ ║═e, the the║retical f║u═di═g sh║uld bel║═g t║ physics, and the research method was somewhere in between. The steam engine really entered through the big door only in 1840-s after it ruled in technologies and industries for at last one whole century. 2. The French political-social revolution began in 1788-1789 was a continental counterpart of the cha═ges which immerged i═ British isla═ds’ i═dustrial rev║lution. Paris even surpassed its neighbors across the Chanel as a fabric of organizational, mathematics-physics, and technological ideas in science. The changes were deep although the new authorities disabled just few rich leading scientists including the poisoned Condorcet and two months after him the beheaded Lavoisier. Many younger scientists who did not see much opportunity for successful carriers under the Ancien Régime because of their low social ranks, after the Revolution easily got the highest honors. The reforms of French schools seemed to lack the general plan and mirrored the scare of Napoleon’s rulers. They were afraid ║f ═ext m║re a═ticapitalistic stages of the revolution offered for the eventual performance by the well educated poor students of Paris and other centers. Carnot, Sadi. 1824. Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. Paris. 35 Table 6: The Social Origin of French Scientists born before the Revolution and Working During the Change of Ancien Régime to the Republic Name Father’s ║ccupati║═ (and social status) Buffon (1707-1788) A. Clairaut (1713-1765) D'Alembert (1717-1783) Coulomb (1736-1806) Lagrange (1736-1813) Lavoisier (1743-1794) Gaspard Monge (1746-1818) Laplace (1749-1827) Fourier (1768-1830) Gay-Lussac (178-1850) Poisson (1781-1840) Fra═ç║is Arag║ (1786-1853) Fresnel (1788-1827) J.-V. Poncelet (1788-1867) August Cauchy (1789-1857) Count Parisian teacher of mathematics Extra marriage-illegitimate son of the knight Military engineer Impoverished treasurer of public works and strongholds in Torino State advocate in higher court Street grinder Farmer in Normandy Tailor, poor draper from the province Judge Farmer Treasurer in Perpignan Architect Illegitimate son of an advocate in Metz Provincial lieutenant of the police, in 1800 Parisian secretary of the senate The development of French sciences benefitted from the raising number of journals after the Revolution. Under the Ancien Régime the academic journal Journal des Sçavants was the main revue used for the publications of scientific novelties. Ten years after the Revolution many new provincial academies immerged which published their own journals. Besides those also less official scientific societies published the scientific papers of high quality. The Journal of Societé d'Arcueil published the research of Laplace, Berthelot, Biot, and Malus. The University Journals were less readable although they also published high quality stuff as did Journal de l'École Polytechnique where Clapeyron published the bettered S. Car═║t’s research in 1834. From both academic and less official journals of those days the modern scientific periodicals emerged in 19th century. b) New Ideas in Science of Late 18th Century In science new ideas emerge and afterwards fight for their existence in time and space against their rivals. The compliance with experimental results is just one of factors which determine which of the competing ideas will be the moist successful. Karl Popper stated36 that the 36 Popper, Karl. 1934. The Logic od Scientific Discovery. Reprint: 1965; Popper, Karl. 1968. Conjectures and Refutations. London; Popper, Karl. 1972. Objective Knowledge. Oxford. experimental observational facts could just prove the falsification of the theory which could never be confirmed eternally. As in politics, also in science one could turn around and explain the facts as it pleases those who have in their hands the tools of decision-making. The objectivity of science is a myth, because the scientists are just the people with all ordinary errors as I. Kant already knew. 1. The modern scientific truth is nonetheless true for us as was the science of the past centuries true for the thinkers of those times. With that in mind the failures of scientists who followed the ideas outside mainstream instead of those we now hold as the right ones are not a surprise. The number of useful scientific ideas is not that enormous, so there is always a possibility of rotation after which once despised old ideas again emerge on the top and modern recognized truths go to the oblivion of contemporary opposition. In the meanwhile we witness the growing of mathematical apparatus for scientific description of experiments. The modern computer simulation assume the roles of former thought-experiments and also some experimental tools like vacuum pumps obliviously make more and more empty space. In that sense it is clear that the science does go forward with the arrow of time-entropy. It is interesting to examine the development of today valued ideas in spaces and times which were not friendly to them. It is interesting also because it is easier to follow those ideas and not the others which did not survive the competition and also did not flourish in later occasions and therefore passed into oblivion. Sometimes also those unhappy ideas provide some insight, for example the examinations of the writings of the great D. Poisson or much smaller Luka Lavtar. We will not search for the foundations of ideas of early 19th century in Antique, but we will rather connect them with the individual two centuries older ideas prior of 17th and 18th centuries. The novelties of 19th century will be distributed along the branches of physics phenomena which H. Helmholtz named optics, electricity (-) magnetism, heat, and gravitation. i) Among all those five (four) branches of classical physics it will be the easier to describe those which shaped the development the ideas about the nature of light. In 1660-s, two seemingly opposite ideas quarrelled for the scientific positions. They were the corpuscular (emission) and wave theories. Both had many sub-streams. In early 18th at least among Englishmen Newton’s c║rpuscular the║ry prevailed although Newton in his Principia discussed both supposition as equally possible.37 In the Continental Europe there were no sharp divisions and the leading mathematical physicist L. Euler (17061783) felt free to support the oppositional wave theory. The question of the nature of light was not extremely important for the scientists of 18th century. Some unprofessional physicist like the physician future revolutionary Marat tried to rearrange the colors of the light in special manner. He did not put the question of the nature of light in the first plan, and also did not relay on the problem of color error of lenses of refraction telescope called aberration which proved that even Newton was not always right. Just the better technology of production of glass which made the glass for already two 37 Keller, 2014, 41. centuries the main part of optical apparatus enabled the decisive experiments including the newly discovered interference of light. The new discoveries gave the new hope for the wave theory in Huygens’ versi║═ which was already more than a century old. The opposition of the new ideas was especially sharp in England around the year 1800. The opposition was not the act of supporters of particle theory of light because both formerly quarreling parties were almost undistinguished after the century of long silence about that particular problem of nature of light in optics. The opposition was mostly the act of respect for Newton’s great═ess. The Newtonians of 19th century obliviously did not endorse much optical experiments except in Laplace’s sch║║l where the m║st imp║rta═t protagonists were Malus, J.B. Biot, and D. Poisson. A half of a century after that new rise of wave hypotheses δц║═ F║ucault gave a sort of experimental crucis for it, but the opposite corpuscular opticians almost entirely passed away before his success. The only important exception was J.B. Biot who lived until 1862. Even more interesting turning point was quantum mechanics. New theory of light emerged as the real synthesis of previous two hypotheses on wave or corpuscular nature of light. A real dessert for the fa═s ║f εarx’s (║r Hegel’s) dialectic! ii) The difference between electricity and magnetism in 18th century and the development of that knowledge after 1819 shows really different if not even opposite picture. It looked like it was waiti═g f║r “experime═tum crucis”, which was i═ ═║ way Samuel Beckett's Waiting for Godot. In 1750 already Benjamin Franklin and many other literati noted that the lighting or similar electrical discharges magnetize the iron pieces in the neighborhood. But the true insight had to wait until A. Volta invented the permanent sources of electrical currents in 1800. I═ 1819 ║═ly with V║lta’s device H. Oersted was able to prove the steady influence of electrical current ║═ mag═etic ═eedle. Oersted’s research was certai═ly i═ the spirit ║f the═ popular German Naturphilosophie. For long decades the researchers all but knew for certain that electricity and magnetism were closely related. I═ spite ║f that they urge═tly ═eeded Oersted’s “experime═tum crucis” which consequently caused the furious mass research of electromagnetism as the introduction into modern electronic technologies. The development of electromagnetism was evidently completely opposite to the contemporaneous research of optics where the experiment of Foucault sounded just like the confirmation of already prevailing opinion. The same goes for a═║ther eve═t i═ the hist║ry ║f ║ptics, ═amely O. Römer’s pi║═eeri═g measureme═t ║f the finite velocity of light. Everybody except probably some outdated Cartesians knew the light should have the finite speed, therefore Newton and other Englishmen did not bother much to qu║te Römer’s result. Nearly the same happe═ed agai═ with εichels║═-Morley experiments which Einstein probably was not even aware of in 1905, but Einstein used the negative result of Michelson-Morley experiments intuitively. Probably the fact that all those cases of “u══ecessary” experimentum crucis belonged to the history of optics and not to electromagnetism were just an accidents which could not be explained with the available facts. Or vice versa the older developed branches of physics like mechanics or optics could develop the self-consistent theories without the urgent need of real experimentum crucis just by thought-experime═ts ║f Galile║’s falli═g b║dies with║ut Pisa t║wer, a═ti-Cartesian finite velocity ║f light with║ut Römer’s satellites ║f Jupiter, wave ║ptics with║ut F║ucault’s decisive proof, or Einstein without Eddington. On the other hand les developed branches of physics needed experimentum crucis to ensure newcomer theoreticians that the new research field will be prosperous like Oersted did for electromagnetism or steam-engines provided for Car═║t’s the║ry. But that half ║f a d║ze═ cases are pr║bably ═║t e═║ugh, a═d there certai═ly sh║uld be s║me stra═ge case which dispr║ves them i═ P║pper’s se═se. As always, the history of mankind escapes moulds in which later researchers including the present author want to out them. iii) The bringing into force of the new theory of heat was much more complicated after S. Carnot’s publicati║═ i═ 1824. It mostly resembled the sudden turnaround which let both theories, the old and new, to coexist for many years. That fact still influences some inherited indeterminations in the modern research of heat. The tragicomic development of thermodynamics is really funny, but its reasons d'être are not that clear as C. Truesdell described them.38 In what way the turnabout in the research of heat was different from the nearly contemporaneous transformations in developments of optics or electromagnetism in early 19th century? And more difficult puzzle, why thee was no contemporaneous transformations in developments of mechanics-gravitation which was just prepared for Einstein with the invention of Non-Euclidian geometry during that era of transformations? Table 7: The times and places of transformations in research of heat compared to the similar metamorphoses in research of optics and electromagnetism in early 19th century Time Area of transformed research patterns The main centers of new ideas 1799-1816 1819 1824, 1834 1842-1848 Optics Electromagnetism Heat-theory of steam engine Heat London, Paris Copenhagen, Paris, London Paris of S. Carnot and Clapeyron Germany and German Switzerland, London The thermodynamics of those days in fact does not offer us an »experime═tum crucis« as the oblivious experimental proof for the changed viewpoint on the nature of heat. The new model of heat was the result of the different observations and was for that reason even more vulnerable in Poisson’s exact analysis. The thermodynamics of invisible colliding particles certainly belonged to the forgotten ideas of Daniel Bernoulli from the year 1738. His ideas published in his Latin Hydrodynamica were preserved to the posteriori literati mostly because of partial translation published in Poggendorff’s Annalen a ce═tury after Ber═║ulli’s ║rigi═al publicati║═. In the same time the thermodynamics was a logical descendent of hypotheses of atoms used in the research of heat. In 1787 Lavoisier-Laplace’s paper on heat discussed equally of both possible theories of the heat substance. That fact proves that both ideas coexisted and that the ideas favorable to the cal║ric the║ry prevailed m║re ║r less because ║f Newt║═’s fame. The delay of the transfiguration of theory of heat in comparison to optics or electromagnetism and also the great misunderstandings in uses of names of the heat effects was probably the result of those double sources of thinking about heat. As late as on the very end of 18th century the heat was one of the basic branches of research in chemistry and pneumatics researches of gases. Only later the physics with its research apparatus embraced the research of heat and borrowed part of its ideas and nomenclatures from the chemistry. In scholastic 38 Truesdell, C. 1980. The Tragicomical History of Thermodynamics 1822-1854. Springer-Verlag, 272 curriculum such destiny of the research of heat was not a surprise because the chemistry was a part of lectures of physics in the second year of studies of philosophy. iiii) Gravitation as the 5th of forces in physics (or 4th of we merge magnetism with electricity) was not considerably changed during the 18th and 19th centuries mostly because of Newton’s i═flue═ces. It was not really challenged by the new discoveries in astronomy and also not by the experiments of H. Cavendish or δ║rá═d Eötvös bar║═ Vásár║s═amц═y (18481919) with their “weighti═g” ║f Earth which obliviously predominantly supported mai═stream supp║siti║═s ║f Newt║═’s spiritual desce═da═ts. That steadiness of the theory of gravitation on Newton’s sta═dp║i═ts d║es ═║t really mea═ that there were ═║ ═ew ideas, but the new way of thinking with probable exceptions of B║šk║vić’s p║i═t ce═ters ║f f║rces ║r Le Sage’s flew ║f particles ║f ether did ═║t stay alive i═ the mem║ries ║f ═ext ge═erati║═s. a) The early followers of Newton solved the problem of the shape of gravitation force in short distances with the supposition of strengthened attractive force on the short distances. In 1687 Newton himself in Principia supposed that on distances shorter than the radius of molecule the repulsive force was inversely proportional to the distance.39 The others literati proposed the equitation Fg = 3∙a/x2 + 2∙b/x3 where a and b were constants and x was distance from the source of force. In 1765 Buffon stated40 that Newton’s law is always valid, but s║me deviations on small distances are due to the different shapes of the smallest particles of matter. In 1758 and 1763 B║šk║vić tried t║ explai═ the c║mplicated shape ║f f║rce ║f gravitation on small distances. Because of the complicated analytic equitation he preferred to use the geometrical form. The stabile states where there was no resulting force were in points where the curve crossed the horizontal axis. b) Even the astronomical measurements did not always support Newton’s ideas. In 1760 the French A. Clairaut i═ spite ║f Buff║═’s critics tried t║ pr║ve that the measureme═ts ║f the orbit of Moon fit the force described with the equitation Fg = a/x2 + b/x4 . c) In 18th century the infinitesimal calculus influenced all Newton’s f║ll║wers, up t║ s║me point with the exception of the Jesuit B║šk║vić. On the early stages of development it was not clear at all that all the experiments will support such a narrow limit-restrictions as was the spreading of force in the shape of concentric balls, therefore inversely with the square of distance. Two centuries ago the laws of physics were not necessarily written in whole numbered relations of the variables. In 1769 the Scotsman John Robison41 measured the repulsive force of electricity in form of Fel = a/x2.06 . In 1785 in the University of Edinburg Robison (1739–1805) for the first time lectured on B║šk║vić’s the║ry a═d he liked it u═til his last days. In between in 1797 in his Proofs of a Conspiracy Robison accused the freemasons of all sorts of evils including the French Revolution. Fra═kli═’s frie═d B║šk║vić was obliviously not the antagonist of freemasons and he died two years before the French Rev║luti║═. Theref║re R║bis║═ e═d║rseme═t ║f B║šk║vić’s ideas tw║ years bef║re B║šk║vić’s death w║uld pr║bably ═║t please B║šk║vić similarly as B║šk║vić disappr║ved the materialist Priestley as B║šk║vić’s fan. 2) The science does not only change with time, because its characteristics also change in different geographic areas. Some literati from some geographic areas produced knowledge 39 Brush, 1976, 390. Buffon. 1765. Histoire Naturelle, Secondes vues de la nature. Paris. 41 Whittaker, Edmund. 1951. A History of the Theories of Aether and Electricity, 2nd part, 2nd paragraph. 40 of higher qualities compared to the others, according to contemporary and also according to modern points of view. On the other side the literati from scientifically backward areas produced the special sorts of ideas which were able to develop just in those sorts of environment where the bad conditions for experimental works give the scientist the one and the only one chance to survive creatively, and that is the highly imaginative research. The theory of high quality is even in modern times the only possible way to success for the scientists in lands where not enough money is invested into the expensive instruments for experiments in physics let’s say the particle accelerat║rs, or the space research. The lands inhabited with Slovenes are one of those dislocated backwards areas in the development of the research in physics. Considering the rich libraries in those areas, the lands inhabited with Slovenian were not at all always backwards, but lately the brain-drain impoverished their scientific communities. Organizations, the usable operative language as Lingua Franca, and the material support of the ruling classes are three basic conditions for the effective scientific research and they change all the time in time and space. The backwardness of some geographic areas in one era of time may afford the quicker growth in the same geographical areas in some sort of a model of retreat-and-comeback. It’s a pity that the m║der═ ec║═║mic inferiority of most Nonwestern countries forces them to stay on the edge of the modern sciences, but probably the world will not stay in that unprofitable shape forever. The sciences urgently need new blood from previously scientifically unspoiled geographical areas and fr║m females’ mi═ds. a) The organization of medieval sciences was the affair of individuals or at least of narrow limited schools until the wealth of absolutistic rulers began to gather the literati in their courts, academies, and universities. That was a kind of competition among the rich rulers in a sort of a trade with humans-literati, especially in the case of Prussian monarch Frederick the great who incorporated Lambert and for a while also half-blinded Euler or Voltaire and pla══ed t║ sell the Jesuits’ experts after 1773. The incited scientists also brought some cash with their applied mathematics or university teachings. In mid-17th century the scientific organizations grew up into the Academies. In late 18th century the rulers took of the school system of catholic lands from the Jesuits after their suppression in 1773. In that time Ljubljana began to stay behind compared to the centers of European sciences because there were no available literati to replace the Jesuits who partially left for their home countries or to Vienna, as did Maffei, Ambschell, or G. Gruber on his way to Russia. Even more harmful, the Habsburg absolutist monarchs, especially Josef II, began to enforce the centralization of knowledge, school-system, and libraries. That was the real reason for the suppression the philosophical studies with physics in Ljubljana in 1785, although the rulers also used the quarrels between the Ljubljana professors and an excuse. The intellectual center of Ljubljana obliviously lagged behind in late 18th century because of the lack of organizations which will associate the local literati. The abortive try to renew the Academy Operosorum just fixed the already established fact in 1781, although the Society of Agriculture and Useful Arts of Carniola managed to work a little further until the lack of state money forced it to temporally standstill. b) The language of scientific production changed from Latin into domestic languages in the space of time of century and a half. Among the first the Dutch and Italians began to write in their domestic languages. The first were able to do so because the Roman control was enough faraway, and the other did the same because the Rome was so close and that gave them some advantage including the fact that most of popes were Italians and therefore kind of affected with the domestic Italian vulgate. When on the eve of the coming French Revolution the Jesuits’ suppressions emerged in Iberian Peninsula and in France, the role of the Latin language as the lingua franca lost another battle. Also the love for Antics ceased to be worldwide as it was in the era of Renaissance for the proud wealthy. The rich slowly recognized how stupid they may look dressed in antique togas on their expensive portraits. In reality the fight against Latin language was a long one. The Latin was finally expelled from the schools in modern Slovenia only after the Second World War. Therefore the loosing of Latin and connected dying of antique past prolonged for the whole three centuries although Arnold Toynbee stated that after his studies he felt at home in Antique as in his own contemporary times. The Chinese tried to provide the same split with ancient Chinese literary language and even with the Confucianism itself only during the First World War.42 Graph 1: The time-dependence of percentage of published Latin books about mechanics and the percentage of published Latin books in Ljubljana Lyceum library which developed in the modern NUK43 The length of each line shows the space of time in which ten works were published. Grig║r'â═ and Fradlin counted 133 books and articles published from 1577 to 1809, among them 60 (45 %) in Latin Language. 42 Panikkar, 1967, 337-338. Grig║r'â═, Aš║t Tigra═║vič; Fradli═, B║ris Naum║vič. 1982. Ist║riâ meha═iki tverd║g║ tela. ε║skva: Nauka. pp. 216-219, 241-243; Č║p, εatija; Kalister. 1828-1831. Katalog licejske knjižnice. NUK, manuscript department. 43 Č║p and Kalister in the second volume of their 9th Lyceum books catalogue entitled Systematische Untersicht der Naturlehre (1st part of Physik und Chemie on pages 14-21, Wärme on page 48, and Magnetism, Elektrik und Galvanism on page 49) listed 123 works published from 1578 to 1830. Among them were 67 (54,5 %) works written in Latin languages, therefore a little higher percentage compared to the percentage of Latin fu═dame═tal w║rks ab║ut mecha═ics which Grig║r'â═ and Fradlin noted. It is oblivious that the abandonment of the Latin language was the greatest and final in Ljubljana Lyceum library few generations after the European average. Ljubljana Lyceum library was the biggest library in Carniola therefore we could expect that the other libraries followed the same path, although probably the church-related libraries relied on Latin somewhat longer because of the Latin preaching and Latin education of the clergy. The oldest book about physics which did not use the Latin language was acquired in Ljubljana Lyceum library only in 18th century. The passage from Latin to German language in Ljubljana Lyceum library was afterwards much quicker compared to European average in spite of the short French Interregnum from 1809 to 1813. The transition was competed in Ljubljana just in eight decades, but the worldwide authors of domestic-language works about mechanics had to compete with the Latin writers for no less than 220 years according to the note of Grig║r'â═ and Fradlin. c) The material needs of scientific research changes in time. They are also very different in the different branches of research in physics. The experimental research needs expensive tools and is therefore in average much more costly compared to the theoretical research although also the development of mathematical theories were costly enough to force the Manhattan Project protagonists to adopt the bomb-related developed costly theories to the space and particle research during the early stages of the Cold War. Between theoretical and experimental research there is a close relation with mutual interactions. It is usually not possible to think about the theoretical problems of some science without the straightforward insight in experimental results which limit the possible theoretical solutions of the given problems. Just a rare theoreticians managed to flourish their physics without experimental insight, for example Landau who did not have much straight-forward insight in observational astr║═║my whe═ he devel║ped his the║ries ║f black h║les’ related objects. The residents of the lands inhabited with Slovenes in the area of modern Slovenia obliviously followed the development of physics just up to the last quarter of 18th century. Why? To answer more easily to this comparably complicated question, let us turn it around. How did the former inhabitants of the modern Slovenia manage to follow the development of physics so closely after the birth of modern new science for a first century and a half? The experimental tools available in Ljubljana at least in the mid-18th century in modern enough Jesuits’ sch║║l lab║rat║ry staid backwards f║r eight years i═ the case ║f δeyde═ jar acquisition. In other cases ║f Jesuits’ equipme═t the delay might be several decades compared to the inventions of particular instruments in other parts of Europe. The answer for the difficult question has many levels and they are connected with the changing nature of the scientific communications. In later Slovenian national lands no scientific works emerged which will be praised enough in 17th and 18th centuries, and certainly those Slovenian-related works were also not highly praised by the future historians of science. The rethinking is needed about the possibility that those areas were touched just with one-way exchange of scientific works and ideas. In Ljubljana the literati read the foreign scientific works, but in foreign areas nobody usually read m║st ║f δjublja═a w║rks, with the p║ssible exempti║═ ║f E. Halley’s frie═d Valvasor, who published Die Ehre almost simultaneously with Newt║═’s Pri═cipia. In lands inhabited with Slovenes of those times there were no well developed scientific researches comparable to the World leading scientific accomplishment. Later in last quarter of 20th century such research was performed in the laboratory of Nuclear Magnetic Resonance of F5 department of the Institute J║žef Stefa═ in Ljubljana under the leadership of Robert Blinc. In spite of that momentarily success even today Ljubljana periodical and other scientific publications are not read worldwide even if they are published in English. One of the reasons is probably also the ║blivi║us differe═ce betwee═ Oxf║rd ║r America═ E═glish a═d the “E═glish” used as secondary language for lingua franca. The linguistic problems of scientific communications did not exist in 17th and 18th centuries. The scientific backwardness of today Slovenian lands was primarily a result of the deficit of local scientific periodicals and scientific societies, and also the lack of comparatively expensive experimental tools. The shortage of experimental tools was caused by the bad material circumstances without the relevant scientific organizations which could get some state money. And last but not least, much greater Eur║pea═ literati’s mobility of past centuries provided a one way brain drain of domestic talents to the foreign universities and research centers. The US literati are still very mobile at least inside the US and Western borders, but the European scientists probably prefer to work at their home environment uless they are forced to abandon it. The most influential magnet for former Slovenian literati was some hardly distinguishable scientific fame which other scientific groups got inside the Habsburg Hereditary lands in 17th and 18th centuries. The prince from Žužemberk Janez Vajkard Turjaški-Auersperg was certainly a noble of the worldwide format, but his Ljubljana palace anyway had no possibility to provide the Viennese spirit without enough numerous inhabitants, craftsman, and literati of Ljubljana. Gabriel Gruber was a first rate engineer and diplomat and because of that his Carniola possibilities soon became too narrow. The great university centers were quickly getting their modern image, as did their periphery of Ljubljana and similar cities. After the quarrels between Slovene and German political parties in second part of 19th centuries most German oriented literati left Slovenia for good which was another moment in the way to backwardness. The same happened two centuries and a half earlier when many Protestants left those areas. 19th Century Even today we endorse the ideas born in 19th century. In mid-19th century the sciences metamorphosed into indispensable productive force because it offered the useful clues for the technologies used in the army and industry. The 19th century really began in uncommon way for Europe. After the decades of defensive the French revolutionary armies went into counteroffensive which lasted for a decade and a half a═d u═ited m║st ║f Eur║pe u═der Nap║le║═’s rule. That was probably the only era before the European Union which A. Toynbee was able to proclaim as the developed stages of Western Civilization named the universal state.44 Nap║le║═’s decade and a half was anyway 44 Toynbee, Arnold. 1934-1954. The Study of History. London. not long enough for the profound changes, because the other universal states of Toynbee’s scheme had much longer durations. On the other side the Versailles’ cultural habits ║f the courtiers of king Louis XIV a century before Napoleon prevailed in most of European countries including Russia and in that way enabled the omnipresent position of French culture in many centuries to come. The reaction after the fall of Napoleon’s u═iversal state c║uld be hardly described as disintegration which end in settlement waves of stockbreeders as Volkswanderung, even if it is true that in such a way most of the other universal states ended including the Roman Empire of Julius Cesar and August. After 1815 the European reaction tried to restate the political circumstances to the stages before the French Revolution, but that was practically impossible especially in France. The reaction even among the sciences supported the antagonists of progress who stated that the new ways lead to atheism and to the thoughts which are dangerous to the natural behavior of mankind. Among the leading conservative scientists of those times was A. Cauchy, one of the best mathematicians and physicists of all times. From 1815 to 1848 Metternich’s absolutism in Vormärz of Habsburg Monarchy was one of the least freethinking regimes which ruled also over Slovenian lands. In many aspects it stopped the developments of sciences in great Habsburg cities of Vienna, Prague, or Graz. The mathematician Bolzano was just one of its victims. Against freethinking that unfavorable regime also used the sharp censure which even forbade presumptuously declared scientific ideas in 1820-s. Ljubljana as the centre of Carniola land was left behind of the development of other provincial centers like Graz of Trieste. Certainly the Vormärz was not completely peaceful and inert, just the people of those times had to be careful with their public talks or writings. As today with rapid development of web and networks, in 1848 also many clubs and secret societies including the short lived Habsburg freemasons flourished with (new) ideology which was becoming the c║═sci║us═ess acc║rdi═g t║ Slav║j Žižek i═terpretati║═ ║f modern events. Modern situation is certainly complicated with indigenous people like Bolivian Indians offering their own different up to date neglected traditions of science45 including the Bolivian rare official law for the protection of nature in spite of recent doubts of non-westerners in the possibilities of their traditions concurrence approach to Western sciences.46 The import of industrial products of textile, steal, or steam engines as the sources of power from Britain was freed after the Napoleon’s defeat, at least as far as the imp║verished European states had enough money to spend on buying. The special interest was given to military needs, especially for the new ways of producing steal which after the Englishman Martin also the German Siemens endorsed successfully. The steam engine was primarily used just to pump the water from the hardly accessible deep mines. Only slowly it also made its way as the source of power in factories and in transport. In that way the steam engine became the axis of the capitalistic development which convinced the people of those times that their own era of machines and great velocities was very different from any past eras. 45 Mason, Paul. 2012. Why it's Kicking off Everywhere. London/New York: Verso, 29, 173; Mason, Paul. 2007. Live Working or Die Fighting. δ║═d║═: Vi═tage, 210; K║šir, εatevž. 2015. Zgodovina prostozidarstva na Slovenskem. Ljubljana: Modrijan. 138. 46 Pamuk, Orhan. 2015. Tiha hiša. Ljubljana: Sanje, 90. New Scientific Ideas which Dismiss Pure Mechanical Worldview Fres═el i═ Ampчre introduced the transversal nature of the spreading of light after 1816. Later the idea was used for the description of electromagnetic and heat waves. That was completely new idea in physics of the early 19th century. It still managed to stay in the frame of mechanics, but it already changed the worldviews available up to date. The later idea of statistical nature of smallest elements of mater ceased to be a part of mechanics and in its extrapolations even challenged the mechanical determinative descriptions of nature. Besides both novelties, the transversal and statistical ones, we will try to figure out to which extent those news penetrated into the Slovenian lands. Besides those two ideas developed in the theory of light and heat, there was also the third unsuspected novelty in the theory of magnetic force which proved to be the only one not to act in radial direction, because it preferred up to that time unusual transversal direction acc║rdi═g t║ Ampчre’s i═terpretation of Oersted’s experime═t. I═ that way the experts ║f light a═d mag═etism research simultaneously offered the transversal ideas, the researchers of heat offered the statistical interpretation about half ║f ce═tury later, a═d Ei═stei═’s study ║f gravity offered relativity after a next half of century. Ei═stei═’s statistical i═depe═de═ce ║f B║se-Ei═stei═’s particles (1905) later pr║ved nor to be true in general,47 but statistic itself won the race. Each part of physics contributed its own general novelties in space of a century which passed betwee═ Nap║le║═’s defeat a═d German surrender after the First World War. a) The genesis of the new ideas of the nature of light was the consequence of novelties brought up with the experiments with interference. Almost nobody was able to explain them with the old corpuscular models although the Parisian Suburb Societé d’Arcueil tried very hard. The pressure for the change and renovation of older prevailing scientific opinions obliviously emerged from the experimental results. The answer provided was the wave theory which Thomas Young introduced in England in the first place, but it soon developed also in the Parisian circles of Fresnel, Arago, and Ampчre, although Arago soon felt uncomfortable with the transversal novelties. The new theory certainly did not win the day all of a sudden, even not in the Paris itself where it had the strongest headquarters. Laplace’s sch║║l with D. Poisson and J.B. Biot nursed quite different ideas, and tried to preserve the corpuscular nature of light particles. In Gay-Lussac’s university lectures which his student Augustin Grosselin (1800-1878) wrote down and published48 the wave hypotheses was noted as the possible nature of heat disturbances, but Gay-Lussac preferred to keep the good old corpuscular approach anyway. In 1816 the experiments of Fresnel and Arago proved that the ordinary and extraordinary ray do not interfere any more after they crossed through the double-reflecting birefringence Island crystal. The further research proved that the polarization planes of both rays are perpendicular to each other. The result could be explained only with the transversal waves where the oscillations-fluctuations took place perpendicular to the direction of spreading. In that way the interference experiments paved the path to the wave theory, and the absence of interference because of the special form of polarization paved the way for the special transversal form of wave theory which did not search for the analogies in acoustics as T. Young did, but rather partly found the analogy in the waves on the surface of water. The transversal wave already was a mathematical abstraction without any really satisfactory analogy in then known natural phenomena. With it people began to endorse the model which 47 48 Keller, 2014, 99. Grosselin, Augustin; Gay-Lussac. 1827. Cours de physique. Paris. they built with its own invented mathematics and they never really saw similar objects in nature. In that way the scientists partly endorsed the competency of the Got himself while they created something ex nihilo. In 19th century the transversal wave was also used as the model for the spreading of seismic waves. Most of all it gave to the physicists the ideas of the non-homogenous structure of light rays49 which did not have any parallels in mechanic way of thinking up to date. In that way the elements of light proved to have a structure even before the atoms faced the same destination, although in modern physics we face much more elements of atoms compared to still nonexistent or at least unknown elements of photons. b) The kinetic theory stated that the heat is produced by the motion of the small invisible particles of mater which were for the different early writers more or less identical to the atoms or molecules. D. Bernoulli was among the first supporters of kinetic theory of liquids and subsequently also in other states of matter. The idea was “i═ the air” in those times because D. Bernoulli did not present it as a novelty of his own. The undulatory theory never completely passed away as antagonism to Newton’s ideas. I═ the same way D. Bernoulli’s m║del always attracted the literati who tried to connect the elasticity of matter with its heat. In 1781 Lavoisier and Laplace endorsed the kinetic theory on an equal footing with its antagonistic theory of caloric. In 1827 Gay-Lussac did the same and Poisson used D. Bernoulli’s ═║tes i═ his letter t║ Fresnel in 1823.50 In spite of worldwide interest nobody translated complete D. Bernoulli’s w║rk i═ the times ║f ═ew arrival ║f kinetic theory in 1842. No useful translation disabled the self-made scientists without classical education like Faraday or Joule t║ use the ║rigi═al D. Ber═║ulli’s item if it existed i═ s║me libraries. Only in 1857 Poggendrorff in his Annalen published the translation of 10th paragraph of D. Bernoulli’s Hydrodynamica which was the most relevant for the newly emerging kinetic theory. That translation was more or less just a sign of respect to the great man and the great idea which lied almost hidden and unused for more than a century just to be suddenly almost unanimously excepted although it was not endorsed in all its depth for some times to come. In 1870-s statistic mechanics upgraded the thermodynamics. On one side it emerged from the troubles of researchers of both laws of thermodynamics which were obliviously in some aspects incompatible. From the other point of view only the protagonists of statistical mechanics endorsed the molecular theory on the description of heat although all generation of older scientists was already educated in deep faith and respect of D. Bernoulli’s idea. The interesting misunderstanding took place also because the whole thermodynamics was built on the f║u═dati║═ ║f S. Car═║t’s the║ry which still supp║rted the existe═ce ║f already ║ldfashioned fluid of caloric a═d ═║t D. Ber═║ulli’s i═visible particles which cause the heat. The statistical mechanics constituted itself as a novelty under the pens of Maxwell and Boltzmann who already used the methods of probability calculus. In that way they endorsed the foundations of physics which were completely different from any earlier mechanistic way of thinking. Maitte, Bernard. 1981. La lumière, Paris: Editions du Seuil. Fresnel, Augustin. 1868. Oeuvres complètes d'Augustin Fresnel publiées par MM. Henri de Senarmont, Emile Verdet et Léonor Fresnel. Paris, tome 2. 49 50 c) Outside the most influential geographical centers of scientific research also always relevant ideas flowered although they proved to be abortive in most cases without the support of powerfully scientific communities. In deed it is not easy to determine which new original ideas in physics blossomed among the inhabitants of Slovenian lands in the early 19th century because of lack of local media which will publish those novelties. The lectures of physics in Ljubljana higher schools were still under the influence of B║šk║vić’s ideas supp║rted by the Ljubljana Jesuit professor of physics Greg║r Schöttl, his successor ex-Jesuit Anton Ambschell up to 1785, or later up to the early 19th century by the ex-Jesuits Bartholomeaus Schaller and Anton Gruber. The love for the B║šk║vić’s physics i═ the la═ds i═habited by Sl║ve═es is hardly explicable just with the facts that B║šk║vić was ║f Slavic Dubr║v═ikRagusa origin and the other facts that he happened to be a Jesuit. Probably more attractive was a facts that the shape of B║šk║vić’s f║rce i═ ge║metrical i═terpretati║═ did ═║t ═eed a═y higher mathematics and could be therefore easier acceptable for Ljubljana milieu where the knowledge of higher mathematics was insufficient in those times. B║šk║vić’s br║ader influence in mid-European areas under Habsburg rule was certainly extraordinary and could be connected with his Jesuit and later ex-Jesuit co-brothers because B║šk║vić’s ═║velties were not endorsed in most of Paris circles and the Encyclopedists even stopped the procedures for B║šk║vić’s academic h║═║rs i═ Paris. The Italia═s quickly f║rg║t B║šk║vić after the suppression of Jesuits and he had many problems in Rome already in his lifetimes. B║šk║vić was much m║re at h║me in Scottish universities which influenced Faraday and Maxwell eve═ much later whe═ just the f║u═dati║═ ║f B║šk║vić’s ideas was still i═ the historical memories. The Sc║tla═d literati helped a l║t t║ preserve B║šk║vić’s heritage although B║šk║vić probably never set his foot on Scotland. B║šk║vić’s chief Sc║ttish supporter J. Robison eventually stayed briefly in London in 1758 in the year of the Viennese publicati║═ ║f B║šk║vić’s masterpiece. From 1770 to 1773 Robison taught cadets in Naval Academy in Saint Petersburg-Cr║═stadt where he pr║bably lear═ed m║re ab║ut B║šk║vić. Ideas Inherited from the Times of Flowering of Mechanical Worldview After the examination of the scientific novelties of 19th century it will be necessary to endorse some of the ideas which literati inherited from the previous centuries. Most of all two pretty philosophical ideas were inherited. One of them was the hypotheses of uniform nature of all natural forces which in its consequences lead to the unity of all natural forces (energies) under the common roof which is also the ideal of the modern unitary theory of fields. The second inherited idea was Plato’s a═d later Galile║’s stateme═t that all ═ature is based ║═ mathematical foundations although the mathematics itself is in some aspects just the ma═’s invention. That supposition influenced even the modern definition of science which predominantly in the English use of the world endorses nearly just those phenomena which could be described with the mathematical tools with possible exception of research of biology. a) The unitary theory of forces witnessed its ups and downs. The literati always tried to develop the uniformity to the benefit of that force (energy) which was considered the most influential in given era. The number of relevant forces (energies) differed on the different stages of the development of physics. Today they are nearly renamed into interactions and probably just the force of gravitation retained the old-fashi║═ed shape i═ which Newt║═’s contemporaries could recognize their own imaginations. In 17th century it was not clear at all which forces were independent and which are just the phenomena of other more general forces as were among others the phenomena of sound and thunder-lightning. Graph 2: The Associations of Different Forces (Energies) in last Three Centuries of the Development of Physics and Chemistry Forces inside Atom ――――――――╣ Weak Interaction――╗ Strong Interaction―― Chemical (cohesive) forces――――――――╗ Ť Electricity ―――――――――――╗---------╝-╗ Ť Lighting――――――――――――╝ Ť―――――╗ Ť Magnetism-――――――――――――――――╝ Ť――――――╝ Light―――――――――――――――――――――――----Ť Heat Radiations--―――――――――――――――――――╝ General Gravitation in Space--――╗___________________________________________________ Sound――――――╗――╝ Earth Gravitation-――╝ 1650 1750 1850 1950 The graph certainly badly describes the important unifications among the theories of light, heat and even electricity on the basis of the phlogiston theory in 18th century. Nobody is perfect and even our graph is not. The Paracelsus’ pri═ciples ║f alchemy i═ s║me way replaced the a═tique the║ry ║f f║ur eleme═ts, a═d Newt║═’s f║rces i═ their ║w═ way s║meh║w replaced a═d superseded Paracelsus’ ideas alth║ugh Newt║═ still used the w║rld “pri═ciple” i═ the title ║f his masterpiece. After 1873 when the Maxwell’s theory prevailed the fields slowly took over the roles of forces, and both without much trouble transformed into the interactions of modern physics. It is oblivious that the first two systems were predominantly chemical. The forces with later developed fields and interactions are more or less concepts of physics at least if we consider the phenomena which they describe. The most important unique event in the march towards the uniform theory was without doubt the endorsement of the Law of Conservation of energies. It was intuitively known already to Galile║’s c║═temp║raries, but the literati endorsed the needed mathematical form only two ce═turies after Galile║’s death i═ 1842. In spite of very sounding name that first Law of thermodynamics does not guarantee the unity of all forces (energies) of physics, but it only provided their common foundations which guarantee the smooth mutual transformations of forces (energies). In 1905 Einstein’s united the laws of preservations of mass and energy into (E = m∙c2). The novelty taught the literati that even the mass should be in a way endorsed as one of the »forces« of nature. The words were badly defined and the general direction of development was unclear: does the entropy- time arrow really support the unification of forces (energies) or not? The classical forces of physics really unified during 19th century, but the new nuclear forces emerged and in the same way troubled the unifying ideal of Unified Field Theory or even Theory of Everything. On the other hand it is very true that the discoveries of new formerly unknown natural forces (integrations) are predominantly the effects of better experimental tools which enable scientists to research formerly invisible aspects of natural phenomena. b) The leading thinkers as were Buffon or Laplace all the time supported the ideas of unity of objects discussed in sciences, and the ideas of unity of methods used for the research. It is hard to find the scientists who opposed such fundamental ideas. In 1842 the editor Poggendorff did not want to publish R. Mayer’s research which f║r the first time i═ hist║ry i═ enough exact way discussed the Law of Conservation of Energy and mechanical equivalent of heat. Poggendorff probably endorsed that sharp decision because he was convinced that Robert Mayer was t║║ much u═der the i═flue═ce ║f “ill-famed” Germa═ Naturphilosophie. Robert without doubt discussed the idea which was intuitively clear to physicists from earliest times because it did not need any difficult mathematical expressions. On the other hand the mainstream researcher of physics who could have serious doubts in mathematical nature of physical world were not really present in the history of science, although the poet Goethe with his theory of colors and his circle might provide some needed doubts. Goethe imagined that the color is the combination of light and shadow and not just of light as in Newt║═’s the║ry. Newt║═’s mathematical appr║ach attracted telesc║pe a═d micr║sc║pe desig═ers, while G║ethe’s the║ry had supporters among painters, and Maxwell seemingly limited the development of optics on its technical applications even for the builders of new quantum theory51 just like Kelvin imagined with his clouds somewhat earlier. The more detailed studies should note several other cases of physicists who preferred not-mathematical descriptions, because most of those literati probably worked outside the mainstream of physics, but Goethe anyway got his descendants in optic physiology of mathematician Peter Marco Roget, with Faraday's wheel, and most of all with Belgia═ J║seph Plateau’s research of G║ethe’s persiste═cy ║f visi║═. The research ║f G║ethe’s spiritual heirs lead to the phenakistoscope’s ancestors of modern cinemas and to the Plateau's eye troubles, the mathematicia═ Sim║═ v║═ Stampfer’s ze║tr║pe as the wheel ║f life, diorama of Louis J.M. Daguerre, Brewster’s kaleid║sc║pe ║f 1815, and to stereoscopes against the fear of vacuum of the bourgeoisie with later pornographic connotations connected with Ge║rges Riema══’ space of amorphous pieces.52 Paths t║ εaxwell’s Great I═tegrati║═ i═ Physics The numbering of particular unifications of ideas or even branches of physics is certainly a dangerous task. Most of all the importance of particular unifications was not always the same. Probably some sort of unifications already took place in Antique or middle ages. 1. In 1687 Newton in his Principia provided a solid scientific foundation for the equivalence of the force of Earth gravity and the gravity. Kepler and Galileo certainly imagined 51 52 Heisenberg, 1998, 52, 56, 70. Crary, 2012, 112-113, 115, 116, 119, 120, 125, 132-133, 135, 149. something like that in their times although they were not really able to put the idea into an acceptable mathematical frame. In the same times the acoustic was associated with ordinary mechanics where hydrodynamics and hydrostatics were already discussed under the same segments which provided the necessary data for the centuries of prevailing mechanicism. 2. In 1750 Benjamin Franklin in faraway America stated that the lighting and electricity are one and the same phenomena. Under the guidance of the count Buffon the French endorsed the successful verificati║═ ║f Fra═kli═’s hyp║thesis. It proved that the sorts of electrifications by lightning were the same as the known phenomena of ordinarily electricity from Leyden jar. That unification of the forces of physics did not go so much deep as the others did. Before Franklin’s publicati║═ the literati did ═║t c║═sider the lighti═g as a f║rce i═ Newton’s se═se ║f the word. Besides that the self-taught Franklin was not versed enough in mathematical physics to be a match for Newton, Maxwell, or even Nikola Tesla. The newly discovered facts show that Franklin most of all knew how to play diplomatic on Buffon’s a═tag║═ism towards d'Alembert and Nollet. Some years before his arrival to Paris Franklin learned in England that the best way to penetrate the society was to seek the support of the leading enemy of the leader of the society. Where Franklin failed with the London Royal Society, he decided to win with the Parisian Academy. Therefore he picked up the count Buffon. Franklin and his nephew probably did not even perform their famous kite experiment in the storm in the same way as Galileo earlier did not drop his weights from the leaning tower of Pisa. In both famous cases the main point was in thought-experiment. In Franklin case the real experiment would bring even considerable danger as happened later when Georg Wilhelm Richmann died in Petersburg. In modern cases such thought-experiments are rather connected with less dangerous and cheaper computer simulations. 3. Soon after the discovery in 1800 everybody used Volta’s battery f║r the measureme═ts ║f electricity in the research of chemistry. After a short time nearly everybody believed in the electrical nature of the forces involved in the processes of chemistry. There was a c║═siderable quarrel ar║u═d the bi║l║gical ║r chemical causes ║f “v║ltage” te═si║═. Volta’s supporters considerably won the competition against the supporter of Galvani although even the later ones proved to have a point in the later theory of electrical nature of nerve impulses. 4. In 1819 H. Oersted proved the magnetic influences of electrical current. Thirteen years later Faraday used the magnet to propel the current of electricity. In 1820-s the physicists developed the idea of electromagnetism which described the previously dual force as the united one in its dynamical manifestations. 5. The Law of the Conservation of Energy should not be treated in the same terms with the unifications of forces (energies) of physics although the Law of the Conservation of Energy was the greatest generalization of them all which ever took place in modern European history of physics. Certainly the law was European and not worldwide because no Chinese provided much help in those times of the lost Opium Wars, although Nonwestern nonmathematical sources of Law of the Conservation of Energy certainly played the important role because. The law was certainly intuitively clear to many different nonwestern civilizations. The Law of the Conservation of Energy also provided the fundament for Maxwell’s w║rk. Maxwell’s theory of fields as the great unification of classical physics in the same time endorsed the data from the triple sources of optics, heat research, and electromagnetism. a) Development of Knowledge about Light Introduction The spread of Venetian arts of glassmaking on the Northeast enabled the development of European Optics. Several aspects were important: - Telescope (and microscope) traveled just few years from their Netherland birth places back to Venetian lands where the telescope was endorsed with a great rumors (and money) as alm║st Galile║’s disc║very i═ 1609. - In early 17th century the Virgin Queen Elisabeth of England (1533-1603) invited the Netherland glassmakers to England. - In the mid-17th century Jean-Baptiste Colbert (1619-1683) pilfered the secret of mirrorsmaking from Venetians. The art subsequently developed in the building of the Hall of mirrors in Versailles. - In 1719 the merchants of London already used the shop-windows and their lamps lighted through glass. The research of electricity, heat, and light was generally connected with the use of glass: 1. In 1745/1746 the Leyden jar was invented in Netherland and Germany. Only after half of a century the Leyden jar lost its privileged post after the inventions of Galvani and Volta. 2. Until modern times the glass bottles were used as the necessary equipment in the experiments of chemistry which in early times also endorsed the fundamental research if heat. 3. Even today the glass is still the fundamental material used in optics even if it is probably not used in all modern mirror reflective telescopes. The light was a phenomenon which was changed the most in human perception after the worldwide use of glass. Before the general endorsement of glass the optics endorsed just several characteristics of light which usually used their own names as the names of particular research fields. The absorption and heat connected with the light were certainly the phenomena observed without much use of the glass. 1. Absorption The absorption of light in opaque bodies was noticed in earliest times as the characteristic of matter. 2. Heat Everybody knew that light always brings some heat with it. Also some hotbed effects were noticed in matter covered by optically transparent matter in eary times of human reasoning. 3. Reflection The reflection on the surfaces of water gave the data for several ancient Greek myths. But eventually the Venice and Versailles glass mirr║rs p║pularized the Newt║═’s reflective telescope in the most formidable way. 4. Refraction Kepler came very close to the law of refraction, but only the Dutch Willebrord Snellius (1591-1626) described it in the modern way and later Descartes gave it the modern mathematical f║rm. The Descartes’ refracti║═ was als║ ║bserved ║═ the surfaces ║f transparent liquids including water, but the primary motive for the research was provided with the glass optical instruments like telescopes and microscopes. 5. Color Before Newton with the exception of the Oratorian monk Nicholas Malebranche most literati attributed the colors to the influences of involved bodies and not to the light itself. The quarrels after Newt║═’s publicati║═s i═ 1672 were i═ a way similar to the century later fights around the sources of electricity between the supporters of Galvani and Volta. In both cases the p║litical backi═g pr║ved t║ be decisive. I═ Newt║═’s case it was the δ║═d║═ R║yal Society and the English establishment as a wh║le a═d i═ V║lta’s case the decisive supp║rt came from Napoleon’s g║ver═me═t. In both cases Thomas Hobbes, English exiled Jesuits opticians, and Galvani were the personas non grata, also because politically exposed Hobbes questi║═ed R║bert B║yle’s interpretation of vacuum experiments in his philosophical way estranged from the spirit of the early Royal Society. - In 1638 the Cartesians endorsed the color as the relation between the speed of rotation and the velocity of spreading-flight of globules of light. - Hooke’s theory was based on the time-development of the physiologic endorsement of the pulse in the eye similarly as the later Goethe’s the║ry ║f c║l║rs. H║║ke’s research with microscope connected his way of thinking into the search of solutions in the physiology of the eye and not in the light itself in Newton’s way. δater Volta e═d║rsed Newt║═’s appr║ach in his research ║f electricity where he als║ de═ied a═y Galva═i’s c║══ecti║═s with the physiological media. Hooke’s c║l║rs differed fr║m each other with the different sequences of strong stroke of the blue color and weak stroke of red color in pulse with which Hooke in his interesting approach tried to explain the colors of thin plates. That predominantly physiological approach in many ways complicated the view of the Newton’s u═-physiological theory of colors. In the era of Descartes’ methodical doubts Hooke was willing to name his own theory as the one of possible hypotheses. Huygens from the Dutch homeland of baroque painting endorsed the two-color theory mostly because he supposed that for the limited number of colors it will be easier for him to find the useful mechanical analogy. The thirty years old Cambridge lecturer Newton surprised many in the Royal Society with his statement without compromise when he declared that his experimentum crucis provides the absolutely right theory of light. The democracy of methodical doubts was over and the power was on the scene. But the predominantly geometrical optics of 17th and 18th centuries eventually changed into Goethe’s a═d m║st ║f all Helmh║ltz’ physiological optics of 19th century when the individual itself again became the object of observations53 which Heisenberg finally endorsed in his principle of uncertainty. It was funny indeed. The principle was the same like in Paracelsus’ times if we take i═t║ acc║u═t Heise═berg’s frie═d W║lfga═g Pauli discussi║═s with Jung about the synchronic visions in 1952.54 The primarily Newton’s argument was the prolonged shape of the specter in the direction of vertical axes which was about five times longer compared to the specter in direction of horizontal axes of refraction prism. The shape was far more deformed compared to the simultaneous quarrel about the shape of the Earth or already settled dispute about Kepler’s noncircular orbits of Planets. In spite of that Newt║═’s argume═t did ═║t persuade his contemporaries Hooke, Huygens, the Jesuit Ignatius Pardies (1636-1673), δi═us, a═d δi═us’ English student Lucas. They did ═║t e═d║rse Newt║═’s ═║velty ║f white c║l║r as the »heter║geneous mixture of all colors«. Newt║═’s experime═t was ║═ the b║rders ║f the dissolubility of his times, therefore his opponents vigorously rejected his reproach with several arguments: - The limited figure of the Sun influenced the prolonged shape of the spectra according to Pardies; - The clouds eventually additionally dispersed the sight of Sun according to Linus and Lucas; - The acceptation of the »hidden characteristics« of white light looked somewhat backwards compared to the seemingly more progressive development of Cartesian spirit which had already beate═ its sch║lastics a═tag║═ists’ hidde═ characteristics. Hooke and Huygens probably supported two-color red-blue or yellow-blue light because they wished to meet the newly discovered strange birefringence properties of Island crustal. Newton endorsed his favorite principles of the equalities of actions and reactions together with the laws of preservation: »We could separate the composed light in so many colors as it contains«. Newton’s unnatural division of colors among the simple and complex ones made Huygens even angry:55 »… Although I prove to him (Newton) that I could make white color from two primitive (not composed) colors it is not possible to prove anything from that for him because on the page 3083 of Phil.Trans.56 He noted that white should be composed from, all primitive colors«. The problem became more complex because of the mixture of physical and physiological arguments borrowed from completely different fields of research-perception including the painting. Hooke knew very well that the mixing of color pigments is not the same as the mixing of colors. Later theories of colors except G║ethe’s were much m║re ║═ Newt║═’s side although Marat57 supported three-color specter and Brewster (1837)58 endorsed again the two-color specter which Helmholtz rejected in 1856. The mixing of different scientific- 53 Crary, Jonathan. 2012. Tehnike opazovalca. Videnje in modernost v 19. stoletju. Ljubljana: Sophia, 17. Jung, Carl Gustav. 2015. Rdeča knjiga Liber Novus. Ljubljana: Beletrina, 102. 55 Phil.Trans. 19/ 2/ 1672 and 1675. 56 Newt║═, Isaac. 1672, A δetter ║f εr. Isaac Newt║═ … c║═tai═i═g his New The║ry ab║ut δight a═d Colors. Philosophical Transactions (19. 2.1672), 80: 3075-3087. 57 Tonnelat, M.A. 1958. Science Moderne (ed. Tat║═, Re═ц). Paris, 504-505. 58 Mach, Ernst. 1926. The principles of Physical Optics. London: Methuen & co., 19. 54 artistic traditi║═s was d║ggi═g the the║ry ║f c║l║rs like later the early the║ry ║f V║lta’s battery which at last did not have the troubles with the painters before the inventions of photography. Goethe certainly supported Marat and treated the fact that Paris academy did not include Marat among its members as one of the greatest scandals of Parisian Academy just before the French Revolution. 6. Speed Only three years after the building of Parisian Observatory erected from 1667 to 1672 the Dane Olaf Römer and his chief Italian Jacques Cassini measured the speed of light there. They used the apparent changing of the period of rotation of the satellites of Jupiter which was caused by the different distances from the Earth in different seasons of the year. The measurement was not very accurate because the short periods of the satellites forced them to calculate the average values of ma═y r║tati║═s. Römer’s result was t║║ high f║r 50% but he urged to publish it although Cassini wished to endorse more measurements. The achievement was not technically usable because that great speed was practically infinite all the circumstances before the building of the great telegraphic connections almost two centuries after Römer’s measureme═ts. Newt║═ did ═║t pay much atte═ti║═ t║ Römer’s result. But the ═ew ge═erati║═s ║f scie═tists educated with Römer’s result at hand were able to exclude the number of competing theories of light because Descartes’ ═eeded the i═fi═ity speedy spreading of the pressure of the light. Later more accurate measurements supported Römer’s ideas without considerable changes of the experimental tools although the results were certainly bettered. The accurate measurements of the speeds of light in different media finally decided the centuries of antagonism between corpuscular and wave theory of light. Table 8: The Velocity of Light in Century and a Half of Measurements until Ig═ac Kleme═čič Year Experimenter Result 1630 1675 1727 1848 1862 Galileo Römer Bradley59 Fizeau Foucault Many km/s 4.5 ∙ 108 m/s 3.08 ∙ 108 m/s 3.14858 ∙ 108 m/s 2.98 ∙ 108 m/s 7. Luminosity 59 Spaskii, 1964, 144. The luminosity played its role already in Newton’s times when Newton noted the differences between the color and the amount of light. The exact definition of luminosity was due to J.H. Lambert’s Ph║t║metry published i═ 1760. Lambert earned his bread as somewhat eccentric mathematician-astronomer of the Prussian king Frederick II (1712-1786). Lambert’s endorsement of the modern photometry already witnessed the higher stadium of productions of lamps before the Industrial revolution. In the middle of the developments of matches and oil lamps Lambert systematically discussed already known principles of the photometry: a) The intensity of light grows proportionally with the number of candles (equal sources of light) which illuminate the area; b) The intensity of illumination changes inversely proportionately with the square of the dista═ce betwee═ s║urce a═d illumi═ated area (as d║es Newt║═’s Gravity δaw ║r C║ul║mb’s electrostatic law); c) The intensity of illumination changes as the sine of the angle between the impacting light and the illuminated area.60 Lambert ═amed ph║t║metry as the “║ther part ║f the ║ptics” which was different from the optics proper, from the catoptrics which discussed reflections, from the dioptric which dealt with refractions, and from the perspective. As the most of Lambert’s w║rk also the photometry was outside the mainstreams of his era and got the recognized significance only after the establishments of gas lightning and astrometry after the year 1830. In that times the grateful users endorsed Lambert’s ph║t║metric definitions and often noted his work although nobody really read it, after 19th century also because of its δambert’s Latin language and rarity. On October 16, 1759 Lambert wrote to Daniel Bernoulli about the experimental support of his four laws of photometry. Lambert probably believed in the wave theory of light but he did═’t b║ther with th║se questi║═s i═ his Photometry although they were important for his contemporaries,61 most of all also for his academic ancestors from Newton’s era and for his academic descendants from the era of Thomas Young. 8. Diffraction against Ancient Geometrical Optics Riccioli’s Jesuit-assistant and friend Grimaldi was probably the pioneering observer of diffraction in Bologna. In his experiments he did not use glass although his work was a result of growing North Italian interests for the properties of light a century before Galvani put Bologna again on the top of scientific research. Grimaldi’s w║rk was published ║═ly after his death i═ 1665. Honoratius Faber (Fabri) and Hooke noted it in 1675 in Phil. Trans. 60 61 Mach, 1926, 15. DiLaura, Lambert, 2001, iv, v, xix, clxii. On December 16, 1675 in a manuscript read in front of the Royal Society Newton described the diffraction: »… It’s a ═ew s║rt ║f refracti║═. Probably the outer ether causes it when it rarefies just in front of the opaque body. The denser ether is outside of a body and the rarefied one is inside the body. No mathematical areas limit it to go through all in between densities one after another. Therefore the rays which are so close to the body to fall in the area of rarefied ether reflect there from the medium of changeable density and curve themselves t║ the i═side t║wards the m║re rarefied media ║f a b║dy…« Newton supported those ideas again in the first query of his optics in 1704: »Do the bodies effect the light from the distance and curve its rays. Is not that influence the strongest on the smallest distances«? In 1723 Maraldi tried to explain the mysterious diffraction and finally Young and Fresnel took tit over armed with the theory of interference which was primarily designed to explain Newton’s c║l║r ri═gs. δater they used the same i═terfere═ce data t║ explai═ the seemi═gly clear phenomena of diffraction, geometric shadow and the reinforcement of the signal of light. That was the destiny of the winning theory, which became at least a little imperialistic. 9. Polarization The polarization was discovered with considerable delay also because the Icelandic crystal and the likes were rare enough in most of Europe of 17th century. The less quality Icelandic crystals were found in French sites of Troyes and Campagne, as well as on Corsica.62 Therefore the Danish physician Erasmus Bartholin researched the phenomena of characteristic birefringence of Icelandic crystal only in the times of Danish political-trade predominance over Iceland in 1669. Bartholin introduced forever the notions of regular and irregular rays just after the publication of Grimaldi’s research i═ a b║║m ║f disc║veries i═ optics. The boom took place just after the spread of the knowhow of Venetian glass and mirrors arts into other European sites although Grimaldi and Bartholin did not use glass much in their research. Huygens tried t║ explai═ Bath║li═’s disc║very i═ 1673. He attributed the different refractions of both rays to the different media which transfer them: - The particles of ether with their round areas of spreading transfer the ordinary rays; - The particles of ether together with the particles of matter with the spheroidal areas of spreading transfer the extraordinary rays. Huygens in the fifth part of his Traité de la Lumière confessed that he still did »═ot find anything to my complete satisfaction«. Newt║═ endorsed that confession as the defeat of all wave theory which he tried to replace with particles in 26th query of his Optics in 1704 asking 62 Huygens, Christiaan. Traité de la Lumière, 5th part. if the particles of light have two sides... and therefore enable two sorts of rays different in nature, one of which always and in all circumstances refracts in ordinarily way and the other always and in all circumstances refracts in extraordinarily way. In that point the development of optics felt into the tragicomic whirl similar to the later thermodynamics because Newton wrongly believed that he was in the possession of the right explanations of the newly discovered birefringence polarization and diffraction which in fact belonged to the doubtful Huygens. Huygens believed in his model of gravitation which in fact was inferior to the great Newton’s Pri═cipia. Only in 1808/1809 Malus provided the right explanation of polarization which will still relay ║═ Newt║═’s corpuscular theory. Malus’ c║═tributi║═ was ║═e ║f the greatest successes of Nap║le║═’s i═vasi║═ ║f Egypt besides Fourier’s a═alysis ║f heat tra═sfer a═d T. YoungChampolion’s decipherme═ts ║f hieroglyphs written on a Rosette stone. 10. I═terfere═ce agai═st Newt║═’s Particles ║f δight In 1650 Grimaldi already noticed the interference when he researched the diffraction. In the alchemistic way of his days he described it with the seemingly dialectic notion: light + light = darkness. The serious interference experiments were later tightly connected with the use of glass. In 1665 Hooke in his Micrographia published his observations of color rings, lines, and rainbows. He accomplished his experiments with the thin shells of Muscovy-glass named after the cheap Russian replacements for window glass which was also used in Elisabeth’s England. Hooke also tried the different liquids pressed between the plates of ordinarily glass in liquids, the glasses blown into bubbles, and in the metals. The used materials and their preparations were the novelties because before Hooke nobody observed the color rings which today bear Newton’s ═ame as a kind of joke because Hooke and Newton did hate each other. Hooke’s primary m║tive was t║ displace the Cartesian theory of colors which was certainly also on Newton’s behalf. Considering the thickness of a plate the times ║f ║bserver’s ═║tificati║═ ║f sudde═ly reflected ray and the weaker rays differ. The weaker ray went through two refractions before and after the reflection and the final change of its direction. If the weaker ray targets the retina of an eye right in the middle of two rays of the stronger sort we will see the scarlet color. If the refracted weaker ray will be postponed after the stronger ray we will see red or yellow color. If the weaker ray will overtake the stronger one, we will notice blue or green color. Hooke’s discussi║═s were pretty g║║d f║u═dati║═ f║r the later T. Young’s the║ry ║f phase delay published 135 years later in 1800, but Robert Hooke was interested only in colors and not in the destructive or resonance interference which Fresnel used to explain the diffractions and even the geometric shadow in 1820. In early 1670-s Newton very clearly researched the colors of the thin plates, certainly without H║║ke’s wave hyp║theses.63 According to Newton some of the impact rays are in the fits of 63 Newton, 1704 Optics, 2nd book, proposition 13. easy reflection while the others are the fits of easy transmission. Therefore all thin transparent bodies reflex a part of impact rays and refract the others. The colors of the ring tend to repeat itself on the different thickness of the plates and therefore Newton was forced to figure out the colors of different ranges which made his descriptions very complicated.64 According to Newton the rays of different colors made by thin plates, bubbles, or refraction prism have a several different ranges of refractions. Those which after the reflections from the plate or bubble mix with the rays of the other ranges separate from them after the refraction and mix with them again to became visible as arches or circles. Newt║═’s ═║te seemed t║ be pretty similar t║ the descripti║═ ║f the interference which Young endorsed with a huge trouble a century later.65 According to Young in the case of sound (musical notes) as also in (color) specter of light, the regular intervals follow each other with the mutually contradictory characteristic (stages) which could annihilate each other. Thomas Young (1773-1829) in fact continued Huygens’ the║ry which did ═║t pass away eve═ in 18th century which favored Newton but still let L. Euler to sympathize with light waves. Young was very educated Quaker physician. He approached physics with his research of acoustics similarly as later the physiologist Hermann Helmholtz. Young tried to develop the wave characteristics ║f light which emerged already i═ Newt║═’s descripti║═ ║f access of easy reflection and refraction. Young presented his ideas in the peaceful way in several articles published in Phil. Trans. and in Journal of the Royal Institution from 1800 to 1804. He based his propositions on very accurate interference experiments. It was a pity that in question was not just physics but also the prestige of Newton’s f║ll║wers a═d ma═y m║re. The Englishmen were not fooled with Young’s peaceful tone and the supposed continuity of the development of the theory of light. Therefore the future Lord Chancellor Henry 1st Baron Brougham (1778-1868) overreacted also in unscientific journal as was the Edinburgh Journal. Young was beaten for a while but the war was not over. The continuation followed only a decade later when Napoleon after his escape from Elba Island made a hundred days of revenge against those who collaborated with Bourbons during his exile. Among his victims was also a young absolvent of Parisian École Polytechnique Augustin Fresnel (1786-1827). Fresnel was exiled to Normandy where he with very simple tools examined the interference of light and independently arrived to the wave theory of light. A year later when Napoleon was exiled again for good Fresnel, Arago, and Ampчre in Paris began to endorse the wave theory of light against the corpuscular theory supported by the Societé d'Arcueil. It was a pity that up to then the wave theory was longitudinal scalar and was unable to compete with corpuscular theory of light in explanations of the new Malus’ experiments with polarization. The success of the wave theory followed only after 1816 when Fresnel followed Ampчre’s advice a═d built the tra═sversal vector theory of light. In 1820 with that total mathematical and physical novelty Fresnel received the prize of Parisian Academy of the commission which constituted just the followers of the corpuscular light theory: Laplace, Biot, and Poisson. The only exception was Arago, but even Arago did not support the transversal waves. The legendary event was due to the Poisson’s stateme═t ab║ut the bright point in the middle of the shadow which sounded so unbelievable that everybody expected it would falsify Fres═el’s the║ry. But Fresnel surprised all of them and proved that the bright point is there anyway. The success in unexpected prediction brought him fame 64 65 Newton, 1704 Optics, 2nd book, figure 3; 4th part. Young, Thomas, 1802-1804. Philosophical Transactions. c║mpared t║ later εe═deleev ║r Ei═stei═ predicti║═s eve═ if Fres═el’s lege═dary tale somewhat resembles the tales about the Adam Schall success in calendar quarrel of China or G. Gruber healing of Tsarina’s t║║th. The 18th century did not bring much important improvements of the building of optical tools in spite the invention of achromatic lenses up to the interference and polarization experiments. The complicated techniques of pouring the big mirrors hindered the building of great reflective telescopes for new discoveries. Ernst Mach wrote66 that in all optical experiments just three different ideas immerge all the time and dictate the technical developments: a) The periodical uncovering and covering the mirror which Römer a═d Fizeau used. b) The pushing up the effect with the repeating of its stimulus which Römer used when he dealt with the repeating of time of revolution of the satellites of Jupiter, while Fizeau and his successor preferred to use the repeating regarding to the intensity. c) In all methods the researchers combined the known and unknown component of motion because they wished to determine the later easier by their mutual effects. The intentionally combined experiments of that sort were performed only later by Wheatstone in Arago. In 18th century the literati researching in the fields of astronomy and biology were the most frequent users of the optical novelties in telescopes and microscopes. Such optics in many aspects was not completely independent science even if compared with chemistry of newly developing research of electricity because it was mixed with different ambitions of the astronomers and biologists. In the same time 18th century was a battlefield of up to now not explained underground battles between the exponents of corpuscular and wave optics. Arago used the nice way to separate up to those day supporters of the emission theory (Empedocles, Kepler, Newton, Laplace; we could probably add B║šk║vić) and the supporters of waves (Aristotle, Descartes, Hooke, Huygens, Euler).67 Arago probably endorsed the name »emission« as the antagonism against the Descartes’ wave theory of light which relied on the pressure-tension between the lighter and sensor. Descartes certainly did not provide any kind of emission. The word emission does not explain the later antagonism between both theories when the wave theory also supported some kind of emission. The word ray is equally neutral considering the wave-particle background although the rays certainly have an association with the emission. But the rays are eventually not quite strange to the optics of waves. The battles between the particle and wave optics became sharper in early 19th century when it was supported by at least three novelties: 66 Mach, 1926, 27. Arag║, Fra═ç║is, 1835. Notices Scientifiques. Paris (With a notice on Fresnel written in 1830). German adaptation: 1884, pp. 34-35. 67 a) The English were the first to use the achromatic system of lenses to get rid of chromatic aberrations in more and more complicated optical systems. In 1672 Newton wrongly stated that the chromatic aberration on the edge of lens was impossible to remove because the scattering of light is proportional to its refraction. With that statement he raised the rating of his own invention of mirror-reflective telescope without the color aberrations which Newton described recently in Phil.Trans.. Newton sent his model of telescope to the Royal Society of London. In spite of his alchemistic knowledge Newton at least in his younger years did not know enough about the different sorts of glass with the different refractive indexes to share the tree quarters later Dollond’s idea. Also among Newton’s c║═temp║raries there was ═║ hero who will dare to challenge the supposedly dominant chromatic aberrations. Euler was the first to propose some critic on the basis of geometry and the characteristics of the human eye to propose the system without the chromatic aberrations.68 The discussion later took place on three levels. One was ideological with the faithfulness to the predominant successful Newton’s ideas, the other dealt with the experimental-theoretic physics and the last with the useful industrial technology. Already Huygens proposed the use of double lenses to diminish the spherical aberration,69 and other soon began to solve the puzzle of seemingly eternal chromatic aberration70 and therefore the achromatic telescope soon became better compare to the (Newt║═’s) refractive one.71 Among the English there was also the competence among the two different branches of the telescope designers. One of them backed Newton’s idea of chromatic aberration as the characteristic of every lens, but the other supported Gregory’s a═d other trying to get rid of chromatic aberration. In 1675 Georg Ravenscroft invented the heavy glass with the addition of the plumb. In 1729 and 1733 the English state employed-layer Chesterr Moor Hall (1703-1771) proved72 that the chromatic aberration could be avoided with the combination of three heavy and light glasses. In 1733 the optician George Bass endorsed the idea and began to sell the lenses of that kind. The lack of good crystals, high price and the dogging Newton’s false claim proved to be the obstacles for the production and spread of the invention. In 1747 independently from the English practical achievements L. Euler developed the fundament for the production of achromatic lenses. In his written polemics with John Dollond L. Euler defended his claims although he did not believe in its practical performance. In 1752 the English optician John Dollond (1706-1761) and the astronomer James Scot criticized Euler who published four papers against Newton’s optics from 1754 to 1756. The tall Frenchman A. Clairaut also supported Euler’s claims. Duri═g the Seve═ Years War fr║m 1757 to 1763 the British under Dollond’s leadership researched the achr║matic systems in secret hiding them from the French enemies. Dollond was a son of the practical Huguenot immigrants in England. In 1755 the professor of practical mathematics in Stockholm Klingestierna sent to Dollond his geometric calculations with the proof ║f Newt║═’s err║r included. In the same year 1755 the optician Robert Row announced to Dollond the contents of achromatic lenses from heavy and light glass which had different enough refractive indexes. In that way Dollond got the experimental and mathematic foundation for the discovery which he also had to justify in the scientific milieu. 68 Euler, Leonhard. 1747. The report of Academy in Berlin published two years later. Benjamin εarti═ (* 1704 W║rplesd║═; † 1782 δ║═d║═). 1759. New Elements of Optics or the Theory of the Aberrations, Dissipation and Colours of Light; of the General and Specific Refractive Powers and Densities of Mediums; the Properties of Single and Compound Lenses and the Nature, Construction and use of Refracting and Reflecting Telescopes and Microscopes of every sort hitherto published, London, 32. 70 Martin, 1759, 53-54. 71 Martin, 1759, 93. 72 Maitte, 1981, 199. 69 Two years after he received Klingestierna’s calculati║═s Dollond decided in London to examine them with the experiments. In 1757 he put the prism full of water into glassy prim of opposite orientation. He turned them around until he found the situation where the refracted light did ═║t sh║w a═y chr║matic aberrati║═ i═ spite ║f Newt║═’s claim put f║rward half ║f a century earlier. Dollond used the different sorts of glass in such a way that the chromatic errors of several lenses were annihilated among themselves. In the objective he put the lenses made of flint-glass called the English crystal or of sand of crown–crystal. In June 1758 the astronomer James Short reported on Dollond’s telesc║pe with║ut chr║matic aberration to the Royal Society of London. Short did not mention Euler and Klingestierna, and also went silently through the quantitative parameters of the discovery because they were supposedly hiding them during the Severn Years War (1756-1763). Therefore the details were not published in Philosophical Transactions for some time.73 Dollond got the Copley medal for the discovery and became a member of the Royal Society.74 Few months after Dollond’s death i═ 1762 Jesse Ramsden (* 1735; † 1800) married Dollond’s daughter. Martin did not mention Dollond in his book although certainly he learned about the invention published a year ago. Martin preferred to attribute the discovery of achromatic lenses to the paper of the London insurance agent Caleb Smith published in 1740. Smith is almost never mentioned in the modern histories of optics. In 1735 C. Smith became famous for his discovery of the maritime quadrant used for the orientation on the open see. He used the dynamics of the Satellites of the Jupiter which was the earlier Galile║’s idea. In 1760 B║šk║vić visited London and bought the achromatic lenses for a price of one Guinea per square f║║t. B║šk║vić se═t the item t║ his ═ative h║me ║f Dubrovnik in spite of the supposed military secret which obliviously did no work for small businesses. In the same year B║šk║vić visited the δ║═d║═ astronomer Robert Smith. B║šk║vić among the first reported on Dollond’s disc║very t║ the academy ║f Bologna in 1763. Žiga Z║is b║ught f║r his Ljubljana library the Viennese extension ║f B║šk║vić’s B║l║g═ese publication on dioptrics published in five papers in 1767.75 In early July 1763 B║šk║vić was a guest in Ljubljana Jesuit College for his third term and spread the news about the English discoveries. Jurij Vega was in that time still a student of Ljubljana lower classes but the famous B║šk║vić certai═ly made such a═ impressi║═ ║═ him that Jurij became the fa═ ║f B║šk║vić’s p║i═tcenter forces for the rest of his life. In 1774 the Fre═ch ═avy hired B║šk║vić with a salary ║f 2000 Libras also for the production of achromatic systems. b) Just before Young’s interference experiments the visible rays of light got their counterparts in the forms of invisible rays of two sorts: - Infrared-heat rays find their discoverer in William Herschel in 1800. - They were supplemented with the ultraviolet-chemical rays in next year (1801) by the Oersted’s frie═d Johann Wilhelm Ritter (1776-1810) under the influence of Schelling’s Naturphilosophie. The chemical effects of light became really useful after the discovery of photography based on the research on Niepce and Daguerre from 1822 to 1829. Half of a Ševarlić, 1986, 19. εlađe═║vić, 1985, 89-90. 75 Dadić, 1982, 1: 324-325; Jele═k║vić, Bra═islav. 2014. Ruđer B║šk║vić – važ═a p║java u dug║j ist║riji ║ptike. Trista godina od rođenja Ruđera Boškovića (ed. K═ežević, Z║ra═). Be║grad: Astr║═║mska ║bservat║rija, 49. 73 74 century after the Ritter-Herschel discovery Meloni (1850) and Stokes (1851) proved that with heat (infrared) and chemical (ultraviolet) rays we deal with the invisible sorts of light. The first and the third Nobel Prize winner in physics Wilhelm Rö═tge═ and Antoine Henri Becquerell (1852-1908) began to expand the collection of invisible rays half of a century later. c) Étienne–Louis Malus (1775-1812) began his optical experiments when he was heavily ill while serving as Napoleon’s ║fficer i═ Egypt. He br║ke ║ut i═t║ a ═ew field of knowledge when he discovered than on a specific orientation of Icelandic crystal we could see just one picture. With his paper entitled »The Discussion on the properties of light reflected from the translucent bodies« Malus won the prize of Parisian Academy in 1808. He cleverly developed Huygens’ th║ughts i═t║ a stateme═t that the cha═ge i═ directi║═ m║difies the very structure of the light which was in Malus opinion constituted just by particles. Besides the total reflection Malus also researched the total refraction which took place when we analyze a ray reflected under the Brewster’s a═gle with a plate put recta═gular ║═ the first plate. The total refraction enables the measurements of the refraction quotients of the matter and with the total reflection we could determine the optical planes. In 1846 Faraday discovered the rotation of the polarization plane of light in magnetic field which later became one of the foundations of Maxwell’s »unified theory of fields«. From the rare capacity of some crystals the polarization in able hands of Malus and Faraday became a general characteristic of matter which was in modern times connected also with the emanations from the times of the supposed Big Bang. Malus eventually would not be really pleased if he learned that Arago and Fresnel used his polarization experiments for the interference proofs of Malus’s antagonistic wave hypothesis. Malus and Fresnel both died before they were in their forties. 11. Spectroscopes In 1814 Joseph von Fraunhofer discovered the black lines in the specter of Sun. The tools needed for its serious research were available only later to Kirchhoff and Bunsen in Heidelberg in 1860. The discoveries of new chemical elements with the spectroscopic analysis first of all supported Mendeleev’s periodic system published for the first time in 1869 and later brought the winning fame also to the kinetic theory with Ramsay’s disc║very of argon and neon in 1894. The systematization of the spectroscopic lines became the same kind of mode as a generation before the systematization of chemical elements. The new Mendeleev appeared just with Bohr in 1913 and with a poor victim of the Great War, Moseley. Already in the late 19th century the useful equitation were available under the pen of the Swiss Johann Jakob Balmer (1885) who found the arithmetical rows which fits the rows of frequencies of the spectral lines of hydrogen. The next step was Rydberg’s ge═eral equitation (1908). Ritz’ pri═ciple ║f combination (1908) provided new insights, and several other less useful tries of systematization were endorsed. In 1900 Planck in his not very popular work solved the problem of black body radiations with the statistical mechanics. Planck postulates saved physics from the ultraviolet catastrophe which followed from the later predictions of John William Strutt 3rd Baron Rayleigh (1900) and Jeans (1905). Rayleigh’s scatteri═g after absorption, refraction and refection showed another possibility for the interactions of the light with matter, therefore, Rayleigh (1842-1919) got the 4th Nobel Prize for physics in 1904. A generation after Fraunhofer’s disc║very the scientists for the first time examined the scattering of light with due accuracy and found: i) In 1851 Stokes and in 1852 Robida stated that the bodies usually emit the same light which they absorb with the exception of the phosphorescence. ii) The specters of gases are discrete and the specters of solid state matter are continuous. iii) Every chemical element have a characteristic specter different from others. The term “eleme═t” was e═d║rsed s║║═ after the ad║pti║═ ║f εe═deleev’s system in 1860-s. G.R. Kirchhoff and Bunsen with their newly invented Heidelberg spectroscopy soon »discovered« four »═ew« chemical elements. Table 9: Early Spectroscopic Discoveries of the New Chemical Elements Year Elements »Discoverer« 1860 1861 1864 Rubidium and cesium Thallium Indium R.W. Bunsen William Crookes F. Reich and H.T. Richter Conclusion on the Way to Transversal Electromagnetic Theory of Light Table 10: The Great Invasion of New Discoveries after the Spring of Nations besides Optics also Embarked other Fields of Related Research in Parts of Electromagnetism, Chemistry, Geometry and the Similar Fields76 Wave (quantum) Mechanics ţţţţţţţţţţ╩ţţţţţţţţţţ Einstein’s Ph║t║═ The║ry ţţţţţ╩ţţţţţ Newton’s C║rpuscular The║ry ţţ╩ţţ Corpuscular Neutral Scalar Vector Phenomena Phenomena Phenomena Phenomena (photoelectric, Compton’s, (rectilinear spread, (interference, diffraction) (polarization, birefringence) Raman’s) reflection, refraction) 76 ţţţţţţţ╦ţţţţţţţţ Scalar Wave Theory (Huygens, Fresnel) Electromagnetism (constant velocity of light interpreted in electromagnetic units) De Broglie, Louis. 1939. Matter and Light, London: George Allen & Unwin, 156. Gravitation (dependence of direction of light on gravitation field; speed of light is the greatest possible) ţţţţţţţţţţţ╦ţţţţţţţţţţţţţţ Vector Wave Theory (Fresnel) ţţţţţţţţţţţţţţţţ╦ţţţţţţţţţţţţţţţţţţţ Electromagnetic Theory (Maxwell) ţţţţţţţţţţţţţţţţţţţţţţţţ╦ţţţţţţţţţţţţţţţţţţţţţ Relativistic Theory (Einstein) Certainly the scientific paradigm does not gain its recognition with all interested literati in the same moment. For example Frenchman Biot and Scotsman Calvinist Brewster (1781-1868) supported the nearly abandoned corpuscular theory of light until their respective very ends. They behaved in accordance with Galileo-Planck’s note that theories die together with their protagonists. The Experimentum cruces which will use just the force of its own arguments to change the opinions of the scientists never existed.77 The godparents of the change of paradigm-theory are always also some other aspects, usually tightly connected with the social-economic circumstances which support some particular way of thinking as the models. The connection of Darwin’s bi║l║gical fight f║r survival (1859) with the capitalistic concurrence or the connections of Heisenberg’s pri═ciple ║f u═certai═ty (1927) with the Great Economic Depression of his times sounds nice as well as some other similar examples, although Gibbs quarter of century earlier published the similar idea of temperature for the not properly known movements and coordinates of particles78 when no economic crisis was at hand. The connections of the ideas of physics with the politics of absolutist monarch or industrial revolutions sound much more ad hoc. The non-interference of mutually perpendicular rays was a proof of their transversal nature for Fresnel and Ampчre in 1816, but it did not convince Arago and many others. The reason was not just the experiment which could be judged as not accurate enough, because each of the literati endorsed his own opinion. In 1847 the similar goes even for Foucault’s measurements of the speed of light in media with different densities which was supposed to support ultimately the wave hypotheses against Newton’s corpuscular ideas. With the ad hoc supposition that the perpendicular speed of light remains the same after refraction F║ucault’s experimental result could have been adopted to the corpuscular theory with the supposition of the diminishing velocity in denser media. That theory would not be really Newton’s a═y more, but after the theoretical and practical endorsements of achromatic le═ses Newt║═’s mistakes were evident anywhere. The Parisian Institute with Laplace († 1827) and P║iss║═ († 1840) was still a stronghold of the corpuscular view of light even after they awarded Fresnel for his wave ideas on 1820. Biot was especially convinced member of Newton’s camp. In 1816 and 1817 he published a theory of mobile polarization stating that the light through the crystal divide the corpuscular entities among those which oscillate around the crystal axis and others which oscillate perpendicular to them. The status of transferred light could be therefore a function of the thickness of crystal and the velocity of the oscillation of molecules. The irony of Biot’s last fight f║r Newton’s particles was the weap║═ he used ║═ that ║ccasi║═. He Duhem, Pierre. 1906. δa thц║rie physique, s║═ ║bjet et sa structure. Paris: Dummett; Wood, Alexander. 1927. In pursuit of truth, a comparative study in science and religion. London: Student Christian Movement. 78 Heisenberg, 1998, 97. 77 was evidently using the vortices, the model which Newton so sharply rejected when the vortices were supposedly misused in Descartes’s ha═ds.79 With Biot the vortices also entered into research field of optics after Ampчre and Faraday introduced them into the research of electromagnetism. With Johann Bernoulli and Euler we could even follow a kind of continuity of vortices models which are still used today as the »r║t║rs« of Maxwell’s electrodynamics fields and elsewhere. Biot was extraordinary devoted because he did not abandon the optics of particles until his death in 1862. In the same way Priestley supported phlogiston until his own very end. In spite of controversies Biot’s experime═ts accelerated the ═ew ways ║f thi═ki═g. His sort of dedicated literati were not so rare in the history of science. In the history of top scientists’ research the change of paradigm probably gets around comparatively quickly. The other two levels are much more conservative, namely the “sch║║l” level c║══ected with the textb║║ks a═d the »popular« level which influence the ordinarily speech. Rutherford’s model of »pla═etary« at║m pr║p║sed i═ 1919 was still used in Ljubljana high schools half of century later when it was already for a long while replaced by the other more fitting models of science. Ljubljana teachers eventually found it »practical« and »useful« disregarding the natural truth. In fact the high school science is the project of its own and is not directly subordinate to the real science although the teachers on special pedagogical occasions have some meeting and workshops with practicing scientists. After a half of millennium Copernicus’ descripti║═ ║f the S║lar system still does not have roots in the »popular« languages where the Sun still raises and sets. Probably Einstein’s the║ry ║f relativity was more influential. It is now just a hundred years old but have already influenced fu══y “p║pular” sl║ga═ as is “everythi═g is relative” alth║ugh that sl║ga═ is pr║bably scientifically untrue. Einstein really had some profound ideas like those bout the unscientific things that acts, but which cannot be acted upon.80 Around 1800 all eleven light phenomena were fundamentally reshaped with the experiments performed except the phenomena of diffraction. T. Young and Fresnel’s interference experiments cleared even some aspects of the diffraction. Certainly the new ideas almost had to emerge, most notably two of them: 1. After 1816 the wave theory of light endorsed the completely novel transversal model which gave wave theory the vector aspects with Ampчre-Fresnel (1816) and Young efforts dating from 1817 to 1821; 2. Faraday (1834) a═d εaxwell’s (1871) electromagnetic theory of light with a field of working in a distance across the neighboring media in between was stimulated most of all by: a) Discoveries of the invisible light »equivalent« to the heat; b) Faraday’s i═flue═ce ║f mag═etic field on light; c) Equal velocities of the spread of electromagnetic and light distortions81 which was specially noted with the connections between the speed of light and the electromagnetic constants in the equitation co2 = (ło ∙μo)-1 79 Newton, 1687, 2nd book, last scholium. Keifer, Claus. 2008. Conceptual Issues in Canonical Quantum Gravity Cosmology. International conference on Time and Matter (ed. O’δ║ughli═, εarti═; Sta═ič, Sam║; Verberič, Dark║) N║va G║rica: U═iversity, 131. 81 Maxwell, James Clerk, 1873. Treatise on Electricity and Magnetism. Reprint: 1965. London, the thought no. 335. 80 The transversal waves are completely related to light and similar electromagnetic waves if we do not take into account the analogies with the waves on the surfaces of liquids. The influence was complete in all aspects because the model of transversal waves was treated as useful even for the mechanic phenomena, among them for the seismology. T. Young still combined the transversal and longitudinal waves, but Fresnel already bravely endorsed completely transversal theory. It’s a pity that it was soon proved that such an ether-carrier of a speedy transversal wave of light should have the almost unbelievable mechanical characteristics. In the same time it should not obstacle the motion on the nebular bodies. The imagined constructions were many, among those Stokes’ ether in the form of a liquid under pressure. In 1887 Michelson and Morley with their experiments did not find the loosely optimistically expected differences between the velocities of light parallel and perpendicular to the orbit of Earth which was supposedly caused by the intermediate ether. The mechanical analogies were probably not the ones which ruined the possibilities of ether. Einstein more ignored ether than criticized it. Tesla and many other modern literati want it back again.82 The ether obliviously never completely left the poetical names of wireless broadcasts, and it is also used as a name of unrelated chemical compound. Therefore it seems that ether is waiting all the times for its come back. Similarly as in the times of phlogiston also the ether is not specifically actual in modern era because the need for is not particularly very deep. The ether did not fall in the battle but it more or less became a victim of the low interests of literati. The same once happened to the perpetuum mobile which was once silently ignored by Parisian Academy. Later S. Carnot published the relevant proofs against it, but such kinds of proofs are still missing in the case of ether. The other idea of action on a distance across the neighboring media was never a novelty to the great extent. It is hard to believe that the scientists of the modern eras of positivism in deed recognized a force which carries its strength on a distance without the disturbing of the matter in between. In 1713 in spite of that philosophy Robert Cotes (1682-1716) as the editor of the second edition of Principia wrote that Actio in distans is one of the principal attributes of matter and no explanations could be more understandable of that fact. Probably Newton’s ge═eral gravity really expressed such characteristics and therefore gave rise to the critics who stated that Newton endorses again previously already excluded »alchemistic-occult« forces and principles without the needed mechanic analogies. Probably Cotes and his backers did not include obliviously necessary action across the neighboring media just because the mathematical treatment did not bring much difference into the approach of actions on a distance. In 1831 Faraday finally proved that the newly discovered phenomena of electromagnetic induction influence the media in between with different forces. The idea was not endorsed very smoothly because it lacked the higher mathematical shape in Faraday’s early ║ffer. There was also the need for the common »way of the least resistance« which forced the mathematicians-physicists of those (and our) times to discuss the new fields of study predominantly with the system of differential equitation already developed in other researched fields. The same happe═ed after the “successful” εa═hatta═ Project when the war-scientists did not only transfer war-related experimental tools into particle physics, but did the same with their theoretical models and differential equitation used for the bomb-related calculations. Obliviously they spared their energy and money by spreading the already endorsed work and not performing the new ones, as did the French 82 Iva═║vić, Dragiša ε. 1977. Naši Razgledi, N║vi vidiki, Zav║d SRS za š║lstv║. users of previous Napoleon war-balloons for the research of atmosphere. Bob-Robert Rathbun Wilson (March 4, 1914 – January 16, 2000) was eventually the only Manhattan Project person who regretted the terrible bomb they made,83 although probably Oppenheimer later joined his opinion. I═ betwee═ the Nap║le║═ic a═d εa═hatta═ Pr║ject’s heritage Poisson and Ampчre also did ═║t e═d║rse Faraday’s novelties and many opposed it also in the new generations when the Lord Kelvin, Josef Stefan, and Maxwell developed them. There were certainly also other reasons for the opposition because Maxwell’s the║ry was c║mpletely unchained to any mechanical model which was not acceptable for the literati educated in the traditional spirit of mechanicism. Among those critics of Maxwell was also the Lord Kelvin in spite of the oblivious fact that Newton himself proposed the law of gravity without any relevant mechanical model. b) Development of Research of Heat The heat is one of those characteristic of matter which people did not need to discover because it was always noted, in all times and geographic areas. Although the literati knew very well the facts about heat, they did not bother to write them down in contemporary forms of the higher mathematics before 19th century. For that reason the research of heat belonged to chemistry together with pneumatics before 19th century. The older scientists preferred to describe the heat phenomena with ordinary un-mathematical words: 1. The heated bodies consequently label their temperatures with their surroundings; 2. The speed of the change of temperature is the function of the sort of mater, its color, and the outer media around it. The more and more accurate thermometric measurements finally enabled the scientific research. It is oblivious that besides the (Chinese) clock, microscope and telescope also the thermometer was “i═ve═ted” i═ the tur═ i═t║ 17th century. The basic idea for the thermometer was the proportionality between the volume and the heat of a body: V = V (Q) Those reflections included the law which was after the early 19th century known under the name of Gay-Lussac: p = constant ======→ V/T = constant 83 Feynman, 2000. 91. In 1592 while teaching his last student Viviani (1622-1703) Galileo supposedly made the first useful thermometer. The work of the great »academician« was therefore connected with three fundamental inventions of physics and related fields: telescopes, thermometers, and even with the use of pendulum or rather »human assistant singing« clock for the measurement of the time while experimenting. Just in the development of microscope Galileo was reportedly not deeply involved. Viviani certainly had in mind the therm║meter »of air« or mercury which was still prevailing during the whole century in accordance with Torricelli’s use ║f quicksilver in the barometer. The tube of those thermometers was full of air and it was closed by the thin liquid coverage which was in the most cases made of mercury. Above the mercury coverage the experimenter got the best vacuum available at the time. The height to which the air raised the fluid coverage was the measure for the volume of the included air which measured the temperature of the surroundings. Before the 18th century there was no unified temperature scale which could enable the researchers to mutually share and compare their meteorological and similar measurements. The use of thermometry in chemistry was only in its pioneering beginnings because Lavoisier introduced the weighting into chemical laboratory experiments on the first place. Just after the triple accelerations in early 18th century the idea of heat moved towards the center of applied sciences: 1. Bettering of the Thermometers The development of the early thermometers was mostly the merit of Amontons (1663-1705). He used the curved on one side closed tube supposedly made of glass. The liquid coverage was made of mercury. In Florentine Accademia del Cimento (1657-1667) the researchers already used the thermometer filled with the spirit of wine. In later centuries they just rarely used the thermometers filled with gases because they expanded with temperature too too much. In spite of that the research laws used were still taking into account mostly the gases and those laws are for now called with the funny name the Ideal Gas Laws for more than a century. Also Anontons’ later th║ughts ab║ut the extrapolation of the diminishing of volume at lower temperatures towards the point where the volume will be considerably small (or even va═ished t║ward a p║i═t i═ B║šk║vić’s se═se) ═ear the abs║lute zer║ ║f temperature was connected mostly with the experiments with gases. 2. Thermometric Units Already Newton’s friend E. Halley (1656-1742) tried to introduce the unified thermometric scale. For the fixed points most of researchers used the characteristic points of water (melting and vaporization) but the anomaly of water prevented its use in thermometer. The water is the most common liquid available but its volume diminishes only on cooling towards the plus four degrees of Celsius. During the continued cooling towards the melting point at zero degrees Celsius the water volume is expanding and only below zero it is diminishing again as in other common materials. That features saves the lives of fish and other animals in minor freezable lakes, but it also prevented the ordinary uses of water thermometers. Fahrenheit was clever enough to fix his temperature scale on characteristic points of mercury and probably for that reason his scale become the most popular in USA even after the mercury was banished from most uses as dangerous poison in the second half of 20th century. The most useful temperature scales emerged in north European research laboratories which is to be expected because the Northerners were always more concerned about the possible dangerous and/or prosperous changing of temperatures in their lands. Certainly the similar ideas about temperature measurements emerged in Non-European north areas or on the south of Latin America, but the ingenious people from those areas did not have the predominant influences on publications and media of deciding European scientific centers of those times. From 1714 to 1742 in the period of relative European peace which was challenged just by the sporadic secession wars. In that times the innovators developed the most popular temperature scales. After that era the War for Austrian Heritage took place and expanded into Seven Years War. Fahrenheit followed the ideas of the German Christian Wolf from the year 1714. The Frenchman R.A.F. Rцaumur lost the former popularity of his temperature scale divided in 80 degrees in the modern decimal era and his scale is used nowadays only in cheeseproducing enterprises. The Swede Celsius reversed his scale for modern European use after it was primarily designed for 100 degrees at water melting point and 0 degrees at boiling point of water. In the mid-18th ce═tury δi══aeus r║tated Celsius’ scale into the modern shape. The later introductions of the new scales brought no profits but there was never a worldwide unification of thermometry similarly as there still exist the parallel uses of non-metric systems in Anglo-Saxon and other more exotic corners of the world.84 The most of primary designed temperature scales used the higher numbers for lower temperatures in opposition with modern habits. The modern ways prevailed because of the mid-19th century understanding of the idea of the absolute temperature zero and probably does not share the deep physiological background if we do not take into account that (North) Europeans of the early 18th century considered the lower temperatures as more alarming and therefore deserving the higher temperature numbers, while the late 18th century and 19th century scientists from less severe climates disliked very hot Mediterranean summers and therefore connected extreme heat with the high numbers of their scales. In one single generation the scientists and craftsman introduced whole lot of temperature scales among whose just three sufficiently expanded to enable their continual use for two centuries and a half. In that process Rцaumur’s scale ru═ i═t║ a tr║uble a ce═tury a═d half ag║. The unified measuring system was one of the priorities of Enlightenment endorsed in early years of French revolutionary Parisians and enabled the comparable temperature measurements in meteorology and soon also in chemistry which later in 19th century gave place to the physics of heat research. 3. Steam Engine The steam engine was probably among the last influential industrial designs which were strongly endorsed in technical enterprises before they got their scientific explanations of their 84 Martine, George. 1740. Essays Medical and Philosophical, a collection of six essays (including: Essays and Observations on the Construction and Graduation of Thermometers, and An Essay towards a Natural and Experimental History of the Various Degrees of Heat in Bodies). London. Translation : 1751. Dissertation sur la chaleur: avec des observations nouvelles sur la construction et la comparaison des thermométres. Paris: Jean-Thomas Herissant. working circumstances. It is understandable that the academic research of the working of steam engine gave the deciding acceleration which flourished into the fruitful research of heat phenomena in 19th century. In mid-19th century the steam engine was already the heart and brain of the flourishing industry. From oblivious reasons the different nations tried to establish the priority claims for their countryman although it was not easy to deny the merits of British inventors. Fra═ç║is Arago met the wishes of his students of École Polytechnique and published a real history of the development of engines which used steams. About the year 200 before the Christian era i═ Alexa═dria ║f t║day’s Egypt Her║═ desig═ed the spi══i═g feature which blew the steam. In 1543 Blasco de Garay developed Her║═’s idea as did Solomon de Caus in 1615, the Italian Giovanni Branca in 1629, the Marquise de Worchester in 1663, and the Sir Samuel Moreland in 1682. Already in 1666 Huygens’s research program of the newly established Académie Royale which he presented to the great powerful minister Colbert almost in the same first points mixed the research of air pump and the research of motive power of the steam of water.85 Papin was the most famous among the men who designed both, the air pumps and steam engines. In 1680 his invention of cooking under higher pressures with a nice looking chicken for a king enabled him to become a fellow of Royal Society. Papin probably borrowed his idea during his assistance work with Robert Boyle who boiled his water in room temperature in a pressures lower than 1/30 bar in 1660-s. The sophisticated boiling was certainly c║══ected with B║yle’s family ═ame. From 1690 to 1695 in Marburg Papin designed the first useful steam engine with a piston which could raise up to 27 kg. He also designed his famous steamboat but the authorities of the A. Kircher’s ═ative t║w═ ║f Fulda destr║yed Papi═’s w║rk because he did ═║t pay the fees and taxes according to the local laws. The elderly Kircher probably did not knew about that sad event. The politicians from the earliest times treated the great scientist in badly manner because the politicians always cared just for the contemporary and not for the future fame; Napoleon was probably the rare exception. Acc║rdi═g t║ ║ther s║urces Papi═’s u═happy b║at was the ordinary one without the steam propelling. In any case the unlucky Papin put in that boat all his money and therefore became poor after the boot was confiscated. In 1698 during his travels through Germany and Italy Papin continuously bettered his steam engines but the Royal Society and other rich magnates did not support his plans. Today we wonder why Papin did not use the special boiler in his engine but he trusted the role of the heater (boiler) to the cylinder which was driven outside and inside the fire on each turn of the piston. Such design was pretty unusual in Papin’s times a═d Papin also did not have the needed experiences.86 The Englishman Thomas Savery from Devonshire used Papin’s idea t║gether with Boyle and Guericke’s research ║f vacuum. Savery’s εi═er’s frie═d with 500 horse powers was used primarily to pump the water from the deep mines. In 1698 Savery received a patent for his engine with the additional second boiler and he accepted for his partner his neighbor smith Newcomen from Devonshire. Next year Savery gave his working model to Royal Society where Hooke was probably among the reviewers. The painting of the design was published in 85 86 Spaarnay, 1992, 55. Sittauer, 1989, 7, 9; Bogoljubov, 1984, 209; Frankfourt, 1976, 155; Asimov, 144–145; Dickinson, 1945, 21 Phil. Trans. with Savery’s ═║tes a═d Savery became a fellow of Royal Society. He was not the same as his predecessors and did not hide the exact design of his instruments at all. In 1680-s Newcomen exchanged letters with Hooke considering the atmospheric and Papin’s engines. Hooke told him to use the vacuum under piston to enable the useful work of the atmospheric pump.87 In 1712 Newcomen designed the engine which did not use the steam under high pressure but the whole work was done by atmospheric pressure. The pistons and cyli═ders sh║uld seal very well which was later the basic idea ║f Jurij Vega’s bettered mortars. Newcomen’s steam engine was widely used until 1725 and until Watt’s better designs. In 1711 and 1712 the Englishman John Cawley designed similar engines and the Swede Polhem did the same even before him. But the craftsmen of their times did not know how to make the vessels which could stand the high steam pressures. In 1733 the Englishman John Kay, John Wayatt, Lewis Paul, James Hargreaves in 1764, and Arkwright with his spinning engine in 1769 enabled the uses of steam engines in textile industry. In 1769 the Scotsman Watt was the first to use the second vessel as the collector if the liquids (condenser) in Newcomen’s machi═e. In that way he avoided the lost energy of the older models where in each cycle the steam was heating the water already condensed in previous cycles. In that way Watt speeded up the piston which in older models did not mover quicker than twenty cycles per minute. Instead of Boyles pumping Watt rather made vacuum in Papin’s way with the stream.88 After Watt’s ═║velties there was ═║ ═eed to wait that long f║r the heati═g ║f the vessel. Watt’s steam pushed the piston alternatively from both sides which was impossible in Newcomen’s desig═. The Scotsman Black was appointed the professor of chemistry of the University of Glasgow in the same year 1756 when Watt was appointed there as a “designer of mechanical instruments”.89 In 1774, after the initial Black’s supp║rt Watt connected the English businessman to produce the engines for the market. In 1781 he designed the levers which enabled the motion in one direction to turn a wheel which opened the new areas of use including the ironworks. Until 1790 Watt’s e═gi═es c║mpletely replaced Newcomen’s a═d they were als║ exp║rted t║ France. In 1800 the Englishmen were already using about 500 Watt’s steam engines. In those times they began to use steam engines as the motors for transport. Turgot’s steam automobile got its useful heir ║═ly with J.J.E. δe═║ir’ i═ter═al c║mbusti║═ e═gi═e i═ France in 1860. The railways got better luck and the steamer of Johnatan Hull after the experiments of Gabriel Gruber on Mur River left the most of glory to Fulton. 4. Phlogiston to Caloric, towards Ether for the Propagation of Heat 87 Bogoljubov, 1984, 180–181; Nichols, 1999, 110–111; Lienhard, John H. 1979, Rate of technological Improvement. Technology and Culture, 20/3. 88 Sittauer, 1989, 11, 13; Uglow, 2003, 98 89 Dickinson, 1945, 29 Watt and others certainly thought about the working of steam engines and described it with the diagrams, but they used the engineering way. The very first real analysis of the heat pr║cesses i═ steam e═gi═es was Car═║t’s b║║klet a wh║le ce═tury after the first uses of steam engines. The thermometry was a kind of foundation of the science of heat. But the thermometer was all time a dummy slow instrument completely unfit for the measurements of the dynamic properties of matter. Only the thermocouple of 19th century finally got rid of the slowness. That was the main reason why it took so long to get any useful analysis of the heat conduction. A ki═d ║f “therm║statics” which ═ever had a═y accepted useful ═ame which cold be compared to statics, electrostatic or hydrostatics was the finished branch of science at the end of 18th century. Similarly there was never any use if statics concept in optics, which makes the early research of light and heat somewhat different from other branches of physics, more inclined to other sciences where chemistry or biology also never accomplished any recognized statics phenomena. Already Newton’s c║═temp║raries supp║sed the pr║p║rti║═ality betwee═ the cha═ges ║f heat and the temperature. Only Black provided the exact definition and the measurement of the proportional coefficients90 and the theory followed much later. The hist║ria═’s s║═ Sc║ttish physicia═ Ge║rge εarti═e (* 1702; † 1741 South America) opposed the usefulness of all measurements made before the adoption of unified temperature scales. Newton91 t║║k the heat’s ║blivi║us similarity t║ the light a═d Stahl invented the principle which enabled the burning. Stahl’s phlogiston was used also by the researches of electricity who viewed the electricity as a kind of partly free heat. In mid-18th century many believed that the heat, light, phlogiston, and sometimes even the electricity used the same substance. The older way of thinking was not abandoned and even in 1782 Tiberius Cavallo stated that the heat is inversely proportional to the heat in bodies. Just in the Parisian Lavoisier’s circle the phlogiston was completely abandoned because its negative weight supposedly did not explain anything at all. Around 1800 Lavoisier’s pr║gram a═d ideas were endorsed mostly because of his successful reform of chemical nomenclature, while his beheading probably did not affect much the reception of his scientific concepts. The caloric replaced phlogiston as the »ether without weight« for the spreading of light, magnetism, electricity, or even gravitation. Many endorsed such fluids without weight just as the useful models needed for the easier calculations,92 and the most doubtful among them was certainly the ether needed for the transport phenomena of heat which was called caloric. The nomenclature was not unified a═d S. Car═║t’s evaluati║═s s║u═ded very m║der═ if we replace his caloric with the entropy. In 1822 the careful Fourier did not even mention caloric. GayLussac stated: »... from the heated bodies in all directions some matter flows which is the reason for the feeling of heat and for the dilatation of bodies. We know that matter under the name caloric…. I═ that way we discovered the general causes for the heat outside the bodies«. 90 Black, Joseph. 1764. Edinburg. Newt║═, 1704, querie 26; εetzger, Hцlч═e (1889-1944). 1982. Newton, Stahl, Boerhaave et la doctrine chimique. Paris: Blanchard. 92 Haüy, Re═ц Just. 1806. Traité élémentaire de Physique. 2nd edition. Paris. 91 The literati seldom imagined caloric just as a medium for transmission of the disturbance like in the cases of ethers imagined for the transmission of electricity, magnetism, light, or gravitation. Many scientists endorsed the caloric as the disturbance itself. Lavoisier and Laplace in the first place proclaimed the caloric for the elastic fluid or as a result of the motion of invisibly small molecules.93 Gay-Lussac also allowed both possible natures of caloric. The primary hypothesis proclaimed caloric for a body or very fine fluid which could impregnate the heated bodies, put together the bodies with the certain quantity of caloric and fly through them with great speed. According to the other hypotheses caloric should be fine liquid ether spread in all space with the molecules in a special vibration state which causes the feelings of heat. The molecules of the heated bodes vibrate and therefore the ether fluid should be everywhere to be able to vibrate itself. Those vibrations of the totally fine fluid spread with the enormous velocity. When the vibrations reach the other bodies with different vibrations they try to unify the vibrations. For that reason the more accelerated, numerous, and quicker are the vibrations from the heated bodies in comparison with the vibrations of colder bodies. The warmer bodies export their vibrations to the cooler bodies and make the equilibrium. In 1820-s the caloric was the very first among the »fluids without weight« which lost its value. The other ethers including the carrier of the heat emanations in Maxwell’s the║ry ║f electromagnetic waves were still in use for another century until Einstein’s w║rk. Why? 1. Among all fluids the most confusing imaginations were endorsed about the caloric which was once described as a medium for the transfer of motion and next time as the motion itself. 2. The French analytic school of, Fourier, Lagrange, Laplace, Poisson, and others finished their work on mechanics and began to research the theory of heat. In 1820-s and 1830-s the theory of heat was therefore much more modernized compared to Ampчre’s electromagnetism or Young-Fresnel’s optics. 3. From 1842 to 1852 the theory of heat included the most important novelties with special treatment which lead to both laws of the »mechanical theory of heat«, or the modern thermodynamics. That direction ruled over the Théorie analitique although especially W. Thomson used many accomplishment of the Théorie analitique. The »mecha═ical the║ry ║f heat« did ═║t disti═guish am║═g the radia═t heat a═d ║ther f║rms ║f heat as did Fourier in his times. The »mecha═ical the║ry ║f heat« was a ═ew c║═victi║═ much m║re i═cli═ed t║ the applications including the steam engines compared to any other previous scientific way of thinking up to the development of electro-technique which triggered the »experimental fever« in the second half of 19th century. To the experimental spirit of Joule, Rankine and others the caloric and similar ideas were so foreign that they became unnecessary with the future development of sciences without anybody endorsing the final critiques against them. Those ideas simply became old-fashioned and were therefore pushed into a corner. A half of century earlier the scientists needed many thick books to win over the theory of phlogiston, and now the wining caloric was just abandoned without a fight. The times were changed and the scientific habits to. It was like Bosnians surrender to Turks without the fights or whispers acc║rdi═g t║ pr║verb “B║s═a šapt║m pad═e”. And it was different from perpetuum mobile which was primarily abandoned in secret without arguments which were provided only much later by S. Carnot. The ether had a similar fate. 93 Lavoisier. Antoine Laurent; Laplace, Pierre-Sim║═. 1780 (1784). εцm║ire sur la chaleur, Mémoires de l'Acadцmie R║yale des scie═ces (Paris), 355-408. Reprint: Œuvrés complètes des A. Lavoisier. Partly translated: εarić, Svetislav 1952. Na izvorima fizike. Novi Sad. 5. F║urier’s C║═ducti║═ ║f Heat as a Part ║f Tra═sp║rt Phe═║me═a The early 19th century endorsed two different treatments of the theory of heat. The first was based in French analytical school tightly connected with the École Normale Supérieure up to its stagnation in 1840-s.94 That school was based on Leibniz’ way ║f differential Calculus which Lagrange developed in the footsteps of Bernoullis, Euler, and d'Alembert. The physicists were seeking for the useful differential equitation which fits the given border conditions. They made the integration and tried to use the results for the important conclusions about the physics involved. The similar approach is still popular worldwide after two centuries. In Napoleonic era they tried to use that approach based on mechanics in the other branches of physics mostly under the coverage of Societé d'Arcueil where collaborated Laplace, Berthollet, Gay-Lussac, Biot, Poisson, and Malus. It was evidently very mixed group of theorists, experimentalists, physicists and chemists. Similarly mixed were their scientific products emerging under their able pens: the newly imagined experiments in modern equipped Berthollet’s laboratory and deep mathematical analysis of their results. In the same Parisian time the other scientific tradition flourished which flirted with the mechanics and engineers. It included Coulomb, Fresnel, Fourier, and Reich. Fourier nearly individually with his own hands built the mathematical theory of radiations after he returned from Napoleonic Egyptian adventure. Probably the Egyptian Sun pushed him and his travel war companions Berthollet, Malus, and Monge towards the new scientific roads? Fourier’s Egypt certainly had a great influence because even after his return to Paris he kept his extraordinary Egyptian clothes which seemed to be fit for every kind of weather. In 1822 Fourier in his book put together the papers which he published for a decade and half in French scientific journals. In spite of the late reprint the novelties were picked up in Napoleonic era which began with the »journey« to Egypt in late May of 1798. Joseph Fourier (1768-1830) was a son of a poor provincial draper. As the young military engineer he was promoted during the French Revolution and became the important member of the Egyptian expedition of Napoleon who was a year and half his younger. The four years of Egyptian Sun from 1798 to 1802 decisively effected Fourier’s habits a═d his ideas ab║ut the (Egyptian) heat which in many ways challenged the mainstream ideas of Laplace’s school. Besides the transfer of heat Fourier also researched the effect of heat on the surrounding media, similarly as Faraday later treated the electromagnetic induction. Fourier challenged the French analytical school even much deeper with his abandonment of exact calculations which enabled his nearly direct notes of applied equitation of heat flow. His antagonists proclaimed Fourier’s w║rk as ═ot exact enough which it really was in comparison with Poisson’s eff║rts.95 Later generations seldom connected Fourier’s deeds with the w║rk ║f Auguste Compte (1798-1857) Cours de philosophie positive (1830-1842), certai═ly als║ because ║f F║urier’s statements like: »The fundamental causes are unknown to us: but they are subordinated to the simple laws which are the objects of the philosophy of nature«. Certainly the thinking of that kind was not necessarily the water on the mill of Compte’s positivism because Newton 94 95 Shinn, T. 1979. In: Studies in history of Physics, No. 10. Poisson, Denis. 1835. Theorie mathematique de la chaleur. Paris. Reprint; 1890. Paris. published many similar thought besides his famous Hypotheses non fingo. The same goes for Benjamin Franklin and many others. The ge═esis ║f F║urier’s w║rk fr║m 1807 to 1811 was evide═tly ═║t simulta═e║us with the C║mpte’s positivism of July Monarchy. On the break into 19th century the mathematical analysis was the overall way of the treatment of the enough developed achievements of sciences in the École Normale Supérieure. лtie══e B║══║t Abbц de C║═dillac’s (1715-1780) analysis of language gained a great impact because Lavoisier cited him while Lavoisier modernized the chemical nomenclature. The students of École Normale Supérieure used Condillac’s logics as a textbook in their third year of studies a═d δav║isier’s ch║ice was ═║ accide═t.96 Like in the medieval grammar studies which were the basis of all the other knowledge, the enlightenment linguistic formalism became even too much praised appendix of the Natural Historic knowledge. From that point we could understand the opposition to the Fourier’s results. For the successful endorsement of analytical problems of heat phenomena Fourier developed the special mode of calculating with the development of the function into the series of simple usually sine parts. The curve sinusoid as the model of waves probably seemed especially nice to Fourier although he did not take sides among the both antagonistic theories of heat, caloric or invisible motions. The dilemma was not completely similar to the antagonistic light choices of waves or particles because caloric was not a real wave in spite of the fact that particles of light seemed to be pretty similar to the particles of heat although the first ones later emerged into photons and the last ones somewhat earlier became invisible molecules treated in kinetic theory of heat. In that way Fourier was able to transfer the integrals of difficult differential equitation into approximately equal integrals of enough simple functions of angles. The approach was an appr║ximati║═ a═d theref║re it was ═║t welc║med i═ the mai═stream a═alysis ║f δaplace’s school. Formalism in physics often points to its own generalization not just in Fourier analysis, but also in long neglected quantum mechanical hint of Hamilton-Jacobi function. Curved spacetime p║ssibility ║f εi═k║wski’s spacetime, Cliff║rd’s algebra ║f Dirac’s electron, or replacement of spacetime with a larger configuration space as the basic space of physics.97 Fourier paid respect to the century of Newton’s i═flue═ces with the publicati║═ of the famous Queries on the very beginning of Fourier’s b║║k. Fourier used the Queries as the guide for reader on the questions which F║urier’s b║║k tried t║ a═swer, That was pretty differe═t fr║m Newton or Priestley wh║ used the Queries as the guide f║r readers’ ║w═ later w║rk a═d research. In the introduction Fourier asked himself which are the main characteristic of matter as related to heat and which experiments should be used to determine those characteristic in the easiest way? For Fourier the basic heat related characteristics of matter were conductivity, the speed of warming as modern capacity for heat, and the velocity of delivering the heat to other bodies as the modern »capability of absorption«. F║urier in his approximation simply forgot about the anomaly of water and stated that the elasticity increased with the temperature as if all bodies contract while cooling. Fourier borrowed from Pierre Prevost of Geneva the very simplified model of radiation where the heat rays were also radiated from cooler bodies to Lavoisier, Antoine Laurent. 1789. Traité elementaire de chimie. Paris, 17. Pavšič, εatej. 2008. Towards a New Paradigm: Relativity in Configuration Space. International conference on Time and Matter (ed. O’δ║ughli═, εarti═; Sta═ič, Sam║; Verberič, Dark║) N║va G║rica: U═iversity, 161, 176. 96 97 achieve the balance where each body achieve fixed proportion between absorbed and emitted rays. That difficult model was necessary to describe the experiment with the »mirroring of the cold« which supposedly proved that also the rays from bodies colder than the surrounding could be reflected. The clever Fourier all the time tried to support the supposed social benefit of his description of heat phenomena related to the steam engine. He did not explicitly mention the steam engines two years before S. Carnot’s descripti║═ ║f them, but Carnot certainly got the basic features of steam engines for the laws of thermodynamics without proofs based on mathematical analysis. In spite of his differences from French analytical school Fourier was still based on its positions as somewhat antagonistic to engineering analysis of Carnot and his followers. In some aspects it was the antagonism between the literati connected with Napoleonic military stuff and the younger engineers educated on the Elite Parisian Schools, sometimes with the teachers from Napoleonic stuff. Fourier differed from the mainstream tendencies which Poisson bravely baptized with the name Théorie analitique because Fourier criticized the mechanical theory of heat developed from Newton’s Optics which had no future according to Fourier. But it was precisely the mechanical theory of heat which backed the work of the spiritual followers of S. Carnot up to the breakthrough of statistical mechanics as the special non-mechanical approach for the description of heat phenomena developed for the first time in 1870-s. 6. Car═║t’s A═alysis ║f Heat E═gi═e W║rks In 1824 S. Carnot published his theory of the work of steam engines and with it became the main personality in Truesdell’s tragicomic history of thermodynamics. Car═║t’s b║║k was t║o much technical for the physicists and too mathematical for technologists-engineers which made it useful only for the generations to come. As the son of Lazare Carnota nicknamed »the organizer of revolutionary victories« Sadi felt i═t║ shad║w u═der Nap║le║═’ e═emies wh║ allowed his studies in École Polytechnique but became an obstacle for his later military carrier. In 1821 S. Carnot visited his exiled father and younger brother Hippolyte in Magdeburg where the steam engine was in use for the last three years. Lazare Carnot published his analysis of machine works as the seed of future entropy law in 1803 therefore he had plenty of novelties to communicate to his sons. Few m║═ths after his father’s death, Sadi published his only book on his own expense with the help of his brother. In the mean while and afterwards Sadi published few articles ion similar topics, just like Noordung-Herma═ P║t║č═ik a ce═tury later. Sadi’s later extremely influential ideas about the motion force of fire were not widely read for a whole decade, the same sad destiny which crippled the other army officer who died ill a═d very y║u═g, Herma═ P║t║č═ikNoordung of Slovenian origin. In political public aspects Noordung was n║t Car═║ts’ match. Only in 1834 two years after he passed away Be═║ît Paul лmile Clapeyron (1799-1864) newly discovered S. Car═║t’s acc║mplishme═t.98 After Poggendorff’s Germa═ tra═slati║═ S. Car═║t’s w║rk became the s║urce ║f i═spirati║═ f║r ma═y ge═erati║═s. N║rdu═g’s w║rk 98 Clapeyron, B.P.E. 1834. εцm║ire sur la Puissa═ce ε║trice de la Chaleur. Journal de l'École Polytechnique 14: 153. Translation : 1843. Poggendorff's Annalen der Physik und Chemie. endorsed the same destiny after it was rediscovered in PhD. Dissertation of Werner von Br║u═, f║rmer Hitler’s expert tur═ed chief designer of NASA rockets. In early 1820-s Carnot devoted all his thoughts to the steam engines. He tried to idealize it. He ignored the particularities of machines used in industry to get the basic principles of their work in the laws of »heat dynamics« or probably the modern thermodynamics. Sadi’s f║cus was not set into mathematical analysis and he did not intend to prove the equalities of some differential equitation with the natural phenomena. Alth║ugh his father pr║vided Sadi’s early private tutorship in mathematics Sadi decided to publish his relations in non-mathematical descriptive way: 1. The generation of work without the transport of heat is a kind of perpetuum mobile and is therefore not allowed. 2. The moving force of heat is not a function of the sort of matter involved. It is determined in unique way just by the temperatures of the bodies among which the cycle process is performed. 3. The moving force in steam engine is not generated because of the real consummation of “cal║ric” but because ║f his transfer from the colder into the warmer body. S. Carnot’s y║u═ger br║ther politician Hippolyte (1801-1880) published S. Car═║t’s »quick« notices in 1878. S. Carnot proved that the main points of the law of conservation of energy were at reach already in 1820-s. The path was endorsed through the research of steam engine although Robert Mayer later took more physiological approach. In spring of 1848 Hippolyte was a minister for education and his son became the president of French republic three months bef║re Hipp║lyte’s death. With th║se trumps i═ his ha═ds Hippolyte made the political and scientific come back of the family Carnot. It was too late for Sadi and too bad for Hippolyte’s s║═ wh║ felt as a victim ║f the p║litical murder. Carnot used the wrong measurement of Delaroche a═d Bцrard from the year 1812, although S. Car═║t’s frie═d was their a═tag║═ist Nic║las Clцme═t-Desormes who married his collaborator Desormes' daughter. The tragic║mic fact was that Clцme═t a═d his father i═ law Desormes had the right results in 1812 but failed to get the due recognition of the Parisian Institute which went to Delar║che a═d Bцrard. Car═║t used Delar║che a═d Bцrard’s measured specific heat as the function of pressure and extrapolated their result to the pressures as far as from 1/1024 bar to 1024 bar in a published table. In continuation Sadi supposed that the air under the pressure of 1000 bar achieves the density of ordinary water and get through the transition into liquid state. The later supposition proved to be wrong.99 The highest pressures from S. Carnot’s table were achieved ║═ly by the Vie══ese physicia═ Natterer in 1844, and the lowest vacuum pressures were achieved by Töpler in the University of Jena 18 years later. Töpler’s ═ext p║st was i═ the U═iversity of Graz not far from Natterer. In spite of the i═teresti═g theme a═d eve═ m║re i═teresti═g results S. Car═║t’s method of research and even the topics were so far from his contemporaneous Théorie analitique that almost nobody relevant took the book in his hands after the printing although the edition was soon sold out. Why? 99 Carnot, 1953, 61–62. 1. Formal-theoretical approach proves that the steam engine was one of the most important thematic f║r scie═tific research i═ S. Car═║t a═d his father’s times. One of the proofs was the prize of the Petersburg academy for the year 1783. The winner was the Habsburg Lieutenant Colonel and G. Gruber’s replaceme═t i═ his ═avigati║═al direct║rship Sebastian von Maillard (* 1746; † 1822).100 Because of the lack of proper mathematical treatment all up to date research including Watt’s remained in the engineering old-fashion method of »try-and-fail«. Carnot was the very first to put the problem on more scientific foundations although S. Carnot vas to young in that time to achieve the sound scientific reputation and he was also political outsider because his father just died in the political exile. The engineers who had everyday c║═tacts with S. Car═║t’s t║pics did ═║t e═j║y the the║retical disc║urses ║f Car═║t’s kind. The scientists who were able to u═dersta═d S. Car═║t’s p║i═t ║f view preferred to deal with another problems. There are always some achievements which are ahead of their times, like the rosters who crow early. S. Carnot was just one of them. In those turbulent Parisian days E. Gal║is’ mathematical masterpiece was in some way S. Carnot’s mathematical pair because a decade and half younger Galois died just three months and a half before S. Carnot. It is hard to find the parallels between steam engine and the theory of groups, but it is oblivious that the last years of Bourbons and the first years of July Monarchy were blessed for the births of new scientific ideas but were also not receptive for the grants for their young protagonists including the Parisian troubles of Norwegian mathematician Abel. Cauchy’s ig═║ra═ce c║mbi═ed with Cauchy’s p║litical backward═ess seems t║ be guilty f║r Abel’s a═d later als║ Gal║is’ bad luck because Cauchy seemi═gly l║st the ma═uscripts ║f b║th ge═ius which he was supposed to examine according to the order of Parisian Academy. Political views of S. Carnot and Cauchy cannot be more different, therefore we may suppose that Cauchy would not support Galois even if he was aware of his mathematical ideas. On the ║ther ha═d Gal║is criticized s║me Cauchy’s w║rks but k═ew very well in his letters that Cauchy is nearly the only one of his era who knew how to perform the research in mathematics. 2. The nationalistic reasons in a way pushed Clapeyron to dig out S. Carnot’s achieveme═ts from the oblivion soon after Clapeyro═’s retur═ fr║m his Petersburg j║b. He added t║ Car═║t’s ideas s║me i═terpretati║═s ║f his ║w═, am║═g ║thers with the infinitesimal cyclic changes. Later the destiny carried Clapeyron into the research of the theory of elasticity away from thermodynamics. S. Carnot’s ═║velties pr║ved not to be very well accepted in Parisian milieu which was almost sadly rooted in the analytical ways of mathematical discussions of physical effects which will soon led Parisians into a sideline of sciences up to the cousin of Fre═ch preside═t the mathematicia═ He═ri P║i═carц, the radioactivity of Becquerels and Curies, the atoms of Perrin, and the photons of Louis de Broglie which real language-purist Bohr with caution replaced with photon phenomena in Warsaw in 1938101 just before Nazi attack. The French science stagnated for nearly half of a century as did the earlier Englishmen wh║ relayed t║ much ║═ Newt║═’s success t║ be able to find the new Giants from his shadows. Theref║re S. Car═║t’s spiritual desce═da═ts were m║stly British William Thomson, Joule, and Tait besides the Germans Clausius and Helmholtz in 1840-s and 1850-s. W. Thomson was in his engineering and also mathematical–theoretical views the devoted descendant of Laplace’s sch║║l. The Théorie analitique was also praised in Cambridge after they accepted Fresnel’s wave-light sample of Fourier’s theory. Sebastian de Maillard, Théories des machines mues par la force de la vapeur de l'eau, Vienna & Strasbourg 1784. 101 Keller, Ole. 2014. Light. The Physics of the Photon. London/New York: CRC Press, xiii, xiv, 3. 100 7. Poisson and Cauchy’s E═d ║f Fre═ch δead i═ εathematical A═alysis ║f Physics Phe═║me═a The mathematician and would-be baron Cauchy travelled a lot with the court of exiled king. In spite of travels he was a French antipode to the German Gauss as the final stage of century of rivalling between French and German protagonists of applied mathematics. The rivalry began with the French success of Encyclopedia and Laplace’s sch║║l. It e═ded with the French stagnation of half of century before Perrin and de Broglie’s atomistic-quantum mechanics. In the same way a century earlier the destiny forced the strict Newton’s followers into a long stagnation until W. Whewell’s action. Cauchy’s several years se═i║r less conservative Parisian colleague Poisson became a big fish from a small one according to the predictions of his Parisian teachers. The difference between the Théorie analitique and a half of century later born mechanische Wärmetheorie was projected into Poisson’s defe═se ║f the challenged caloric and calcul propre against the alternative Fourier’s analyze. For Poisson the heat conduction was the most general and therefore the basic participle of heat. With the nice cases of Théorie analitique he tried to describe the changes of temperatures of differently shaped bodies to convince the reader for the applicability of general equitation. If the steam engine became the central point of mechanische Wärmetheorie, the theory of the heat of Earth was probably the best way to try the applicability of the Théorie analitique according to Laplace, Poisson, or Fourier. In the early 19th century the scientists had on their disposal different but not always very accurate measurement of the heat or temperature of the Earth: 1. The researchers of volcano, earthquakes, and geysers finally got rid of gravitational or even electrical explanation and endorsed the more natural explanation with the phenomena of heat. It’s a pity that the earliest useful measurements of subterranean were at the disposal only on the end of 19th century and later mostly by the work of Andrija ε║h║r║vičić (18571946) in Zagreb in 1909. 2. The measurements of temperatures in deep caves and mines were accomplished systematically already in 18th century. Buffon used them in his theory of the development of Earth.102 3. The measurement on the surface of Earth enabled Fourier to use the data about atmosphere to explain winds and ocean flows as heat phenomena. The literati tried to determine the heat or temperature of the Sun in quantitative way, but the naturalist offered results which were much different from those obtained by physicists. Josef Stefan got the first useful results, but in W. Thomson’s model the finite heat of the Sun was problematic up to the novelties of Rutherford’s radi║activity which Kelvi═ heard while falli═g asleep duri═g Rutherf║rd’s talk. Fourier noted the heat of outer space among his queries, but the influence of outer space on the heat of the Earth got the central position in Poisson’s theory. 102 Buffon. 1765. Époques de la Nature. Paris; Eller 1833; Mairan 1849. 4. The geological determinations provided the new proofs for the changing of the temperatures on the Earth in remote past including the ice ages with the great dying out of biological population. 5. The literati used measurements in the laboratory models of Claude Louis Berthollet (17481822) in Parisian suburb Arcueil to check the supposed laws of translation of heat. 6. The nice analogy of heat processes was based on steam engines. Other useful analogy dealt with freezing water in the lake and became the leading δaplace a═d F║urier’s proof for the liquid state of the center of Earth, also supported with the observations of volcano and geysers. Both analogies forgot to endorse the facts about the anomaly of the water as Fourier also forgot in his work. Poisson therefore critiqued them somewhat too sharp with a supposition that the solid surface of the Earth will immediately sunk into the liquid center unlike the situation in lakes where the anomaly of the water prevents the sinking and saves the fishes. According to Poisson the center of the Earth was solidified the first although the cooling was provided from the surface and did not reach oceans and atmosphere so far. Poisson was one of the exemptions when he stated in his paper read for the Parisian Academy that the Earth have lost its heat long ago. Against Poisson the measurements of Arago in deep caves and high in the atmosphere proved that the temperature rises towards the center of the Earth. The extrapolations of the temperatures of the Earth measured in the first hundreds meters of deepness was giving the supposed temperature of million degrees Celsius in the center of the Earth. That was way too high for Poisson. He needed to endorse in his theory the border conditions of the raising temperatures in the upper parts of the atmosphere. To accomplish that Poisson proposed two hypotheses: the outer space has the area with higher temperatures where the high radiations of many stars meet each other; the Earth travels so quick through those areas that just its surface meets the higher temperatures of the outer space. Between the areas of outer space in the path of the Earth should be several hundred degrees Celsius of differences to support Poisson’s ideas. Today we imagine the outer space as a huge nothingness radiated by the pioneering Big-Bang radiations emanated at the temperatures of -269 C. Therefore we probably find Poisson’s ideas s║mewhat stra═gely big. Even Poisson was aware of those problems: the predictions of him as future big fish was not in vain. »I state that with all the reservation which is necessary for the suppositions which we could not verify with the exact calculations and also not with the direct experiences«. In spite of Poisson’s fame in his own days his critique of the liquid center of the Earth was completely forgotten in the following decades even in the books of Jules Verne. In the introductory discussion of his book Fourier refused the search of the primary causes of the phenomena of physics as the abortive kind of work. Poisson used his mechanical model to go much deeper in his try to explain the mechanics of heat radiations. His caloric certainly could not be compared with the modern principles of quantum mechanics. In spite of that Poisson’s emissi║═ theory is surprisingly close to the eight decades later Bohr’s model of radiation announced in 1913 if we forget that Poisson probably did not have any ideas about the electricity of molecules which was evident only at the end of century with J.J. Thomson’s »discovery« of the electron which was expected so long. »…we suppose that there are moments when the effects of that resultant of alternative force in the part of caloric exceed the mutual attraction of imponderable matter which therefore released the part of its heat particles. The great number of working molecules and the great speed of their vibrations make the phenomena regular and equal in whatever little intervals of time. If it only has the observable dimension...103 stated Poisson in the theory which still holds in mainstream theory where the irregular vibrations »let go« the radiation in the areas where it exceeds the »escape velocity«. It is a pity that those ideas which announced the coming of statistical physics today do not bear Poisson’s ═ame, pr║bably because Poisson did═’t eve═ try t║ write them d║w═ with the mathematical equitati║═. Poisson or whoever else was not the very last proponent of the théorie analitique. That kind of scientific thinking without doubt developed further and was progressively included into the modern knowledge. In 1840-s, the théorie analitique was not developed much further which put into oblivion many nice Poisson’s ideas. They were published i═ Fre═ch without mny translations, and France was slowly losing its priority in sciences of the next generation or tw║. Theref║re ma═y y║u═g scie═tists ═ever read P║iss║═’s stuff. The new foreign literati began to research heat without too much relating on théorie analitiqu because they tried to solve pretty different problem which the French analytics left in the corner as not enough academic, most of all the steam engine. εa═y ”scie═tists” ║f c║mpletely ═ew ge═erati║═s even lacked the mathematical-linguistic skills necessary for the reading id Poisson’s w║rk which were not very frequently translated from the French language. In that way the French concentrated in their traditions of mathematical analysis of the problems of physics lost their mathematical prestige in similar way as did the Englishmen who relayed too much on traditi║═s ║f Newt║═’s ║f clumsy writi═g ║f differe═tials a ce═tury earlier. Did also the French théorie analitique establish some clumsy mathematical symbols which dogged the development? The early 19th century gave birth to the mathematical theories which challenged the leading roles of infinitesimal calculus which was the basic tool for Newtonians and also for the théorie analitique. The mathematical logic of A. de Morgan, G. Boole, and W.S. Jones, the Non-Euclidian geometry of Boylay a═d δ║bačevski besides the theory of groups of Abel and Galois with many novelties of Cauchy and Gauss announced the new mathematical approaches which were not measurable with the units of the past. 8. Thermodynamics The »Mechanische Wärmetheorie« was born in a decade after the Spring of Nation from 1852 to 1862. It remained completely in the old-fashion mathematical frames because the new approach-methods with Fourier’s supp║siti║═s ab║ut the ═║═-mechanical nature of heat were endorsed only later. If the steam engine was the central object of »Mechanische Wärmetheorie«, than the law of mutual metamorphoses of heat and work was its basis which was in modern broader form called »the law of conservation of energy« after it gained ground also in the fields outside the mere research of the heat phenomena. The thinkers of the former centuries certainly had some knowledge about that law but the useful notion for physics was developed only in 1840-s. From 1846 to 1871 the priority in »discovery« of that law became a huge international quarrel where they poured a lot of ink (instead of blood) because all three leading scientific nations and one of the minor importance tried to win the priority although 103 P║iss║═, 1835, ═║tica 2: O m║lekulskem žarče═ju. some fighters. Tyndall was among the rare who did not fight for their inherited national colors but supp║rted the Germa═ εayer’s claims. The ca═didates f║r the disc║verers were: 1. The nephew of the famous brothers Montgolfier, Marc Seguin (1786-1875), was a French candidate.104 2. Ludwig August Colding (1815-1888) was a Danish favorite. His path towards the energy law was the most metaphysical of them all as it was to be expected from the Oersted’s family friend who was a fan of Naturphilosophie a═d d'Alembert’s principle. 3. Robert Mayer from Pomerania was the main German candidate after he tried in vain to publish his ideas in Poggendorff’s Annalen in 1841. Because of his old-fashion notations and stating of the conservation of power (Kraft) without the higher mathematics the paper was blamefully rejected. Mayer’s ideas s║u═ded t║║ much metaphysically t║ the c║═temp║rary circles of physicists who were bored with all those German Naturphilosophie of their times. For that reason Mayer published his research of quantitative and qualitative determinations of force in Justus Liebig and Friedrich Wöhler’s (1800-1882) journal which was less important for the physicists. Later they challenged Mayer that considering the lack of relevant experiments he could get the law just by metaphysical path.105 Delaroche and Bцrard, and besides them also A. de la Rive and F. Marcet106 explained their results as the slow ascending of specific heat with the pressure. That false explanation was endorsed until the Joule’s proofs of the contrary announced in 1842. Indeed R. Mayer much more relied on the experiments of Gay-Lussac with the expansion of gases into the empty space. Later Mayer’s fight for priority was backed by his compatriots but overall by the professor of physics John Tyndall from London Royal Institution. In early 1870-s even the sharpest antagonists supported the priority of the physician Mayer who was in those times already a psychologically ruined man. 4. Professor of physiology and physics Heinrich Helmholtz published his variant of the law of conservation of energy.107 5. Already in the research of the heating of the cannon barrel during the military drilling and shooting of count Rumford (1753-1814) and laboratory experime═ts ║f his pr║tцgц i═ Royal Institution later Sir Humphry Davy (1778-1829)108 we could find the statements about the conservation of all sorts of energy and also about the mechanical equivalent of heat. James Prescott Joule was the leading British candidate for the discoverer of the law. As the brewer he was a self-taught without the profound knowledge of mathematics just like Faraday. Both were successful overall with their sophisticated experiments. Joule measured the mechanical equivalent109 while the Germans mostly relied on thought-experiments. Faraday and Joule tried to unite all known forces with the help of mathematically trained compatriot William 104 Seguin, Marc. 1839. De l'influence des chemins de fer et de l'art de les tracer et de les construire. Paris: Carilian-Goeury, 105 Weyrauch, J.J. 1893. R. Mayer. Leipzig (with correspondence between Joule and Mayer in 1849). 106 de la Rive, A.; Marcet, F. 1840. Ann.Chim.Phys. 75: 113. 107 Helmholtz, Heinrich. 1847. Der Erhaltunfg der Krafte. Berlin: Academi ders Wissenschaftr; Mayer, Robert. 1842. Annalen der Chemie und Pharmacie. Translation : 1952. Primedbe ║ silama ═ežive prir║de. Na izvorima fizike (ed. εarić, Svetislav). N║vi Sad. 108 Rumford, Benjamin Thompson, 1798. Philosophical Transactions; Thomson, William. 1882. Mathematical and Physical Papers. Cambridge. 109 Joule, James Prescott. 1842. Philosophical Transactions. Thomson. Joule was in many aspects Faraday’s d║ublet, but he had much more financial troubles and had to ask for the state support while Faraday even declined the offer of ennoblement. The future generations do not recall Joule that much because the »experimental fever« of the late 19th century endorsed most of all Faraday’s electric engineering and the heat with steam engine became less attractive. Table 11: Economical and Academic Parallels in the Research of Heat Year Economy Crisis and Hunger 1830 1850 1895 1914 French Universities The early treatment of heat with the Théorie analitique 1780 1805 1873 Researching of Heat Expansion Stagnation Depression Expansion War Stagnation of Théorie analitique Wave Theories Growth Raising of Mechanische Wärmetheorie Raising of statistical mechanics, maximum (and end) if classical physics together with Mechanische Wärmetheorie Expansion The turnarounds in physics of theory of relativity and quantum mechanics What was the connection between emerging Mechanische Wärmetheorie and the revolutions which toured through the European metropolis in 1848? The personal involvements of the leading scientists were not the match to Galois or his political antagonist Cauchy’s involvements in Parisian July Revolution of 1830, or the 1837 protest of Gottingen seven i═cludi═g Gauss’s frie═d Wilhelm Weber and brothers Grimm against the abolition of Hannover constitution by the new king who happened to be the uncle of British queen Victoria. The French authors who researched the Mechanische Wärmetheorie were not of the citizens of the sort of their German colleagues because French were mostly from the province which made them politically more conservative. Nobody among them with the exemption of Arago was closely connected with the Parisian February Revolution. They were more inclined towards the »Jacquerie« which took place after the newly proclaimed Empire in 1850: - Regnault (1810 Aix-la-Chapelle-1878) with his measurement of steam pressures enabled the theories of his student William Thomson; - The naval engineer Ferdinand Reech (1805 Lampertsloch in Alsace-1884 Lorient in Bretagne); - Gustave-Adolphe Hirn (1815 Logelbach near Colmar in Alsace-1890); - Liberal republican Fra═ç║is Arag║ (1786 Estagel by Perpignan in Pyrenees-1853) participated in Parisian July Revolution after he took over the office of the deceased Fourier on the post of perpetual secretary of Parisian Academy. From 24/2/1848 to 11/5/1848 he was the state minister of navy and colonies, later also the minister of war. He was certainly brave and old enough to refuse to swear to the »little« Nap║le║═. In 1848 the Revolution had different impact on the German authors of the new Mechanische Wärmetheorie: - Robert Mayer (1814-1874) firstly sailed in the South Seas as the physician on board and later settled in the provinces. He was not very interested in politics and he had the problems with the insanity in his late years. - During the Spring of Nations, Hermann Helmholtz (1821-1894) was already famous for his discoveries in physiology of sound and light receptions. In his advanced years he held important scientific-related positions as was the presidency of the congress of measures and weights in Chicago in late 19th century. - In the year 1848 of Spring of Nations Rudolph Clausius (1821-1894) was a young post-doc in Halle. His scientific work was immersed in strong conservatism. In 1870 he organized the ambulance service for Prussian Army during the war against the Frenchmen. The Spring of Nations certainly stopped on the banks of Channel. The Scottish engineer Rankine and the English scientist-brewer Joule (1818-1883) were not involved in any revolutionary activity. The political fights were more near to William Thomson (1824-1907) during his Parisian studies with Regnault where he endorsed the French spirit in 1845. Kinetic Theory as Universal Paradigm of Mechanical Theory of Heat After the breakdown of Mechanische Wärmetheorie as the second paradigm of the research of heat (T2) on the hardly solvable problems of molecules, atoms, and entropy we notice many attempts to spread the influence of Mechanische Wärmetheorie into the broader areas of physics or the Natural History in general. Among the offered theories the best scores went to the kinetic theory of gases (T2u) which was the result of spreading of Mechanische Wärmetheorie into the new areas of invisible little movable particles of matter. The solutions of the kinetic theory of gases were soon very popular also in the related areas of research of optics and electricity. Therefore T2u was soon used far from the problems of physics for which it was originally developed. Before the domination of T2u also other quirks developed in a paradigm T2 which tried to spread their overall importance, particular including the law of conservation of energy (Mayer 1842) from its very emergence, and later assumed entropy of the heat death of the Universe (W. Thomson 1852, Clausius 1867). The idea of the heat death of the universe felt between abortive attempts at developing a universal paradigm of the mechanical theory of heat. It was watered down, inter alia, also for the sake of Boltzmann opposition. Much more universal success had the kinetic theory of gases (T2u). In 1934, Carl Gustav Jung (* 1875; † 1961) re║rga═ized the e═tr║py law f║r the psych║l║gical ═eeds: “... every e═ergetic phenomenon is generally irreversible and therefore unambiguously directed towards the goal of its target which is the state ║f rest”.110 The stra═ge Ju═g’s stateme═t really s║u═ds like the entropy-predicted heath-death of the cosmos, which was a popular view of Lord Kelvin one generation before Jung. The mechanical theory of heat (Mechanische Wärmethe║rie) i═ the A═gl║-Saxon environment was appointed as thermodynamics. The term Thermodynamik was first used in German by Andreas Baumgartner in Vienna in 1837,111 and William Thomson translated it to thermodynamics in 1854. Baumgart═er’s textbook was also used in Grammar Schools in Ljubljana, Klagenfurt and Novo mesto in the middle of the century. The tragicomic therm║dy═amics e═d║rsed excessive attachme═t t║ J║ule’s a═d similar attempts ║fte═ al║═g the border resolution, and with too general theories and specific labeling for the specific Ł vanishing small yet tangible amount. The generation before Mechanische Wärmetheorie was French with the important research of Poisson, Laplace, Fourier, and Carnot. The generation "in the Mechanische Wärmetheorie" was German-British of Mayer, Joule, Helmholtz, Clausius, and Kelvin. The generation "after Mechanische Wärmetheorie" was GrazViennese-Scottish with Boltzmann and Maxwell. The generation "before" was extremely mathematically educated. The generation "in" had some academic scholars while many selftaught physicians and artisans prevailed, however in spite of the dozen competing theories it was concluded with a relatively well-defined concept of entropy including the severe imperialism of the heat death of the universe, prohibition of Perpetuum Mobile, and the entropic arrow of time. The demolition of the feudal fetters, which included the historic changes taking place before the eyes of the man, provoked the entering of the time in the entropic and evolutionary theories. The romantic Sturm und Drang of the early Goethe with Naturphilosophie against the rationalism of the Enlightenment brought about the scientific innovation through the confusion in the newborn German science later to be misused by the Anti-Semitic P. Lenard. The generatio═ “after” was agai═ extremely educated i═ mathematics, but this time in Viennese charming manner blessed with British humor of the sadly ill Maxwell and nervous Boltzmann. The universal paradigm of thermodynamics had several versions, which differed according to the description of the structure of atoms and molecules and / or types of their movements. These versions can be classified according to the models of atoms, which they favored: a) Swirl model of William Rankin model with atoms as vortices in the ether or in the substances from 1859. b) The wave model of heat as wave-like light. Among the delayed proponents of this model was also Karel Robida, a physics professor and the class teacher of Joseph Stefan at the grammar school in Klagenfurt. Today we know that the waves of heat (thermal infrared radiation) in fact differ from the light only in a wavelength. Of course this is difficult to apply to other thermal phenomena including translation or mixing. The proponents of the wave theory of heat tried to prove such an excessive zeal, mainly in vain. c) Dynamide as the material atomic nucleus, surrounded by an atmosphere of ether.112 110 Jung, 2015, 265. Kangro, 1976, 229; Brush, 1976, 322. 112 Redtenbacher, 1857. 111 d) The models of gravity or electrical forces with Le Sage’s ether, ║r with║ut it. Simon Šubic and related scholars, as was his Hungarian colleague N. Tesla’s Pr║fess║r εarti═ Sekulić, were convinced that the ether is superfluous together with any similar experimental nonidentifiable substances in physics. Among these models was kinetic theory of motion of atoms and molecules certainly the most important for the development of physics. It did not interfere in the question of the existence of ether. The first discussions on the kinetic theory were later forgotten, since they have already been communicated by Daniel Bernoulli in 1738, by John Herapath in 1821, by John James Waterston in 1845, or by James Prescott Joule 1848. The modern renaissance of the kinetic theory was focused on August Karl Krö═ig’s discussion published in the Poggendorff’s physical annals (Ann. Phys.) in Leipzig. Krö═ig was the professor of physics at secondary school in Berlin and the editor of the Berlin influential newspaper for the central reference named the Fortschritte der Physik. Krö═ig’s debate (1856) encouraged the publication of significant Rudolf Clausius’ paper i═ the following year. Clausius was a professor of physics at the University of Zurich from 1855 to 1867. At the same time Wallace in a similar manner speeded up the publication of Darwin. Darwin received Wallace’s a letter on 18/6/1858 and recognizing that their combined "godfather" was Malthus. Who were the "whisperers" or godfathers ║f Krö═ig and Clausius? Perhaps indeed John James Waterston (1843), but probably mainly the waves of protesting crowds at the Spring of Nations a decade before Krö═ig a═d Clausius’ publications. In 1827 the botanist Robert Brown described otherwise not unknown movement of small particles which was soon designated under Br║w═’s ═ame. The decades later i═ Ei═stei═’s time, it turned out that Br║w═’s particles are driven by even smaller invisible ones down to the molecular sizes, but Clausius probably did not rely on Brown. In 1859 Maxwell upgraded Clausius’ publicati║═ with the εaxwell’s velocity distribution which happened to be the first among the statistical laws of physics. Clausius and Darwin’s ki═d ║f acceleration similarly may have tempted also Gauss. H║wever, Já═║s B║ylay (1829-1832) and Lobachevsky (1829) published a too sophisticated Non-Euclidean Geometry to an over-cautious Gauss who missed his opportunities to add substantial amendments as did Clausius or Darwin. The advanced ages made Gauss overcaution because he predicted the possible critiques while the newcomers Boylay and Lobachevsky just considered the novelty as the first and the best chance in their uprising careers and did not think that much about the possibility of ruing their reputations. The y║u═gsters’ speedy ways sometimes just pay off. Gauss was also born in a humble background and never praised his teacher because he was aware of his own superior talents very soon and all that probably made him unfit for the great Non-Euclidean discovery in his advanced age similarly as Cauchy missed the point of Abel and Galois. Clausius and Darwin had luck to escape such a destiny of mussing the discovery because of the over-cautiousness. Clausius a═d Darwi═ were lucky als║ because Krö═ig a═d Wallace respected their high reputation ad did not dare to dispute their priority. In his discussi║═ Krö═ig wr║te the fu═dame═tal equati║═ ║f the ki═etic the║ry by connecting the speed of molecules (v) with the temperature (T), pressure (P) and volume (V) of the gas: Wk = m . v2/2  T  p .V I═ Krö═ig’s derivation were errors and the very idea was not entirely new. The influences of his deliberations indicate the other characteristics of the development of physics. The researchers are looking for direct enough simple mathematical relationship between macroscopic visible and invisible sub-micr║sc║pic physical qua═tities. Krö═ig’s achievement initially had no practical significance, since it just the macroscopic parameters were experimentally observable. Krö═ig's ideas were presented with a model of collisions of gas molecules with the walls of the container. He was one of the bitterest defenders of rigorous kinetic theory. Even in 1864 he denied the existence of attractive forces between the molecules of gas. He criticized two years older work of Viennese, later Graz secondary school physics professor Simon Šubic. Subic has not responded to the criticism, even if his defender Karel Robida partly answered t║ Krö═ig and at the same time in vai═ a══║u═ced Šubic's own defense which never materialized. Clausius explored the kinetic theory of heat even before Krö═ig’s publication. However, predictions of the theory were not verifiable. Therefore Clausius postponed his publications until he was forced by Krö═ig’s discussion to make his own views public. The novelty was clearly in the air and it was necessary to put the words on the daylight. The news which was hanging in the air, like the Darwin-Wallace evolution, the conflict of two cultures of SnowJacob Bronowski-Merle Kling-Alec Duncan Campbell Peterson, or quantum electrodynamics,113 spread extremely rapidly in comparison with the original ideas that are mostly grown on a single mind and then desperately long wait for the able devotees. Of course there are certain developments, especially in the new ages, which are the result of the obvious needs of society. The social incentive behind the emergence of Non-Euclidean Geometry of Bolay, surveyor Gauss, and Lobachevsky are later-when-rather too hard a nut to crack even for the modern history of science, because even Gauss was scared of novelty and initially did not dare to publish the assumptions after his associates secretly with insufficiently precise gauges in vain attempted to disprove the Euclid’s axiom of parallels.114 It was evidently a dream transformed into action on other worlds obliviously disproportionate to the common sense in which Lobachevsky even planned measurements of cosmic triangles. In 1868 the Italian Eugenio Beltrami first interpreted the new geometry in connection with the development of geodesy at the serious contradictions because of his new approaches similar to Riemann’s,115 after Riemann designed non-Euclidean elliptical geometry without parallels. Clausius’ paper was m║re ge═eral tha═ Krö═ig’s because it was not restricted to gases. In addition to the translation Clausius introduced the rotation and vibration of atoms and molecules. The major part of his discussions was drafted sufficiently popular with the mathematical side. It befitted the author who opened a new page in the development of physics, since the discoverers of the law of conservation of energy Mayer (1842) and Helmholtz (1847) published their findings in similar popular form. For that reason the newcomers in the field Mayer (1842) and Helmholtz (1847) did not easily find the publishers of their work, while such a cup full of wormwood did not bother the more renowned scholar Clausius in his times. 113 Feynman, 2000, 196. Snow, 2013, 53, 65; Deutsch, 1997, 247. 115 Rybnikov, 1963, 262, 266-267, 269; Atran, 1993, 316. 114 At the end of the debate, Clausius added his mathematical derivation. There he wrote his version of the 2nd Gay-Lussac’s law116 starting that the relationship between different types of energies of the system are constants which are maintained due to the mutual collisions of molecules. Then Clausius carried out the ratio between the full energy (H) and the kinetic energy (K) of the molecule as a function of the ratio between specific heat at constant pressure (cp) and the specific heat at constant volume (CV): H/K = (2/3) . (cV/(cp - cV)) From here Clausius calculated the ratio between the full and the kinetic energy of the system (H/K) from the ratio of the specific heats (cp/cv). Of course, the ratio (H/C) could not be experimentally determined. Clausius’s paper sparked many controversies, because the author has already earned a reputation with a number of published researches on thermodynamics. He was a renowned researcher in the mainstream of physics, who suddenly served to his hitherto gentle readers a number of well-metered innovations which were an echo of new times favorable to the statistics. The literati from German-speaking countries also produced many other reflections on models of atoms, also because of the influences of the (ill)famous German idealist philosophy. Most notable was the system of Dynamides of Jacob Ferdinand Redtenbacher, first published in Mannheim in 1854. Redtenbacher was born in Upper Austria. He studied with subsequent J. Stefan’s teacher Andreas von Ettingshausnu at the Vienna Polytechnic from 1825 to 1829, and then he resided there as the helping-assisting of the mechanical engineering subjects by the year 1833. From here we could trace his big impact on the ideas in Habsburg areas, including in the Slovenian lands. J.F. Redtenbacher’s cousin Joseph Redtenbacher was a professor of chemistry at the University of Vienna and a member of the Viennese Academy since its establishment on 14/5/1847. From 1833 to 1841 J.F. Redtenbacher lectured at industrial high school in Zurich, where fourteen years later Clausius became the university pr║fess║r. Clausius was f║urtee═ years Redte═bacher’s y║u═ger a═d Redtenbacher certainly had a strong influence on him. Redtenbacher’s ideas were echoed even generation after its publication a═d N. Tesla’s teacher Martin Sekulić fr║m δika quoted them in 1874.117 Sekulić c║mpared Redtenbacher’s Dynamide with Clausius’ kinetic theory and gave priority to the latter, while the Zagreb academician Josip Torbar adopted Dynamides and compared them t║ B║šk║vić’s physics rejected B║šk║vić’s theory of atoms in 1869, which was in opposition to his countrymen Sekulić or Antun Laska.118 In 1903 Philipp Lenard with Dynamides explained the results of his experiments with cathode rays. Several years after the Clausius’ publication in 1857 Poggendorff’s Annals published the controversies on the kinetic theory. Clausius’ ideas have prevailed, but in the meantime the Kuščer, Žumer, 1974. Sekulić, 1874, 110. 118 Dadić, 2002, 33, 35. 116 117 Maxwell and Boltzmann variant has slid against the new paradigm: it was a brand new statistical mechanics, as christened by the American Gibbs in 1902. Nomen est omen. The statistics in the coming decades permeated all the pores of the American (and Soviet) society. B║ltzma══’s mecha═ics ║f at║ms emerged behind the research of heat like the Westernholistic Bohm wished his hidden deterministic laws would emerge behind quantum mechanics. I═ his ║w═ way B║ltzma══’s appr║ach merged heat a═d mecha═ical phe═║me═a as two aspects of the identical phenomena of physics,119 but the entropy law soon proved the limits of those merging of macroscopic and sub-microscopic phenomena. For readers from Anglo-Saxon area John Tyndall simultaneously translated Clausius’ papers for Phil. Mag. In England they have repeatedly criticized Clausius’ concept of entropy, but not his kinetic theory. The leading British researchers William Thomson and Peter Guthrie Tait have competed several times for the priority of their discoveries to the simultaneous Clausius’ achievements. Together with Maxwell they made fun of Clausius’ concoctions for the thermodynamic functions. Despite the concerns on a whole series of names which Clausius offered, they maintained at least the names for entropy (1850), energy and enthalpy up to now. Nomen est omen. So, the ways to choose the perfect names are often very winding. For example, Darwin used his term “evolution” which was the Latin name for reeling borrowed from a term coined by Albrecht von Haller (1744) for the growth of the embryo already formed homunculus just like funny Russian babushkas. Similarly, the racist theory of recapitulation have seen in the developing of embryo the former evolutionary ancestors including mongoloid less worthwhile and less developed races. The predecessor of the Formationists, Haller, of course, knew that the embryo of chicks was initially only a tube; in embryo he anticipated the coded DNA instructions, while the opponents of epigenetics sensed the differentiation of organs from the simple adapters. When Haller’s theory was already overlapped by the mantle of oblivion, Darwin used the word evolution at the very end of his book in 1859. He puts it in connection with the promotion-development, where the British are well anchored because it sounded as an ode to the Victorian era and thus bear good basis for Darwin's popularity. Haeckel imagined the embryological development rather as the climbing by s║me║═e’s own family tree.120 Especially the Soviet researchers liked to borrow the terms coined from their own domestic social life, like it did in the Lvov-born Richard von Mises with the term kollektiv (collective) in the 1920-s.121 The kinetic theory of heat was formed as an extension of the mechanical theory of heat in the new field of phenomena of small invisible constituents of the matter. The mechanical theory of heat has become a universal theory of physics. W. Thomson in 1852 and Clausius in 1867 sought to extend its validity to the theory of "heat death of the universe." Such an idea was one of the gangue (abortive) attempts of the development of a universal paradigm of the mechanical theory of heat, which has been rejected by many including Boltzmann. The kinetic theory of gases (T2u) had much greater success. In the 1860-s mechanical theory of heat no longer had those creative powers from which it drew from the first mathematical formulation of the law of conservation of energy in 1840-s. Heisenberg, Werner. 1998. Promjene u osnovama prirodne znanosti šest predavanja. Slika svjeta savremene fizike. Zagreb: Kruzak, 15, 69; Petk║vić, T║mislav. 1998. Kva═t═a meha═ika ═a Heise═berg║v║m tragu. Heisenberg, Werner. Promjene u osnovama prirodne znanosti šest predavanja. Slika svjeta savremene fizike. Zagreb: Kruzak, 143. 120 Gould, 1991, 4, 68, 181-183, 189, 190, 218-219. 121 Emch, 2003, 249. 119 Her research sharpness broke on the efforts to achieve the strictly mechanical explanation of the concept of entropy, as well as to deal properly with the molecules and atoms. 9. Entropy and Statistical Mechanics Technical beginnings of the concept of entropy were achieved by Sadi Carnot in 1824 with his a═alysis ║f the steam e═gi═e b║rr║wed fr║m his father’s tw║ decades earlier publicati║═. S. Car═║t’s b║║klet fertilized with the i═fi═itesimal cha═ges i═ a circular pr║cess introduced only by B.P.E. Clapeyron a decade later.122 In the rimes of Spring of Nations in 1848 besides the revolutionary turmoil also increased the importance of the newly discovered S. Carnot quirk of work in a circular process dependent on temperature differences and not at all dependent on the interim developments. The aim in its way all║wed all mea═s i═ a steam machi═e, as it did i═ p║litics ║f Nicc║l║ εachiavelli’s Il Principe (1532). With such a general approaches followed the prohibition of perpetuum mobile, which was already anticipated by Galileo, but whose mathematical formulation S. Car═║t left t║ his spiritual heirs. J║ule’s experime═ts have th║r║ughly c║═firmed the equivalence of the all forms of energy that can be converted to each other. Delaroche and Bцrard’s err║r has wa═dered i═t║ the dustbi═ ║f hist║ry. The real Mechanische Wärmetheorie witnessed its genesis only barely a decade after the Spring of Nations, mainly under the pens of W. Thomson and R. Clausius. The first has been engineered calibrated mathematician trained in Parisian Théorie analytique, and the other was the outstanding theoretician of the German school of the Jewish Berliner Gustav Magnus (*1802; † 1870). After 1848 W. Thomson and R. Clausuis were well aware that the axiom of Carnot opposes the law of conservation of energy. Thomson has championed the experimental solutions123 modelled by Regnault and Joule, but Clausius rather approached the foundations of the nascent Mechanische Wärmetheorie and enthroned two seemingly simple laws:124 - The energy of the world is constant; - Entropy of the world strives towards its maximum. The entropy got its modern mathematical form with Clausius and Thomson quarter of a century after the publication of S. Carnot. A new type of physical variables were defined which only increases or remains constant. The opinions about the real meaning of the absolute value of entropy have collided rather long in the 20th century.125 The initially poorly defined enthalpy, internal or free energy from Clausius’ antique pockets provoked some sarcastic Engels' remarks:126 "The term 'latent' was taken from the physical concept of latent heat, which the theory of changes of energy now almost completely abolished ..." Even other more "insider" critics have often cited paradoxes, which should obstacle the strict application Juž═ič, 1983 εasters thesis, 87-88; Pugač, 2004, 37. Thomson, William. 1850. Philosophical Transactions. Reprint: 1882. Mathematical and Physical Papers. Cambridge. 124 Clausius, Rudolph. 1864. Abhandlungen über die Mechanische Wärmetheorie. Braunschweig. II/9; Clausius, Rudolph. 1865. оber verschiede═e für die A═we═du═g beque═e F║rme═ der Hauptgleichu═ge═ der mecha═ische═ Wärmethe║rie. Pogg. Ann. 125 (On different useful forms of mechanical theory of heat). 125 Darrigol, 1991, 237-298. 126 Marx, Karl. 1967. Kapital. δjublja═a: Ca═karjeva zal║žba, 2═d v║lume, 2nd b║║k, 87 (E═gels‘ f║║t═║te). 122 123 of entropy law initiated in the treatment of known phenomena in mechanics. Among the conundrums was the most famous paradox of reversibility which Joseph Loschmidt announced in 1876 after it was already discussed by Karel Robida in 1864. The very entropy (S), which Clausius baptized in 1850 and 1865, was seen by many as a convenient computing tool for the connection between heat (Q) and temperature (T). The situation was pretty similar to modern quantum mechanics with its “shut up a═d calculate”. The entropy also became the term for popular use (and misuse) in different sciences including the economics. The temperature and heat are likely to be mixed in everyday language even today just like the weight and the mass: dS/dQ = 1/T The apparent simplicity was hiding many quandaries, which brought to light the statistical mechanics under the pen of the Viennese Boltzmann.127 As it often plagued the history of science, the unclear concepts enabled the import of strange metaphysics into research of physics. As once did Poisson’s (1835) Théorie analytique, even the Mechanische Wärmerheorie tackled the problem of the formation of the Earth. Barely a decade after Poisson, in 1846 William Thomson calculated how long it would take the Earth after separating from the Sun to cool to today's temperature.128 Thomson’ score set the age of Earth to barely 20 to 400 million years, which was an unpleasant surprise to geologists who with Lyell believed in a much older Earth in spite of the Old Testament. Helmholtz provided the similar computational acrobatics, and W. Thomson on the arrows of the entropy law got even more fundamental world-ideological knowledge:129 "In the era of the distant past and not endless future which will emerge, the Earth will again be unsuitable for the resettlement of man like it is today, unless we will do something that is not possible in laws which are applied to today's world." Of course, any resemblance with the modern Global Warming was purely unintentional. An entropic arrow corresponding to the time thus seemingly pointed to the heat death of the universe. Many circumstances influenced such a pessimistic speculation. In any case, the developing monopolistic capitalism, the way in which investments affect the promptness insemination of capital, impacted on the idea of an irreversible process, where the efficiency of a heat engine is determined by how we proceed with it between the given temperatures and in not determined by the bodies involved in the process. Therefore the workers were not important in the prices of production, but just the capital. There were a lot of workers in the form of Lumpenproletariat whose members just waited to replace their similar seemingly undistinguishable fellows. The entropy determined the efficiency, which cannot be exceeded: ∆S ≥ 0 127 Kuhn, Thomas S. 1978. Black-Body Theory and the Quantum Discontinuity. Oxford. Thomson, William. 1846. Phil.Trans. 129 Thomson, William. 1852. Natural Trend for Dissipation of Mechanical Energy. Edinburg. 128 Engels in his Dialectics of Nature strongly rejected such metaphysical implications of the laws of thermodynamics. He solved the problem ad hoc so that his foundation of physics was based on the conservation of energy, and he limited the validity of the law of entropy. Similar conclusions were, of course independently, achieved in the statistical mechanics, where the entropy is interpreted as the probability of the state of system. The irreversible processes with increasing entropy have been consistently neglected in the era of Mechanische Wärmetheorie. Even today they are little studied, although they form a majority of natural phenomena, and many of them are also readily measurable, such as the thermal radiation. Where it could, the thermodynamics has ignored its time component. The time component has successfully penetrated later, simultaneously with Darwin's evolutionary doctrine in biology130 where time has finally taken on a significant position in science to which it belongs. Probably this has been altered way of thinking associated with the then rapid changes in lifestyle, which an emerging technology brought in the European, North American, Japanese and Australian cities. The entropy has proved to be a major stumbling block in the physical worldview and remains such even today. The situation could change if only the literati outside mainstream will get a little more freedom of expression in the leading scientific media.131 The statistical method was invoked in the last quarter of the 19th century. In many respects it did not meet the established writers of Mechanische Wärmetheorie who were mostly also the members of the older generation. W. Thomson insisted on his mechanical models, and Clausius has tried throughout to achieve the mechanical interpretation of the entropy law. The creators of statistical theory of heat could be called the third generation of the researchers of heat that followed Théorie analytique and Mechanische Wärmetheorie. The main writers were again from the Germanic speaking area – the Viennese Boltzmann (1844-1906) and the Scotsman Maxwell (1831-1879). For the first time in modern science they developed a theory that did not care for mechanical (microscopic) models for submicroscopic phenomena, because they believed that the nature could be more accurately described with the statistical averages of large numbers. Boltzmann argued132 that he and his fans borrowed the statistical physics methods from demographers, who also managed a huge number of factors. Anyway, the performance of the method has confirmed half a century old Fourier belief that the heat is an exceptional occurrence in comparison with other, more mechanical disciplines of physics. At the same time in a Mendel’s experiments133 statistics has established itself as the basic method of botanists (and biology in general), and in Marx's studies statistics was a primary and only relevant scientific method in economics. εe═del’s disc║veries were f║rg║tte═ for the while, but they were rediscovered soon enough. People love to give different names to the times they live in and maybe we live in the statistical era. The statistics has become a fundamental method of science, which has since then devoted particular system with large masses of elements. For many researchers it was considered very important to carry out the second law of thermodynamics from the mechanics, like the first law of thermodynamics. Boltzmann tried that already in his dissertation in 1866, using the principle of least action of Karl Gustav 130 Darwin, Charles. 1859. The origin of Species. London. Detela, Andrej. 2014. 132 Boltzmann, Ludwig. 1896. Aoeech for Viennese Academy. Reprint: 1906: Populäre Schriften. Wien. 133 G.J. Mendel (1822-1884). 1889. J║ur═al ║f ═aturalists’ s║ciety i═ Brno in Moravia. 131 Jacobi. Independently of him Clausius published the more general approach in 1870. Clausius probably did not read Boltzmann’s publication in the academic journal Wien.Ber. He just changed his job and left Zürich f║r Würzburg (1867) a═d later for Bonn (1869) which probably disabled him to read all the novelties carefully. So in the period from 1871 to 1872 both authors discussed their priority. Despite the partial success it was proved that the concept of entropy cannot be deduced from the mechanics. This belief became established because of subsequent Clausius’ and especially Boltzmann’s work, which has established a statistical approach. It was like a new universal method outgrown from the mechanical theory of heat. The statistics initially established itself in physics after it was borrowed from demography, game theory, and E. Halley shipping insurance. It has become a tool with which a new statistical physics was built with subsequent universal quantum mechanics. Boltzmann (1866) and Clausius (1870) initially did not know that with the intended mechanical interpretation of entropy they perform a Sisyphean task. Maxwell already expressed that view in his letter to Gabriel Stokes in 1859. Thus, it could be argued that Maxwell already at the beginning of his research worked in the growth of a new paradigm called statistical theory of heat (T3). Already in the years 1873 to 1875 he criticized the mechanical universal determinism of the paradigm M2u.134 Boltzmann has had to train himself in the new paradigm T3. Clausius only in one of his publications used the Maxwell-Boltzmann distribution, but otherwise has always studied the good old mechanical theory of heat (T2). It is difficult to determine the appropriate location to Boltzmann teacher Joseph Stefan. After the early papers of 1858 and 1863 he no longer published theoretical research about the nature of heat, especially not on entropy. However, occasional Stefan comments shows135 that he followed the explorations of his student and friend Boltzmann, even if Stefan supported his findings mainly by experiments. It is not easy to define and support with archival or published facts Stefan's opinion on Loschmidt’s paradox, even if Stefan and Loschmidt were close collaborators. Stefan did not publish his opinions because he and his friends-collaborators debated those queries in their private talks. The early period of the new growing theory, the statistical mechanics (T3), has been developed mainly in two centers: Vienna and Graz (Loschmidt, Stefan, Boltzmann). London (Maxwell from 1860 to 1865). Only later new ideas begin to spread from other places: Buda (Koloman Szily between 18721876), Berlin (Hermann von Helmholtz on the unicycle in 1884), and others. The philosopher Friedrich Nietzsche (1844-1900) rejected the heat death of the universe as the balancing differences in the final stage with the argument that mechanicism in vain attempts to circumvent the notion of the eternal return. This, of course, gave vent to its crosswise written criticism of science in which Nietzsche saw the dominated passive, inactive negative 134 135 Plato, 1991, 83. For example in Wien.Ber. 65 (1872). concepts on the basis of reactive forces in physics and ideology as well as in the teachings of a man. Nietzsche connected their vanity with new age theology of the scientists developed independently from their hearts. The medieval theology was obviously different, though the Florentine Giovanni Boccaccio’s the║l║gy had a conflict with the poetry which loves many gods and praises alleged untruths.136 Nietzsche tried to head-turn Kant and his alleged inconsistent critique, as Marx did with Hegel. Marx and Nietzsche both liked to make fun of Hegel. Marx, Nietzsche, and Freud each in their own radically marked the 20th century in theory and practice. Of course, mischievous Nietzsche believed that the method of dialectics brings the victory only to the plebeians and preferred to swear to the completed Kant's critique and counter-encyclopedic B║šk║vić "from Poland", which Karl Popper also took account of. The fact that Nietzsche was fr║m P║la═d reflects Nietzsche’s p║║r k═║wledge because he rightfully ack═║wledged B║šk║vić’s Slavic desce═t but as a Germa═ pr║per th║ught that a Slavic Cath║lic sh║uld be the Polish similarly as the Siberian Russian common folk of his times used used a term Catholic as the synonym for Polish. Nietzsche has even thought that the scholars come into focus of their peoples in times of fatigue, collapse and demise137 although in this he did not necessarily had in mind the period directly after the French revolution when scientists were actually on some of the key political positions with the mayor of Paris astronomer JeanSylvain Bailly from 1789 to 1791, the Minister of War Lazare Carnot, or interior minister Pierre-Simon Laplace.138 Of course, even after the French Revolution physicists were interfering in politics, but rather with the protests of the governed and not from the positions of power. On 18/11/1837 one of those was a young Gottingen professor of physics Wilhelm Weber with his six colleagues who were protesting against the takeover of the English crown by the king of Hanover Ernst August, brother of the late king of England and his abandoning of the Hanover constitution.139 Even sharper was undoubtedly a mathematician Galois during the July revolution in Paris, when he swear with the knife to the ═ew ki═g, Philip цgallitц. Kant's theory of apriority was found useful also by Hilbert, of course, without Kant's alleged anthropomorphic clutter.140 It is true that Kant sometimes missed the point, such as in the announced unanswerable question of the chemical composition of celestial bodies which was already in a few years141 resolved by the spectral analysis. Kant was simply naive to think that for the answer one had to bring a stone from the stars to the Earth to examine it at home. The procedures of this and other findings were often completely unpredictable to the previous ge═erati║═s. O═ the ║ther ha═d, Kurt Gödel was c║═vi═ced that he pr║ved that Ei═stei═'s relativity theory confirms Kant's philosophical idealism, even if Einstein and many others argued the opposite view.142 Of course there are contradictions in science like a double-edged sword as in the show-business demand. Galileo and Planck’s principle of the introduction of new ideas only after the death of defenders of the old ideas hold well, but modern scientists may also act out the conflicts, like Mick Jagger played with the Beatles opposition for the media, even if Mick was a straight exemplary friend with John Lennon.143 136 Boccaccio, Giovanni. 2002. Life of Dante. London: Hesperus Press Limited. 51. Deleuze, 2011, 67, 99, 117; Nietzsche, 1999 (1888), 14: 188; Nietzsche, 1988, 1: 2, 23-25; Virk, 2015, 27; Petr║vić, 2014, 115, 122. 138 Juž═ič, 1983 εasters thesis, 35. 139 Reich, 2012, 277. 140 Reid, 1977, 252-253. 141 Reid, 1977, 254. 142 Yourgray, 2005, 16. 143 Andersen, Christopher. 2015. Mick. Tržič: Učila, 299/201 figures 22-23. 137 From 1866 to 1894 there has been a transition from experimentation mechanical interpretation of entropy to a successful statistical interpretation. The latter was domesticated primarily in the UK, while Boltzmann remained relatively isolated in Austria. The research focus was in part moved to England and at the end of the century to Berlin. After 1900 in Berlin, Planck spread statistical mechanics (T3r) into the quantum mechanics. This had its breakdown from 1925 to 1927 when among the conflicting interpretations the universal Copenhagen version prevailed for more than three-quarters of a century. It was directed relatively positivist and in-deterministic. The breakdown is also suggested by the counting of phrases in Physical Review where the word “quantum” was first used (barely) in May 1917. The popularity for that term grew and peaked in January 1927 and then started to fall almost hourly as fast as the previous increase. The popularity ║f the w║rd “qua═tum” has started to rise again in the 1970-s and is growing even today.144 The fall and rise of paradigm leads the grave principle of self-organization of writers-researchers, for which the use of the most popular words faster rises, but then also the fastest raids.145 Growths could be discussed with modern network appr║ach c║═sideri═g the use ║f “memes” ║f particular paradigm. The term “meme (mime═e)” was c║i═ed by Richard Dawki═s (* 1941) in his book The Selfish Gene.146 The scie═tific meme ║f physicist εatjaž Perc, Swiss computer linguistic Tobias Kuhn (* 1981) and German physicist-sociologist Dirk Helbing's is a short unit of text in a publication that is replicated in citing publications and thereby distributed around in many copies. The more likely a certain sequence of words is to be broken apart, altered, or simply not present in citing publications, the less it qualifies to be called a meme. The publications that reproduce words or phrases from cited publications are thus the analogue to offspring organisms that inherit genes from their parents. In contrast to existi═g w║rk ║═ scie═tific memes, Perc’s appr║ach is theref║re gr║u═ded i═ the “i═herita═ce mecha═isms” ║f memes a═d ═║t just their accumulated freque═cies. The ab║ve defi═iti║═ covers memes containing the exact words and phrases, but the same methods apply just as well to more abstract forms of memes. Perc, Kuhn, and Helbing's analyzed 47.1 million publication in three sources. Because of its representative long-term coverage of a specific field of research, the focus was on the titles and abstracts from the data set of the American Physical Society (APS), consisting of almost half a million publications from the Physical Review journals published between July 1893 and December 2009. The results for the over 46 million publications indexed by the comprehensive Web of Science database, and for the over 0.6 million publications from the open access subset of PubMed Central that covers research mostly from the biomedical domain predominantly from recent years were also presented.147 The birth of a new paradigm T3 was conducted under the auspices of the old paradigm T2. Among researchers in both paradigms we even find the same persons. The roles of people in our research vary widely fr║m T║y═bee’s survey. In Toynbee’s approach surely cannot happen that the same person acted in several different spatially and temporally distinct civilizations, although Toynbee has in recent books (1954) recognized that during the 144 Perc, 2013, 2. Perc, 2013, 1, 3; Perc et all, 2014. 146 Dawkins, Richard. 1990. The Selfish Gene. Oxford/New York: Oxford University Press. 147 Pleterski, 2014, 20; Perc, Kuhn, Helbing 2013, 041036-1. 44 Perc, Kuhn, Helbing 2013, 041036-6, 0410367, 041036-8; Hutton, Shaw, Pearson, 1809. 145 disintegrations the civilization were too interwoven that they could be considered as separate units.148 There are a lot of researchers who explored in the different physical paradigms, including Stefan and Boltzmann. Thus, the concept of researcher in our model of development of physics corresponds to a broader concept of the Toynbee’s civilizati║═s, to some extent even to the Toynbee’s u═iversal institutions-churches. The universal churches continue to evolve to the next civilization. The individual historical person, of course, does not have this option. When the kinetic theory (T2u) was replaced with a new paradigm, the statistical mechanics (T3r), there was a crisis. During the crisis, the contributions of both paradigms equaled each other in the year 1874. In that year, we see the two paradigms featured as the maximum number of publications of their overall quality. This maximum was marked by 1870-s. This was followed by a reduction in the contribution of research in the early 1880-s. Next reduction lasted only about five years. It seems that researchers are somewhat relieved of the great efforts of the last times. Boltzmann in this era published some important papers on electromagnetism.149 At the same time he published undiminished number of papers on the statistical theory of heat. However, since 1877 he no longer applied statistical note of entropy which was worked up from oblivion only by Planck twenty-two years later. The battle between the two paradigms T2 and T3 for supremacy in the border area of atomism has encouraged massive research. When the advantages of statistical mechanics T3 become clear to the majority of researchers, the interest in research in that area fell sharply. Subsequently, the exploration continued unabated only in new paradigm T3. . 10. Quantum Mechanics Many naturalists of the late 19th century, including Clausius, Boltzmann and Planck were trying to get entropy law in frames "classical mechanics", although many paradoxes suggest that it was a futile attempt in vain. Since 1897, Planck assumed Boltzmann statistical interpretation of irreversible processes. From the theory of gases he transferred it to the blackbody radiation. Planck tried to reconcile the rising radiant energy at low wavelengths cavity radiation predicted by the theory. Unfortunately the experiments did not support the theory of a predicament called the ultraviolet catastrophe. Planck solved that problem by the introduction of quantized radiation, which was in complete disagreement with classical mechanics; the process was conceived as a temporary solution, which would apply only in strictly defined cases. However, the use of energy quanta soon spread beyond the strict area of thermodynamics in Einstein's photoelectric effect,150 theory of specific heat, and finally, in Bohr's theory of spectra from which the modern quantum theory was born. As the irony, Einstei═’s gravitati║═al the║ry remai═ the ║═ly ║═e ═║t fully qua═tized as far, may be also 148 Singer, 1965, 65. 1879, 1880, two papers in 1881, etc. 150 Einstein, Albert. 1906. Zur Theorie der Lichterzeugung und Lichtabsorption. Ann.Phys. 20: 199-206. 149 because spacetime is just an low-energy long-distance approximation like fluid mechanics in comparison to quantum molecular dynamics.151 The development of physics has witnessed no new ideas which could seriously threaten the old paradigm with the number and quality of the discussions, without later growing into the dominant paradigm. The scientific disputes about minor problems this is often the case, but not for the overall paradigms. Competitor-paradigm that reaches the contribution of the old paradigm always prevails over her. Of course, throughout are many discoveries that later prove to be futile. Irvi═g δa═gmuir (* 1881, † 1957) app║i═ted them pathological science, which has become particularly awkward for sessions sisters Kate and Margaret Fox of Hydesville, New York. Spiritualism did not fool Faraday, but Alfred Russell Wallace, Crookes and one of the last defenders of ether Oliver Lodge endorsed it. The new wave was triggered by the b║ta═ist J║seph Ba═ks Rhi═e (* 1895, † 1980) i═ para-psychological laboratory, which was founded in 1940 at Duke University in North Carolina. In 1969 the physicist Helmut Schmidt (* 1928, † 1911) became direct║r ║f the Rhi═e’s parapsychological institute.152 In 1912, the literati published a description of the human skeleton Piltdown, which soon became extremely popular as "the oldest Englishman." In the light of the African Australopitecus and Beijing man, the discovery in Piltdown soon became suspicious. In 1953 it was placed on microscopic examination and it turned out that it was a combination between a modern human skull and orangutan.153 Since then, there were numerous speculations about alleged pranksters who have framed the case as well as on the social background of the success of their scams. In excavations in Piltdown in 1913 also the Jesuit Pierre Teilhard De Chardin attended. In 1980 Stephen Jay Gould (* 1941; † 2002) accused him of participation in the hoax, but most scientists decline that. Probably it was someone else involved. The Marxist Althusser, of course, was eager to criticize De Chardin as defender of Spiritualism which should exploit the crisis of science in their own ideological purposes, like priest who forces the dying with the last sacraments. In 1886 Goldstein discovered "canal rays", which were subsequently proven to be the stream of positive ions. In the early years of the 20th century, the lead in research-rays was taken over by the French as Becquerels and Curies’ heirs, but their contribution rather ingloriously e═ded. I═ 1903, Re═ц Bl║═dl║t (* 1849, † 1930) at the U═iversity ║f Na═cy a══║u═ced the Nrays which were directed switch between the discovery of new radioactive and similar irradiation until the America═ R║bert Williams W║║d (* 1868, † 1955) performed a scheming hiding prism in 1904.154 Poor Blondlot in the same year got a prestigious French award, and in 1910 he retired early and apparently left the lands of reason. In March 1906, Jean Becquerel (* 1878, † 1953), a son of Nobel Prize winner Henri, published a surprising discovery of the positive electron, which in the coming years also proved to be an experimental hoax,155 similarly as the electrically neutral "magnetic rays" of August Righi (* 1850 † 1920), the Bolognese professor of Marconi.156 In 1937 the unique Mesmer’s heir 151 Visser, Matt. 2008. Emergent Rainbow Spacetime: Two Pedagogical Examples. International conference on Time and Matter (ed. O’δ║ughli═, εarti═; Sta═ič, Sam║; Verberič, Dark║) N║va G║rica: U═iversity, 185; Bajowald, Martin. 2008. A Discrete Space and Time Before the Big Bang. International conference on Time and Matter (ed. O’δ║ughli═, εarti═; Sta═ič, Sam║; Verberič, Dark║) N║va G║rica: U═iversity, 209. 152 Stenger, 1990, 68, 151, 153, 154, 156, 158, 166, 170, 186, 254. 153 Goulden, 2007, 333; Althusser, 1985, 65, 66. 154 Stenger, 1990, 66. 155 Dahl, 1997, 242–251, 257–264. 156 Carazza, Kragh, 1990, 12. Arme═ia═ Semy║═ David║vič Kirlia═ (С ё Дави ви Кир иа , Ս ո Կ ր ա ; * 1898; † 1978) t║gether with his wife Valentina started to photograph the aura for medical purposes after Nikola Tesla lectured in his native Krasnodar (Yekaterinodar) just before the revolution in 1917.157 Half a century after Blondlot the plurality of beams were replaced with the masses of elementary particles "hadrons" from Bevatron in Lawerence Lab and other accelerators in 1960s. Instead Mendeleev and S-Matrix (scattered) theory of John Archibald Wheeler (1937), Heisenberg (1940) and Viennese holistic physicist Fritjof Capra, Muray Gell-Mann (* 1929) placed the standard model of three quarks in the years 1961-1964. The Quarks correspond to the three fundamental particles of Mendeleev-Moseley’s system: electrons, protons and neutrons. Under the direction of Gaudiya Vaishnava Hindus would understand those three as the different effects of Paramātma, while the Aśvatthāma’s weapons called Brahmāstra radiate eve═ m║re radiati║═ a═d heat compared to the nuclear weapons, and planetary traveling yogis should outstrip astronauts.158 As Mendeleev announced new chemical elements, Gell-Mann announced the Ω-hyperion which was soon proved with the experiments.159 Habsburg agnostic son of Jewish emigrants from Czernowitz (Chernivtsiz) relocated to Manhattan Gell-Mann coined his corresponding prestige in California after he surprisingly found out that Irish-Trieste writer James Joyce anticipated his quark-name for thirty years in Finnegan’s Wake.160 His standard model has gained support in 2012 with the alleged discovery of the boson of Peter Higgs (* 1929) at CERN. Higgs then shared the Nobel Prize in Physics in 2013. Shortly before Easter 1989, B. Stanley Pons (* 1943) from the University of Utah and Czech Jew Martin Fleischmann (* 1927; † 2012) fr║m the University of Southampton in England declared hoax aimed at low-cost implementation of laboratory controlled "cold" fusion.161 Tachy║═s (tachy║═, ταχύς) faster tha═ light as violators of the law of causality were described by astronomer follower of Spiritualism Camille Flammari║═ (* 1842, † 1925) in science fiction Lumen printed in 1887 in Paris. They were endorsed by Arnold Sommerfeld (1904) who calculated their properties just before Ri═stei═’s publicati║═ ║f the theory of relativity. They were brought to life again in the frontline in 1962. Name tachyon has accepted with the godfather John Feinberg in 1967. In 1934 Pavel Cherenkov (Ч р в, * 1904, † 1990) detected the blue radiation of particles which punches Mach wave forehead in a medium at a speed slightly lower than the speed of light in vacuum.162 Incommensurability The people always allocate phenomena in strongly distinct groups, which are only approximations and always prove to be a kind of obstacles for real understandings of the real phenomena and structures. Our ancient ancestors worked with the surrounding air, earth, water and fire which is today perhaps the plasma. 157 Stenger, 1990, 236-237, 240. Bhaktiveda═ta Swami Prabhupāda, Abhay Chara═aravi═da. 1992. Śrīmad Bhāgatavam. Ljubljana; Skupnost za zavest Kriš═e, 110, 322, 400. 159 Stenger, 1990, 260, 262-263; Mostepanenko, 1977, 75. 160 Feynman, 2000, 238. 161 Stenger, 1990, 66-67. 162 Fayngold, 2002, XI, 166, 222, 235, 287. 158 There are no permanent gases as Thomas Andrews proved with his research of condensation of oxygen and nitrogen. Any gas cooled below a critical temperature, may be "continuously" compressed into a liquid. Even the distinguishing between gases and liquids is subjective. Between both aggregate states there is a possible continuous transition, if only the temperature and pressure are at the critical point. In between both states there are still an infinite number of intermediate positions163 which actually allow a continuous transition. In 1817 the liquid aggregate physical state seemed to the Irishman Andrews like a prolonged phase transition between gaseous and solid aggregate states. It can be seen in a completely new light in research of the incommensurate phase transitions in 1980-s. Of course, it is considerably more complicated phase transition from the isotropic (random) of the liquid in the anisotropic (translational and rotational ordered) crystal, which follows a specific three-dimensional symmetry. This certainly do not have to deal with the phase transition as an element of symmetry; therefore, for some time there are intermediates to the liquid crystal display values that are rotationally or translational arranged in one or two dimensions. In 1955 Rudolf Peierls questioned the symmetry of the crystal as a basic feature as one-dimensional electron metals at low temperatures corresponds to the most energy grid with a period equal to the diameter of the Fermi sphere which breaks down a period of ion network which is not proportionate. The resulting three-dimensional crystal is of course quite different from any of the 230 space group. Two decades after Peierls’ projections NMR equipment was available for the observation of such ferroelectrics or anti-ferroelectrics where condensation is the normal state of the crystal as a recurrent disorder and ruin its own ion network. In the West Germany the state money was used to develop NMR by Felix Loch in Stanford endorsed usable novelties in 1945 and 1946. At the phase transition yet another thermodynamic coefficients skipped from gas to liquid value. Andrews watched the changing compressibility, thermal conductivity, surface tension and contact angle of the liquid from the container. Andrews did not publish the temperature dependence of these constants in a transparent diagram. Before Gibbs (1872) people mostly drew particular diagrams with the pressure and volume as coordinates, and they did not endorse the today well-known lambda-curve in a logarithmic scale. However, Andrews’ findings imply long-term orientation for subsequent researchers of the high pressures and low temperatures. Already prior to 1959 the physicist Ivan Zupančič and Blinc with colleagues at I═stitute J║žef Stefan built the first device for NMR in the former Yugoslavia. About the achievements of the same year they reported to Congress in Bologna. In 1960 the first Blinc’s son was born and he eventually became a doctor of medicine. Blinc went on to post-doctoral training at MIT, where he became acquainted with the technique of magnetic resonance pulse. The tunneling model of ferroelectrics with hydrogen bonds explains the electrical properties of ferroelectrics and their changes when hydrogen is replaced with deuterium. In 1960 Blinc became the assistant professor, in 1965 associate professor, and full professor in 1969 in Ljubljana. He was Dean of the Faculty and Head of the Research Community of Slovenia.164 In 1974, Bli═c a═d Žekš published a m║═║graph on ferroelectrics and antiferroelectrics. In the following year, Meyer and W. MacMillan published the theory of mean field for smectics. In 163 Andrews 1869, Reprint: 1886, 314. Sitar, 1987, 266-267; Reinhardt, Steinhauser, 2008, 73, 76; The sociologists Terry Shinn and Joerges Bernward discussed the research technology and instruments in 2001. 164 1974 Meyer has announced the possibility of ferroelectric liquid crystals, and in the following year, together with Liebert, Strzelecki and Keller he synthesized DOBAMBC. In 1980, N.A. Clark and S.T. Lagerwall discovered the importance of rapid technological electro-optic switches of ferroelectric liquid crystals. This was followed by numerous studies by the 1989 and crowned with the discovery of antiferroelectric and ferroelectric phases of the intermediate liquid crystal by Chandani and colleagues. By 1990 the literati already discovered 250 ferroelectrics, including 50 of the liquid crystal after 1984.165 In 2000, the Ljubljana group devoted its quarter of a century earlier work on ferroelectrics and antiferroelectrics exclusively to the liquid crystal and thus wrapped up three decades of research. The study of phase transitions and liquid crystal was supported by new methods of microscopy and photography after its beginnings in the late 19th century. The distinguishing importance of new discoveries in the mid-20th century demanded new methods of research. These are mainly found in the NMR, which was discovered immediately after the Second World War. Already Stern and Rabbi investigated the magnetic fields in nucleus of bundles of atoms or molecules of gases. Bloch at Stanford University developed a method for determining the magnetic cores in liquids and solids. In 1946 at the same time Purcell discovered a slightly different method at MIT.166 Those researchers shared the 1952 Nobel Prize for the development of NMR. In the 1960s they began to print a specific serial English publication devoted to NMR, the especially colorful Advances in Magnetic Resonance in New York in 1965 and NMR Basic Principles and Progress in Berlin in 1969. Soon the periodicals and magazines followed, particularly the Journal of the Magnetic Resonance in New York in 1969, and Nuclear Magnetic Resonance Spectrometry Abstracts in London in 1971. As usually, the specialized journals announce that the new field of research is born. In the times of the introduction of the first journal devoted to NMR the use of high-resolution NMR studies of phase transitions started at I═stitute J║žef Stefa═ in the early 1960s, when Blinc brought the first liquid crystal from the USA to Slovenia. Doane also learned the new approaches in Ljubljana and he was hired at the State University of Kent in 1965. That same year, the Bli═c’s Ljubljana team won its second Kidrič’s award for their research of the liquid crystals. In 1966 in Ljubljana they organized the International Congress for magnetic resonance AMPERE, which was attended by all the then leading scientists around the world. It strengthened the international links since Blinc also collaborated with R.B. Meyer at the ETH in Zurich. In 1986 Doane’s research team discovered polymer distributed liquid crystal in which the NMR proved particularly useful for studying molecular dynamics and phase transitions, although it does not distinguish between thermotropic and liotropic liquid crystals.167 165 Robert B. Meyer got his Ph.D. in 1969 in Harvard and later headed the research group ETH in south Parisian university (Vill, 13; Lagerwall, 1999, 1-5, 405; Templer, Attard, 1991, 28; Bli═c, Žekš, 1974, 150; Čepič, 1998, 14; εuševič, Bli═c, Žekš, 2000, XI, 1) 166 American Edward Mills Purcell was born in 1912 in Illinois. He graduated in university Purdue in 1933. After graduate research in Germany he got a Harvard Ph.D. in 1938 where he became professor in 1948. From 1940 to 1946 he researched in the laboratory for radiation in MIT, and he also studied the spectroscopy of radio waves for astronomy. 167 Vilfa═, Vrba═čič-K║pač, 1996, 159; Di═g, 1994, VII, 1. Using NMR has enabled a very precise monitoring of changes in magnetic fields molecules, in particular water, at federal and discontinuous changes in the structure of the substance.168 Particularly successful has been the study of disordered ferroelectric and antiferroelectric crystals. The incommensurate systems with the solitons were discovered in Institute J║žef Stefan. Blinc and his fellow researchers also demonstrated the existence of phase excitations. The incommensurate modulated crystal has no translational symmetry characteristic of conventional crystals, but has a perfect long-range order. Incommensurate phase transition can be observed over a long temperature range, changing the size of the unit cell, which in the normal transition occurs in the temperature point. The incommensurability stretched phase transition from a point in a wide temperature range even at a wide interval of 111oC in Rb2ZnCl4169 which cell triples during the phase transition at a temperature of -81oC. The extension of the phase transition gives a sense of the existence of a special interim status, similar to the liquid crystals. Experiment with an extended phase transition is similar to looking through a microscope; perhaps such things as the Rb2ZnCl4 observed in the area of the long interval 111oC, with phase transitions of "ordinary" substance occurring in almost temperature point and therefore masks a complex disorder during the phase transition towards the another regulated space group. In another respect of the nature these areas of transition are probably full of hard to understand non-systematized irregularities, but they could actually be a realistic picture of the substances, and the especially regulated phases are just their exemption? Intermediate incommensurability which stretch over a long interval of the observable structures reveal details of the object which observed by the ordinary tools is seen as a point. The NMR observation shows the ingredients invisible to the naked eye. In a similar way, the Volta's discovery two centuries ago allowed the long-term observation of electrical phenomena which in the older experiments with the discharge of Leyden Jars occurred at the moment. In 2000, Bli═c’s Ljubljana group quarter of a century of earlier work on ferroelectrics and antiferroelectrics was devoted exclusively to the liquid crystals and thus wrapped up many years of research. The using of NMR enabled a very precise monitoring of changes in magnetic fields of molecules, in particular of the water, at continuous and discontinuous changes in the structure of the substance.170 Bli═c’s section F5 ║f the I═stitute J║žef Stefa═ has been particularly successful in research and study of disordered ferroelectric and antiferroelectric crystals, in particular of incommensurate systems where they discovered the nonlinear excitations called soliton in the ground state and proved the existence of phase excitations (fazon) similar to the Goldstone mode oscillation in a helicoidal crystals which does not exist in the usual crystals. The incommensurate phase transition was observed over a long temperature range, changing the size of the unit cell, while the “normal” phase transition occurs in the temperature point. Incommensurability stretched the phase transition point in a wide temperature range wide up to 111oC at Rb2ZnCl4.171 The extension of the phase 168 Blinc, 2000, 143; Doane, 1. Juž═ič, 1980, 4, 29. 170 Blinc, 2000, 143; Doane, 1. 171 Bli═c, R║bert. 2003. Spraševa═je ═arave: zakaj i═ kaj se d║gaja v s═║vi. Strast po znanju in spoznanju (ed. Kobal, Edvard). Ljubljana: Slovenska znanstvena fundacija, 45-57, tu str 53; Juž═ič, 1980, 29; Bli═c, Žumer, Rutar, Seliger, Juž═ič, 1980, 610; https://books.google.si/books?id=C2Vd5_sQ8WAC&pg=PP2&lpg=PP2&dq=Advanced+ferroelectricity&sourc e=bl&ots=S5JUc965qF&sig=xj8ddiQjaitxCJwHpDam5kvHl7Q&hl=en&sa=X&ved=0CD8Q6AEwBGoVChMI 5ve8nrCvxwIV4xTbCh2QtQj4#v=onepage&q=Advanced%20ferroelectricity&f=false (Blinc 2012); 1986 Incommensurate Phases in Dielectrics / Eds. R. Blinc, A. P. Levanyuk. Volume 2, Materials; Kurlyak; Standyk; 169 transition gives a sense of the existence of a special interim status, similar to the liquid crystals. The experiment with an extended phase transition is similar to looking through a microscope. It disclosed the details of the structure of the observed object which in the ordinary phase transition is seen as a temperature point, like the microscope disclose ingredients, invisible to the naked eye. In a similar way, the Volta's discovery two centuries earlier allowed the long-term observation of electrical phenomena which in the older experiments with the discharge Leyden jar occurred at the moment. The discoverer of solitons the Scotsman John Scott Russell (* 1808; † 1882) studied at the universities of Edinburgh, Glasgow and St Andrews. In 1832/33 he took over the natural history lectures at the University of Edinburgh by the deceased John Leslie (* 1766; † 1832), one of the m║st pr║mi═e═t defe═ders B║šković’s physics. Later, the Union Canal Company researched the steamers sailing the canal between Edinburgh and Glasgow. Here in 1838 for the first time he observed the back soliton, which he described six years later. This phenomenon is called 'wave of translation'. He also noticed that the solitons after their meeting pass away of one another without any particular change. The fact was re-discovered 130 years later and inspired many researchers. But Russell in his time of the dominance of the wave theory could not figure out the similarities between soliton and particles. His observation was later used in the construction of ships. On the European continent Russell’s discovery has been neglected. He was criticized by the British compatriot, astronomer George Biddel Eary (* 1801, † 1892) a═d the leadi═g British hydr║dy═amics Ge║rge Gabriel St║kes (* 1819, † 1903), wh║ did ═║t believe i═ the existence of solitons.172 Although Descartes' theory of vortices in the 19th century in spite of Newton's critics was strongly developed by Ampчre, Faraday, Maxwell, and Helmholtz, they had to wait for the systematic theory of nonlinear oscillations and waves until the theory solitons in a vacuum which was developed during the second half of the 20th century. While writing the diploma of 87Rb NMR study of spin-lattice relaxation incommensurate phase transition in Rb2ZnCl4173 the writer of these lines reached that something was broken in the once proud of Galileo’s Early Modern Science and the Enlightenment Voltaire's Republic of scholars (Respublica literaria). In that way the study of incommensurate phase transition as a submicroscopic view on secret of nature was extender into the microscopic research of the development of research of all phenomena of physics with a tendency to put it in some logical relevant scheme. 11. Research of Heat Phenomena in Slavic Lands Before the spring of Nations in 1848 in the Slovenian ethnic area the phenomena of heat were discussed mainly in the German-language textbooks used for teaching at the Ljubljana Lyceum and other colleges. The comparison between Ambschell’s textb║║ks a═d the b║║k written in the Cyrillic alphabet by the lecturer of physics at the grammar school in Sremski Stakhzkla(Kviv), 2015.Temperature–Pressure Phase Diagram for Rb2 ZnCl4 Crystals. Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 2, pp. 234–239, March–April, 2015. 172 Filippov, 1986, 34, 36-38, 42. 173 Juž═ič et all 1979; Juž═ič et all 1980 Ferroelectrics; Juž═ič et all 1980 Phys. Rev. Letters; Juž═ič, 1981. Karlovci Serbian Gregory δazić (1769-1842) and Gay-Lussac show that δazić used Ambschell’s cal║ric as the cause of expansion of the bodies which δazić nicknamed "čuvstva osjazanija",174 while Gay-Lussac in more detail discussed the radiant heat, steam engines, and the ether to which he devoted separate chapters. Before the spring of Nations in 1848 the inhabitants of the Slovenian ethnic area did not use Slovenian language for scientific discussion, but it changed later, especially after the establishment of Ljubljana University in 1918. 12. Conclusion The concept of heat was slowly growing from the chemical principles into the interpretations of the movement of the smallest particles of matter. If the magnetism was special with regard to the direction of its force, the exploration of heat turned out to be the basis of all physical processes, and thus to the source of both thermodynamic laws of fundamental, even philosophical importance. The worldwide law of conservation of energy was quickly apparent, also the limiting Nernst law, which is referred to absolute zero of the temperature as the limit like Einstein’s speed of light, or the vacuum as limit of emptiness.175 The second law of thermodynamics with its entropic arrow of time remained a mystery of all secrets and the godfather of statistical interpretation of the world of quantum mechanics, which already dominated physics and related sciences well over a century. The definition of the unit of time by the oscillation rate of atomic clock is far more precise compared to all other basic units.176 c) Development of Knowhow of Electric and Magnetism Introduction of the Physician of Virgin Queen In the centuries after Columbus's Atlantic became similar to the Mediterranean Sea. Profitable navigation promoted: 1. The maritime war for the Iberian heritage of the original two colonial powers in the 17th and 18th centuries. 2. Meetings with "different" cultures. 3. Improving of maritime travel: a) Building better ships by using the theory of floating developed in the second half of the 18th century. b) Study of the properties of the sea by tidal theory of Newton and Laplace. c) Medical assistance on better nutrition of the sailors. d) The orientation of seafarers, which developed. i) The sextant. ii) Star Table and maritime clocks of John Harrison and Pierre Le Roy in the middle of the Lazić, Grig║rije. 1822. Kratko rukovodstvo po fiziki. Budim-Grad; δazić, Grig║rije. 1826, Prosta naravna historija. Budim-Grad 175 Feynman, 2000. 118. 176 Sta═ič, Sam║. 2008. Preface. International conference on Time and Matter (ed. O’δ║ughli═, εarti═; Sta═ič, Sam║; Verberič, Dark║) N║va G║rica: U═iversity, vii. 174 18th century. iii) The compass for the study the magnetic field of the Earth. The basics of modern electromagnetism was provided at the first level by compass which was until the mid-18th century the only real use of the convenient natural forces of electromagnetism. The ancient Greeks knew the magnetic force like its cousin called electricity, which was aroused by the rubbing of amber. Of course, it was a rare substance, although the Gilbert reported the debris of amber on the Baltic coasts; in those times they still had amber as the strange substance "from Ceylon." Arabic or even a Chinese compass was not exactly indispensable for navigation on relatively gentle Mediterranean. When the Pillars of Hercules finally deleted their restriction "Non plus ultra", compass has become an indispensable magnetic needle. Its unusual deviations observed during the sailing of Columbus and S. Cabot were desirable and therefore highly paid research projects. The type of philosopher convenient for that kind of observation necessarily inclined on an experimental way. The British maritime power became oblivious only after the Pope Alexander VI. (Borgia) in the town of Tordesillas has divided the world into two "Iberian hemisphere" in 1494. Therefore, the pirates of virgin Queen Elizabeth, Francis Drake and Walter Raleigh comrades preferred to sail in less-explored directions. They advanced the orientation as it was in the knowledge of the then British Isles more sparsely sown, although the sailors were always ethnically colorful party. The uncultured British provinces promoted the genesis of the aristocracy that was acquired by education journey through the mainland Europe. Similarly a century later, Germans liked to honor the examples of Romanesque Carniola noble youth whose "grand tour" become a kind of law for those who could afford it. That is why the young Suffolk physician William Gilbert went on a journey across continental Europe in 1569; there he learned a lot and gathered even more information from the reports in letters of his new mainland friends. In 1600 he published a book on magnets in a new spirit, a sharp separate from philosophers, who have repeatedly tried to clarify the unknown even more unknown (obscurum per Obscuris). Gilbert exposed the weaknesses of his generation, who "has created a lot of books about the dark mysterious occult properties and strangeness. Again and again the amber and resinous coals were described as attractive substances, but they were never tried, you'll never find the demonstrable evidence for them..."177 Gilbert tackled the mysterious forces more systematically with available data from all parts of the (then known) world. He wanted better maps, especially for the East Seas.178 He was particularly angered on the Portuguese unreliable reports. Gilbert described five "movements" of the magnet: 1. Attraction; 2. Guidance; 3. Variation as a deviation from the prime meridian; 4. Declination and inclination; 177 178 Gilbert, William. 1600. De Magnete. London, II/2. Gilbert, William. 1600. De Magnete. London, II/2. 5. Circulation. Gilbert described every "movement” and explained it with experiments. He attributed the particular weight to the argument that the deviation of the magnetic needle from the direction of the meridian is due to unevenness of the surface, and not because of the various "celestial forces." His blessing was given even to a big dream of his countrymen on trade with India and China over the Northeast Passage. The passage was searched first by the Englishman Sebastian Cabot in 1553, then by the Dutch and finally by Bering in the Russian service from 1725 to 1741. Gilbert stated: "But now the deviation of the compass gives clear evidence that there is a free passage through the sea - the Arctic Ocean. The compass does not show a large deviation to the west, so it is clear that none of the great continent does extend across the eastern region." Gilbert’s round magnet called a small Earth (Terincula) in many ways facilitated the vision of the Earth's magnetism. The interior of the Earth, the later-when-earlier remained a great mystery, because in Gilbert’s times the deepest mines measured only 500 fathoms. That is why the visionary Gilbert imagined: "Strong magnet is reflected deep into the earth ..."179 The mysterious magnet reached the highest honor when one of the first partial Copernicans in England, namely Gilbert, attributed to it the forces of all forces, the gravitation among the planets.180 Gilbert believed in daily rotation of the Earth, but not in other Copernican m║ti║═s. Gilbert’s Earth’s r║tati║═ had its cause in the magnetic energy of the body. For Gilbert the Sun was the case of both, the Earth’s and also of the Moon's movement. Earth and Moon were in fact associated with the magnetic force, which forced them into the common rotation about the axis of the Earth. A similar idea was later defended by Guericke, who was also not familiar with magnetic reflection; therefore the polarity of electromagnetism has become the main obstacle to a unified field theory with the gravity included in today's era. Gilbert knew the experiments with magnetic scales. He used to shake the weighted balance equilibrium of magnets with the iron, and then by adding of sand Gilbert restored the lost balance equilibrium. The quantity of added sand was the measure of the strength of the magnet. Unfortunately, he did not provide a mathematical equation to describe the decay of magnetic force on a distance. Even for Newton, who has long worked in the "era of equations", the magnetic force provoked some annoyance with its bipolarity and its related short range.181 Table 12: Even in later generations the knowledge of a possible magnet deep in the Earth's hardly pave its way because the subterranean was not well researched Year Achievement in examining the underworld 1733 The member of the Berlin Academy Eller measured the temperature in 1000 m deep mine 179 Gilbert, 1600, I/17. Gilbert, 1600, VI/6. 181 Newton, Isaac. 1687. Principia, III, 6, Corolary V. 180 1738 1749 1864 Daniel Bernoulli tried to explain the barometric changes by rapid thermal fluctuations in underground caves with the reflections on the relationship between the solid crust and subterranean caves182 The secretary of the Paris Academy Doroteus de Mairan considered that at a depth of 60 m made the water boiling a little The novels of Jules Verne (1828-1905) was erected an artistic touch to the mysterious interior of the Earth183 Political-Economic Framework of the Beginnings of Modern Electromagnetism After Gilbert masterpiece De Magnete in the century of the birth of modern European man in the middle of wars, persecution of other faiths, and infectious diseases followed. In 1603 even the doctor Gilbert succumbed to a disease. Many inconveniences obstructed his spiritual heirs Kepler and Harvey, while Galileo carefully lived outside the boundaries of combat zones. As a practical scie═tist Harvey certai═ly disliked F. Bac║═’s the║ries ab║ut scie═ce.184 The Duke of Alba was eviscerating Dutch, but Cromwell has imitated him in Ireland and at home, even if he was a man of the different primary political opinions considering the feudalism against absolutism. Germany and Poland were changed into the battlefields. The Thirty Years War was seen as a European civil war. As with almost all wars also in the Thirty Years War the Germans pulled the short end; townspeople fled to the Netherlands, less mobile farmers were robbed and killed. Kepler lamented on the sad destiny of his times:185 "Given the circumstances of time in which this work is published, I'm sorry, it's coming so late in the cities. After the war broke out, the literati of society, for whom these things are written, dispersed in the confusion of war or diluents and scattered in anticipation of war... " Table 13: Religiously inspired wars intensified the migration of skilled citizenry particularly in the trade and craft classes Year Migration 1550 30.000 uprooted English Protestants emigrate to Holland Philip IV sent Archduke Alba against the Dutchman 1580 182 Scientists Bernoulli, 1738, 10th part, paragraph 20. Verne, Jules. 1864. Voyage au centre de la Terre. Paris: Pierre Jules Helzel. Translation: 1871. Journey to the center of the Earth. 184 Feynman, 2000, 173. 185 Kepler, Johannes. 1621. English translation: Epitome of Copernican Astronomy. 5th book. 183 1619 In 1619 the German warthorn crowds fled to the Netherlands 1649-1660 From England to America in a row sailed the Cavaliers, Puritans, and also the Quakers in 1685 Following the evocation of Edict of Nantes 300,000 Huguenots went to the Netherlands, 60,000 to England, Switzerland; 350,000 Protestants were in Prussia up to 1805 British transported 136,000 blacks to America 1680 1680-1786 1789 1800 1820-1870 1900 1945 Echoes of the French Revolution 9 million Europeans in America 7.5 million Europeans proceed in the US, including 1.4 million Englishmen 2.4 million Irish people and just as many Germans 7 The Mediterranean-people sailing for the US Kepler moves in the lands of the Holy Roman Empire, Dane Steno i═ Italy, his c║mpatri║t Römer i═ Paris since 1644 The Italians Cassini in France in 1669, C. Huygens after decade and a half left France The Huguenot Denis Papin emigrated to England; many Bernoullis at the European universities, Euler in St Petersburg and in the meantime, together with Maupertius in Berlin Linnaeus traveled through Europe fr║m 1735 t║ 1744, B║šk║vić traveled from 1759 to 1761 with a stopover in Paris from 1773 to 1782, W. Herschel in England after 1757 J. Priestley in the US since 1794 American electromagnetic technology Brain drain of scientists to the US The migrated experts carried with them the secrets of many of previously localized production processes, among them the important Venetian and northern Dutch glass industry as the basis of future electrical engineering industry. In the meantime, the Thirty Years War upset the German countries, which was then lifted from the rubble looking for better communications. 100 km/day speed journey from Oxford to London was similar to the velocities of Columbus ancient sailboats on his way to "India". From Vienna to Trieste the traveling was much more slowly. Table 14: Travel and above all mail traffic required faster and better roads (where not specifically mentioned the speed is provided in km/day)186 186 Kulišer, 2: 212, 472, 645, 648. Year 14th-15th Century Spain-Cuba 24-30; 100 (1492) Liverpool- United States Europe 7-100 Vienna-Trieste London-Oxford London-Manchester 300 London-Glasgow Liverpool-Manchester Paris-Lyon Paris-Strasbourg Elsewhere in France Naples-Sicily Vilnius-Paris (200 km) River trails 1590 16691700 1754 100 1800-1830 13 km/h 25 days 25 30 55 67 3 km/h 6 km/h 13 km/h 10-15 km/h 13 km/h 20-25 km/h; 6 km/h for cargo, 8-39 tons for cargo in 1815 3 km/h 14 km/h 12-15 100 4-8 km/h (182; 46 km/h with trains 8 km/h The need for high-speed communications was completed by the first scientific journals on the massive use one and a half century after the "Gutenberg's invention" blessed by the writing in native languages. Scientific Societies of London (1662) and Paris (1666) used the periodicals in the extent which their Italian predecessors, the Roman Accademia de Licei 1603-1630 and the Florentine Accademia del Cimento 1657 to 1667, have not yet know how or been able to take advantage of. The rapid communications therefore profoundly changed the form, but soon also the content of the scientific publications: 1. The rising speed of communication on the discoveries of science developed since then there was no longer any need to write thick books with full consideration given area. The writer just needed to mail his novelties in the form of scientific notice (paper). a) Formerly ═ecessary auth║r’s k═║wledge ║f the wider area ║f his research soon ceased to be so urgent. The doors were opened to specialization, and also to the branching of the sciences. b) The competitiveness soon cast serious national championship for colored quarrels about priorities in science discoveries. Many set fire around Newton who was criticized by Huygens, Hooke, and Leibniz. The deepest dispute was about calculus, but both protagonists, Newton and Leibniz, in fact borrowed the stuff brought by the Jesuit missionaries from India. In spite of India the contemporary score gives Newton the priority with the acknowledgments of Leibniz independence and his much more useful notations. The priority given to the Indian literati would be the nice synthesis of that dialectical dispute. In Paris Jacques Cassini of the second-generation of Italian astronomers defended Descartes’ vision of an elongated Earth following the joke that Cassinis always supported the losing sides’ ideas.187 The dispute Oblatum sive oblongum or orange versus lemon dragged on (at least) one and a half decade, until the French Academics endorsed the flatness measurements in Peru led by Charles Marie de la Condamine from 1735 to 1745 and in Lapland where Maupertuis, Clairaut and Celsius worked in 1736. A significant share was contributed by Bošković by measuring the meridian in the Papal States in Rimini from 1750 to 1752. The Napoleonic Captain Moynet, the enemy Jesuit B║šk║vić astronomer Baron Franz Xaver Zach, and the cartographer Giovanni Inghirami (1779-1851) attributed to Bošk║vić a═d his collaborator Jesuit Christopher Marie as much as 10 m of error in supposedly wrong measurements of their Appia═ base. B║šk║vić’s successors in Collegio Romano tried to mitigate the reviews, but it was managed barely by the Jesuit astronomer Director of Collegio Romano Angelo Secchi (1818-1878) after the archaeological excavations and repeated measurements from 1854 to 1858, which confirmed more acceptable error of 2.8 m.188 The attack ║═ B║šk║vić was i═ ma═y ways similar to the criticism of the Jesuit Maximilian Hell by Carl Littrov, which was refuted by the American astronomer Simon Newcomb in 1883 soon after Secchi passed away. 2. Financing of the sciences was turned into a lucrative profession and lead to elitism in which the Academies were not opened or mass facilities189 Table 15: Development of the Academies Year Paris Number of academics Berlin 1666 1695 1700 21 70 1785 1793 1795 83 Abolition of the old Parisian Academy The Institute combines five academies, including the natural sciences with 65 members 4 Academies 1814 187 116, among them 35 domestic Prussians Cassini, Jacques. 1720. The Greatness and Shape of Erath. Battinelli, Paolo. 2014. The Real Length of the Geodetic Base along Via Appia: A One Century Lasting Quarrel. Trista godina od rođenja Ruđera Boškovića (ed. K═ežević, Z║ra═). Beograd: Astronomska observatorija. 90-91, 94-95. 189 Arhivii istorii nauki i tehniki. Vipuistk 8, Leningrad 1936. 188 Scientific Societies tendered massive bonus issues, which often brought to the established researchers the additional income. Table 16: Prize winning-awards of scientific societies as a reflection of the changing field of scientific research through the centuries Year Prize task Organizer Award Winner (Academy) Amount offered 1538 Determination of longitude (at sea) Determination of longitude and latitude (at sea) Philip III. Spanish Legacy of Roulle de Meslay 1000 crowns The use of Marine pendulum watches Cause of gravity Aether (ether) Paris Dutchman Massy Paris Paris Tides The causes of magnetism Atmospheric Tides Aberration of Jupiter and Saturn Did the Advancement of Science contribute to improving of the manners? The similarity between electricity and lightning Theory of the Moon Why the seed corn spoils? Inequality of planetary motion Computation of angular velocity of comets Halley’s comet Are the theological-metaphysic truths subjected to a mathematical test? Water mills Liberation of the Moon Why does Moon always show the same side? Urban lighting in Paris Colored glass defects (aberration) Paris Paris Berlin Paris Bulfinger Jean Bernoulli the younger McLorain Oepinus and two other D'Alembert Euler 17141728 1720 1728 1736 1740 1746 1748 1749 1750 1751 1755 1756 1759 1762 1763 1763 1764 1764 1765 17661771 + 1o length for 10,000 pounds; + 30' latitude for 20,000 pounds Dijon Bordeaux Petersburg Bordeaux Paris Torino Theory of the physician Berberer Clairaut L. Euler Demoiseau Petersburg Berlin Lairaut Mendelssohn Lyon Paris Paris Lagrange Lagrange Paris Paris 1775 The industrial production of soda Paris Leblanc 1776 The analogy between electricity and magnetism Completion of the compass Bavaria Paris Paris Petersburg Berlin 1808 Perturbation theory of comets Theory of simple machines Steam engine What made French a universal language? Elementary presentation of higher mathematics Causes of secular equation of the Moon, Jupiter and Saturn Trajectory of the body, which passes through the center of the Earth Electrochemistry Swinden, Smeiglehner, Hubner Dutchman Seinden and Coulomb Lagrange Coulomb De Maillard 1808 (1810) 1809 1811 18111813 18181819 1826 18341836 1858 1779 1780 1781 1783 1784 1786 1791 1800 Paris Berlin Simon l'Hiulier Stockholm Laplace Berlin (involved Jurij Vega) Napoleoni c Paris H. Davy (awarded in 1812) Theory and experiments with the double refraction Phosphorescence Paris Malus Paris (Institute) Dessaignes (the emeritus Heinrich did not get the prize)190 The spread of heat in solids Specific Heats Fourier Delar║che, Bцrard Diffraction of light Paris Paris (Institute Paris Comets Using mathematics to progress maritime navigation The exhibition of electrical equipment Paris Paris (Biro of lengths) Paris Exhibition 12,000 Payment of bonuses to prevent the dissolution of the Academy Fresnel 6000 francs Ruhmkorff 50,000 francs Compulsory primary education has enabled multiplicity of naturalists which grew into a hierarchy with team work. Overproduction of the natural scientists is slowly rearranging them in a number of branches of sciences and industries. It corresponded with the internal logic of science research, which primarily touched the astronomy of the 17th century. Two centuries later there was an urgent need also in other branches of sciences for the research assistants 190 Wilde, 1843, 407. trained for the interaction with industry and handicrafts The genesis of Newton's optics (1704) with some allusions to electricity can be fully monitored through publication in Phil. Trans. There they hosted a fierce Newt║═’s debates with Hooke (1670), Huygens (1673), and others. In this style the Academy and other scientific societies in their newsletters fundamentally changed the way of publishing science research in an era when at the end of the 18th century it became clear that a physical theory of technology brings profits. At the same time, modifying the shape of publishing has changed the content of science, which in the late 17th century through mathematics and experimentation has become an exact science. 17th Ce═tury ║f Gilbert’s Desce═da═ts i═ the First Ge═erati║═ ║f Researchers ║f Electricity The rise of the knowledge of electrical phenomena coincided with the modernization of their publication. The experiments of Leyden-French-English student, Magdeburg mayor Otto Guericke (1602-1680), still cannot be regarded as the part of later smooth development. The contemporaries knew only report of Gaspar Schott on Guericke’s achievements, but less about Guericke’s later published Latin Experimentum Magdeburgum Novum or Guericke’s letter to Leibniz, printed only in the 18th century. Guericke worked with the electrical experiments and used the sulfuric ball in "size of the baby's head" by the mount in the spindle axis. He electrified it by rubbing with your hand while rotating and his findings strongly influenced the new Royal Society: 1. The most brilliant fellow of the Royal Society, Robert Boyle, used H║║ke’s vacuum pump as improved Guericke’s invention examined for the expansion of sound, light, gravity, magnetic and electrical disturbances in space as did before him Torricelli and Guericke. Boyle stressed the relationship between the past four which vacuum did not stop from spreading. That experiment provided a number of links that do not have a final epilogue even today. Boyle has not thought about the thermal radiation, because it emerged into the scientific expertise barely two centuries later. 2. The former Newton’s assistant Hauksbee probably did not know Guericke’s experiments firsthand. He mostly used a glass sphere. Despite Boyle's experiments Hauksbee assumed that the electrical fault is transmitted through the air with four different phenomena, which he described as: a) A long known attraction and repulsion; b) Light effects with sparks jumps; c) The sound of the discharges; d) Thermal effect of electrical charging of certain bodies during their cooling. With that kind of approach the electricity offered a broad area of research, which anyway still stalled "... for about twenty years. All were in fact dealing with Newtonian gravity.«191 191 Barnal, J.D. 1971. Science in History. London. Translation: 1981: Marksizam u svetu, No. 9-10; Hessen, B. 1931. Translation: Društve═a p║zadi═a Newt║═║ve Pri═cipije. Marksizam u svetu. No. 9-10; Haldlane, J.S. 1938. Translation: Marksistična filozofija in znanost. Ljubljana (paper read in the University of Birmingham) Early 18th Century of the Second Generation of Researchers of Electricity The leading role of traders who founded the London Royal Society was took over by the aristocrats-landowners of England in 18th century. During this period of major stock market speculation the Royal Society drew the short end. In 1740 the Royal Society was already in severe financial problems as many fellows did not like paying of the prescribed "shilling a week." Meanwhile, the electricity has become a fashion of the wealthy and less wealthy headed by the Freemas║═s Dцsaguliers who adopted at The Hague in the English Designated Freemason loge the later Habsburg Emperor Francis Stephen of Lorraine on 14/5/1731. Janez Karl Filip Count Kobencl entered the lodge in Bayreuth decade later in 1741, Ziga Zois in Amsterdam in 1782, like Z║is’ teacher Maffei and client Wolfgang Mucha. Alongside with instructors Gruber and Maffei the young prospective Freemason Jurij Vega also taught Zois. Similarly, the Ž. Z║is’ brother the founder of the dynasty of Carniolan holders of the manors Kompolje and Muljava Joseph Leopold Zois (22/11/1748-18/4/1817) with his family lived in Vienna as a member of the Masonic lodge of Crowned hope in 1783 and New-crowned hope since 1786. From 1752 Mozart's friend Jacquin was in Vienna, where in his collections of plants he published the works of a Ljubljana-Klagenfurt Jesuit F. Wulfen, who joined Klagenfurt Masonic Lodge Charity Marianne. Some researchers besides B. Franklin have been near the Italian Freemason Tiberius Cavallo who lived in England since 1782, or an English Freemason Joseph Priestley (* 1733; † 1804).192 What then so inspired largely non-professional researchers for the research of electricity? Among other things, the opportunity, because all the electrical tools until the invention of Volta’s battery in 1800 were extremely cheap compared to the astronomical, chemical or optical devices. Among the experimenters with electricity Englishmen and Frenchmen still dominated in the second generation: 1. Stephen Gray (* 1666; † 1739) i═ E═gla═d redisc║vered Gilbert’s c║═duct║rs ║f the electricity: 2. Dufay (Charles Fra═ç║is de Cister═ay du Fay, * 14 September 1698; † 16 July 1739) was Buffon's predecessor as the head of the "Jardin du Roy". He brought forth a number of options for the theory of electricity: a) He realized two kinds of electricity that are generated during the rubbing: i) of glass which Dufay named vitreц according to the French word for glass; ii) of amber which Dufay named resineuse. Dufay’s proposal was criticized by his student Nollet. It nevertheless almost secretly smuggled in modern textbooks, probably over a possible independent B. Franklin thinking. b) Dufay was so impressed by the strong, even in broad daylight visible sparks which had K║šir, 2015, 28, 59, 82, 135 right column, 137; Schiviz, 1905, 89, 311; Vidmar, 2010 Kopitar’s letter mailed on 10/10/1812; According to Smole 1982, 706 by error J║žef Z║is (1741-1813) was noted. 192 gone from a charged substance that he proclaimed electrically substance as the fire, that is, for the central phenomenon of the former chemistry. Before Dufay literati have proclaimed the principle of conducting water and metal, which was mainly at the expense of wet wood which was in those days the most widely used material. When reached how badly clean water conducted the electricity as opposed to hot air or charcoal, Dufay conceived the entirely new principle – the phlogiston. Thus, the phlogiston theory sailed between explainers of the electrical phenomena, and in many cases sparked the confusion. "The smell of sulfur" between discharges was soon recognized as an alleged result of burning. This has reinforced the links between electricity and chemistry, but in the exploration of the electricity brought the conflicts around the burning and the phlogiston theory which was quite valid from 1700 to 1790. Dufay electricity as fire impressed the diplomat Franklin, who knew that if he wants to undermine Nollet, he must be appealing to N║llet’s a═tag║═ist Buffon, according to the principle: enemy of my enemy is my friend. Franklin imagined two types of fire: conventional and electric. If fire and electricity were not the same they were at least very similar. Similarly a century later, Faraday proved the identity of all forms of electricity. While the qualitative analysis took into account the behaviour of gases during combustion to change the phlogiston theory, the attitudes of electricity were changing too. For W. Henly193 the electric fluid was a modification of the element that was in dormant state called phlogiston and in very aroused state it was the fire. It was a fluid with three possible states, which it championed in relation to the intensity of arousal by friction. Henly used his knowledge of chemistry as substantiated by two very fortunate inequalities: Phl║gist║═ → electricity → fire Wi═e vi═egar → → r║tting. Much less naive than that chemical comparison today seems the mechanical comparison of electricity with the water pipes. It explained much stronger impact upon the closing of an electrical circuit or on similar D. Bernoulli’s opening of the water pipes. Mid-18th Ce═tury ║f Fra═kli═’s Part ║f the Third Ge═erati║═ ║f Researchers ║f Electricity In 1740-s, electricity has become a game of the wealthy elite, especially in the French salons. Its wonders were played back even at trade fairs, which have been the essential sources of innovations to the peasant masses, at which aspiring circus players did not refuse to gain either the yellow gold. The entertainment has grown into a real enthusiasm when in the year 1745/1746 von Kleist in Germany and Pieter Musschenbroek of Leiden invented independently the Leiden Jar to accumulate the electrical charge. Due to the more famous Musschenbroek the device was called Leiden Jar. In the same year the discovery has wandered across the Atlantic to America and to Beijing. The writer of physical articles for the 193 Cavallo, Tiberius. 1882. A Complete Treatise on Electricity in Theory and Practice with Original Experiments. London. Encyclopaedia, Le Monier (Monnier), in the presence of the king emptied the Leyden Jar through 240 hands tight of the Guards, which caused them a significant jump all at once in 1746. Le Monier’s discovery of transmission of electricity in proportion of the area ratio of the conductors and not in proportion by weight raised a lot of noise in the Divine Paris. There everybody mixed into the charge of electricity and everybody attempted to expose their views on the issue.194 Many have claimed ingenuity indeed futile attempts to speed measurement of electricity on both sides of the English Channel. In 1675 Römer pr║ved the experimental proof for the finite speed of light; therefore, many people questioned the finite velocity of electricity. Much worse were the experimental evidences: 1. They were trying to establish "direct" measurements of speed of electricity because initially it was not certain that the light and other phenomena spread as quickly as the electricity itself. 2. The "direct" measurement of the speed of electricity has long been ineffective because of lacks of the useful measuring devices: a) The literati lacked long enough conductors, although Watson used the 4 km long wire; barely telegraph links allowed such measurements in the 1840-ies. b) Since the days of Galileo, all experimenters complained about the lack of precise clocks. Table 17: Speed of light through two and a half centuries before Ig═ac Kleme═čič Year Experimenter Result 1746 Watson, Nollet, Le Monier, J.H. Wincler 1834 1856 Wheatstone Weber and Kohlrauch Above 40 km/s, faster than (Mersenne) cannonballs velocities of 20 km/s 9,27 ∙ 105 km/s 3.01874 ∙ 108 m/s Therefore, the measurements were in vain until the Wheatstone instead of "direct" measurement rather determined the speed of the electric flash, with which the Gauss’ rebelli║us frie═d Wilhelm Weber pleasa═tly supp║rted Fizeau a═d F║ucault’s measureme═ts of the speed of light. Even across the Atlantic the electricity has become a cerebral exercise for which the old rules of science did not apply. It was a popular entertainment ascending layers. Right there, in the f║rmer Pe══’s heart ║f Philadelphia as the the═ second largest city of the British Empire with 15,000 inhabitants, a friend of Benjamin Franklin founded the American Philosophical Society Scientific Society. Franklin himself was indeed at home in Boston and he went to Philadelphia to earn for a livelihood. 194 Nollet, J.A. 1749. Recherches sue les Causes particuliers des phénomènes électriques. Paris. Introductory page XV. Of course, Franklin reputation did not grew up entirely from uneducated neighborhood. In 1636 the Americans founded Harvard University. During the revolution the colonies already had dozens of the universities, among them even the prestigious centers of learning organized by the Jesuit General Gabriel Gruber. The church did not manage the University of Pennsylvania which was highly devoted to the natural sciences after its foundation in 1740. The reform of schools was triggered mostly by Thomas Jefferson after the independence of the United States. In many ways the reform coincided with European educational reform which also banned the Jesuit order between 1773 and 1814. Already in 1746 the favorite game for Franklin was his Leiden Jar, which he had sent by a fellow of the Royal Society Peter Collinson, together with instructions for use, almost simultaneously with a similar consignment for the Beijing Jesuits. The American science was in some aspects ahead of Europe of those days: 1. Experimental zeal was written on the skin of the broader American society; 2. They endorsed the tendency to usability; 3. Americans had closer contact with nature in comparison with Paris or London; 4. Poorly educated Americans had pretty free spirit; 5. Above all, they had enough time and money. All of these features crystallized in the first and for several generations even the only usable electrical detection, which has become at the same time a jewel B. Franklin Masonic European diplomatic wrangling. It was the lighting rod. Undoubtedly, a strong spark of δeide═ Jars t║gether with s║u═d a═d fragra═ces at its discharges resembled the Zeus’ weapons to many people. The similarity between lightning and electricity was already musing about in works of Wall in 1650; their identity was finally supported by Franklin. It was supported by several causes, among which was the proof that "both rotate magnetic pole." Four decades after Franklin, Galvani again verified this ad hoc Franklin identity on animal electricity. Three decades after Galvani, Oersted finally succeeded in experimental connection between electricity and magnetism for all times. It was obvious the beginning of commonality of electromagnetic phenomena, which Faraday completed in 1833195 by integrating the incumbent experiments and finding that the simple electricity, Volta’s electricity, animal, magnetic and thermo-electricity created the same phenomena. Faraday merged out previously applicable various physical phenomena, just like Newton who unified the Earth's gravity and space gravity. After Buffon advice the botanist Thomas-Fra═ç║is Dalibard (* 1703; † 1799) put on his estate in Marly-la-Ville 13 m tall pole on the insulating glass legs. Dalibard was just absent when the lightning crashed into the device, so it was his servant, the retired soldier Cofier, who carried out the first experiment with tamed lightning - and survived. Despite the high-profile success, the opposition of lightning rod was still in charge for the whole generation, under the pretext that: 1. They attract the lighting from the clouds. In 1763 the criticism was rampant especially after Richmann was gravely hurt in St. Petersburg in contrast to much happier Cofier; 195 Faraday, Michael. 1857. Experimental Researches on Electricity. London. 2. By charging the Earth the lightning rods were supposedly triggering the earthquakes that have destroyed Lisbon and London. Cavallo was angry because of lightning which despite of the lightning rod damaged the house of the Earl of Ordonance. Ljubljana professor of physics Ambschell reported a lightning strike in 1782 in a church cross south of Ljubljana.196 In 1783 De Visser Boisvalle from Saint-Omer, however, has been accused because of his lightning rod that supposedly attracted a thunder and also a flurry of his neighbors, and even the mayor. Robespierre defended De Visser Boisvalle in the court of the city Arras and after the success he was applauded by the "advanced" enlightened France as glorious lawyer. Later he eventually became the evil Jacobin. Others attributed to the lightning rods tremendous opportunities, even if they were mocked by the other later leading Jacobin, Marat.197 Specifically in 1787, Bertolini tried to prove that his rods buried in the ground were "paragreles" for "traction power of the cloud." Unfortunately, he was not been able to deflect rain or hail. Many had promised that the inverted lightning rod could neutralize even the earthquakes. The imperialism of certain branches of science tends to impose their designs to others. Initially, the researchers of electricity and fire were the same in the 18th century. Later, when every one of them caught many forms, equating was no longer feasible. The imperialism had since showed especially as the prevalence of analogies models of the forces, which in extreme cases seek to a "unified theory of forces." It shows distinguished: 1. "Imperialism" of forces to other force which is enabled by the differences in the level of development of their mutual theories. 2. "Imperialism" of forces to the less developed or newly discovered phenomena. This second pop-up between the two forms and is certainly much more widespread. Table 18: Less researched phenomena always assumed the models of forces, which was more popular among modern scholars at a given moment Year Popular form of "force" 1600 1689 1750 1780 1800 1820, 1890 1970 Magnet, alchemy Gravity, light Electricity Animal Energy Heat, light Electromagnetism Bio-energy, telepathy, UFO 196 Cavallo, 1782, Appendix 2; Ambschell, Anton. 1792. Naturlehre. Dem Feuer und der elektrischen Materie, 4: paragraph 199. 197 Marat, Jean-Paul. 1782. Researches in Electricity. The imperialism of electricity, or rather electromagnetism, certainly did not end with Franklin or Cavallo. In 1830 Utrecht professor Heriet Moll supposed that galvanic electricity guides all phenomena in nature. Nobel Prize winner of 1979, Harvard professor Sh. Gladshow and his followers stated that everything including life is electromagnetic phenomena.198 In its first "imperialist era" the electricity has become a cause for: 1. Earthquake, when, after the tragedies in Lisbon, and in the next 18th century in London, the speculation about the nature of earthquakes has become fashionable. In 1749, Dr. Stokeley proclaimed the natural power of earthquakes and volcanoes on the basis of: i) The human-animal reactions; ii) Sound phenomena of rumbling of the earthquake; iii) Flash light phenomena in the volcanoes; iv) Demolition of the cities but no damages on mountains and flowing rivers indicate that the cause of earthquakes is in the ground storms, fires and explosions. 2. The gleaming of seas as "friction between the non-electric and original electric body does not produce electrical fire, but it collects it. The ocean consists of (non-electric), water and salt (as the primary electric). Hence, we see sometimes shimmering sea ... I doubt in my assumption of power the light source in the sea, as charged and sea water in the bottle discharges after a few hours.199 Today we describe the glimmering seas mainly as the effects of bioluminescence of plankton, but both those concepts were not developed in Franklin’s time. 3. Meteorological phenomena: a) The rain:200 "If a charged air is pressed against the mountain, or it is condensed with loss of flame, that senses the triangles (in which water combines together with air). The air, together with its water falls as dew, or water, which wraps the particles of air which merged with the adjacent wraps, and forms a droplet which falls like rain. If these clouds are compressed to the less electrified mountains, the mountains took from them the electrical fire. The particles are pressed at the mountain, and between themselves, and fall like rain. " b) The Wind:201 "Water, which contains an electric fire, intensifies the natural reflectivity of air, to which it is attached. This dilutes it, so both are raised ... " 4. The Northern Lights. 5. The Shooting Stars. Nollet of course, strongly criticized the innovations of his rival Franklin, because he was aware of the limited experiments with electricity in an era when the best electrometers determined at most the relative charge according to the declination angle of the instrument from its equilibrium position.202 In 1833 Faraday was among the first to discuss the units of electricity in conjunction with the Gladshow, Sh. 1976. Iskanje kvarkov. ε║skva: Za rubežem; Cverava, G.K. 1983. Joseph Henry. Leningrad. Franklin, Benjamin. 1783. Oeuvres de M. Franklin. Paris. 9th letter to Peter Collison. 200 Franklin, 1783, 23rd and 29th letter. 201 Franklin, 1783, 19th letter. 202 Nollet, 1749, part IVl. 198 199 angle of deflection of the electrometer or with the electric equivalent of electrolysis. Modern quantity of magnetism was determined by Gauss in 1832, and the quantity of electricity was defined by his friend Weber in 1849 in mechanical metric units kg, m, and s. Maxwell explained this analogy with mechanics in 1868. The modern electro-technical units were legalized in 1881 in Paris, and the unit Henry (H) for inductance, as is fitting, was added in the US in Chicago in 1893. Nollet would be certainly satisfied with such upheavals. In particular, his reaction represented the leading professional scientist who was decisively escaped by the work of an amateur from the distant province allegedly full of wild Indians, namely Benjamin Franklin. Nollett was in his own sophisticated theory looking for causes of electrical phenomena in the "concomitant efluence and afluence of some subtle substance, ubiquitous and capable of burning through its own rays."203 Franklin incomplete and often vulgar-mechanical vision of electricity was resisted by the Nollet’s system, which was already almost tamed in Europe. This led Nollet and Franklin to the longstanding dispute, which was also ethnically colored. The "Franklinists" have quickly gained a decisive advantage by their improving the social situation in France and England, even if: 1. Duborg translated Priestley’s books (1771) while he strongly objected the teaching of Franklin, which has provoked fury in the preface of Priestley’s subsequent third English edition, 2. Slightly nationalist was a colorful conflict between the British favorite "rounded" lightning rod, and "tapering" version, which was more to Franklin and French liking. 3. Wilson's theory of conductivity opposed Franklin’s. 4. Until 1803 the Lyceum Library of Ljubljana had only Italian (Lezzioni di fisica) and the German translation of Nollet, and nothing in Franklin’s fav║r. In the next generation they have purchased almost all Nollet’s works within two tenths of volumes, the French translation of Priestley and Franklin, and Cavallo’s work. All of these books, with the excepti║═ ║f tw║ N║llet’s, came in Lyceum library from Ž. Zois library from 1808 to 1815. Franklin pleasantly illustrated his relationship to philosophy: "It is not the most important thing for us to know how nature performs its own laws; for us suffice to meet them."204 Therefore, after the publication of his letters in 1755 Franklin was able to repair many of his opinions due to the pressure of the experimental results and the critics. Franklin was certainly influenced by Nollet’s critical letter from 1752, although he did not answer Nollet. Franklin claimed that his experiments speak for themselves (and for Franklin too).205 Notwithstanding the alleged fictitious Franklin a═d his ═ephew’s dangerous experiment with a kite, the balance sheet of his intervention in the electricity research was the following: 1. Franklin ideas that fitted the core of our modern behavior: a) Positive and negative electric charge were not completely unique idea of Franklin. Priestley reported that Wilcke was according to the incomplete attempts in doubt about which the electric fluid is positive and which is negative. Wilson and G.W. Richmann were committed to reverse the Franklin signs. In 1797 J.J. Thomson proved that they were right, and so the electrons actually "swim back" in modern labelling of electricity, but in a century and a half Franklin’s indications were so domesticated that nobody did want to make change. Nollet, J.A. 1746. Essai sur l’électricité des corps. Paris. Introduction. Franklin, 1783, the paragraph with Opinions & Reparations 13. 205 Franklin, Benjamin. Autobiography, 179. 203 204 b) Equality of lightning and electricity. c) In Franklin theory the dependence of conduction of electricity on the shape of the conductor was based on the electric atmosphere around the charge of the bodies. It was later proved to be wrong. The allegation of such an atmosphere is seduced by Franklin at the thought that pointed lightning rods were more likely to pull and steer lightning. This was against the English supporters of the rounded lightning rods. Each design had fixed capital and producers. Toaldo supported Franklin in Veneto and in Ljubljana, where Toaldo’s allegations were printed in the weekly Carniola society for agriculture and other useful arts. Wilson at the same time strongly opposed Franklin theory of conductivity206 in mathematical theory based on the drawing of the present theorem: "Let AB represents a given cylinder diameter and we assume that is charged with electric fluid. If all the particles of the fluid move to A at the same moment, then the effect of shock of the fluid is roughly proportional to the square of the AB, since the whole of the effect of A is the sum of all the particles contained in the cylinder AB whereas the effect of each pixel proportional to its speed, the whole effect in a proportionate sum of all speeds. But fluid is under the assumption almost completely elastic, so that all the particles arrive at A at approximately the same time; then the speed of every distance between the particles relative to the output location, the total effect of A will be proportional to all of these distances. However, this distance is expressed by the numbers 1, 2, 3, 4, 5, ... N arithmetic row, where N represents the length of AB. Then the sum of the distances expressed by the sum of the arithmetic types 1, 2, 3, 4, 5, ... N, the effect of A will be proportional to this sum, therefore N2 or AB2. However, the experiments cannot determine whether the particles come into fluid A at the same time or not ... " d) The sailors often find the impact of electricity on the magnetic needle when they abandoned compasses during the storm. According to Franklin, the iron become magnetic at different shots depending on the angle you cling t magnetic axis of the Earth.207 Beccaria, Watson and others also wrote in a similar way. However, it was a steady flow of Voltaic battery that enabled Oersted in 1819 to link the two phenomena in the equatio═ B = F (I, φ). Before Oersted it was not possible to determine the direction of the magnetizing (or unmagnetizing) current and its power, as the all research was concentrated around magnetization or demagnetizing. 2. Franklin assumptions which were override by his critics: a) Gilbert (1600) already discussed the electric atmosphere around the body. Nollet criticized it, however, but with Faraday and Maxwell theory of induction it became the modern conception.208 b) Atomistic vulgar whim of "thick and dry" atoms were defended already by ‘sGravessande and was very popular in the early Royal Society. In spite of Franklin it was already outdated in spite of interesting ideas of somewhat more "marginal" writers: i) In 1758 Bošković is in his theory wrote about the free dimension of particles-atoms as centers of forces, which was subsequently relied by Faraday, Maxwell, Kelvin, Bohr, and Heisenberg. ii) In 1765 Buffon argued: "All matter is attracted inversely proportionally to the squares of the distances. That general law is not aware of any variations in individual attraction, apart from the shape of the components of the substance since this form acts as a distance factor ... 206 Cavallo, 1782, Appendix No. 4; Wilson. 1775. A Short View of Electricity. Franklin, 1783, 6. Letter to Peter Collison. 208 Faraday, 1857, 3271; Maxwell, 1965, 59. 207 The computation can figure out the shape of these particles. For the liquid metal it applies η ≡ r3, but we should incorporate the square (r2) if the integral fragments are spheres. iii) Latin D. Bernoulli description of colliding atoms have been lying forgotten in Franklin time, while specially in US the Latin had but rare admirers. c) Descartes had imagined the pores that let electricity into the body. Nollet used two kinds of pores, but he refused Franklin’s super-mechanical vision of the pores in the glass, which are in the midst of so narrow that electricity does not get through it. Nollet argued the opposite. At home he kept for the memory a bottle with a hole through which electricity was gone. Three years later Franklin renounced his naive interpretation of insulation of glass. However, the presumption of pores remained still very much alive for Cavallo in the year 1782. d) Equality of electricity and fire. e) According to Dufay, the idea of the two fluids of electricity occurred with the discovery of the reflection of electricity. The next generation of researchers endorsed Watson-Franklin theory of a single fluid.209 Later the prevailing opinion again rotated, as Coulomb agnostically reported in 1788: "By taking all electrical fluids I have no purpose other than to give you the simplest form of the results of their experiments and accounts. I do not try to transfer the real causes of electricity." Maxwell was also not able to decide:210 "Mathematical research of the electricity was developed especially by the researchers who supported the theory of two fluids. But they kept relied mostly on experiments, so it just does not favor any of the two theories ... The one fluid theory assumes that particles of (non-electrified) matter mutually repel each other, which is not in accordance with the (Gravitational) attractive force. However, it is reasonable to assume that celestial bodies are not in this state of extreme lack of an electrical charge, but they have a normal amount of electricity, so among them works just the force of gravity. But the introduction of these forces is suspicious." In modern physics we use both theories, although they seemingly contradict each other. It’s the situation similar to wave-particle dualism of quantum mechanics The theory of two electrical fluids correspond to the behavior of electrons and holes in a semiconductor, but the one fluid theory match the gas of electrons in metals. f) Excessive assumptions on the impact of electricity on meteorological phenomena. The "Franklinists" triumphed both on the political-diplomatic as well as in the electriclightning field. Their young friend of Priestley had special merits because until 1794 his History went through five editions in English and thus influenced all of the next generation of researchers of the electrostatics. Priestley really was in an exceptional situation as historian of science which was generated by his contemporaries, together with a considerable participation of himself. Table 19: Generation of researchers of electricity in the 18th and 19th centuries 209 210 Nollet, 1746, Paragraph II/16. Maxwell, 1965, paragraphs 36 and 37. Number of generation 1. 2. 3. 4. 5. 6. 7 8. Last Name Hauksbee Dцsaguliers Gray Dufay Musschenbroek Nollet Franklin Wilson Watson Le Monier Priestley Coulomb Cavendish Galvani Volta Ampчre Davy Poisson Faraday Maxwell Edison Tesla Born 1670 1683 1696 1698 1692 1700 1796 1708 1715 1717 1733 1730 1731 1737 1745 1775 1778 1781 1791 1831 1847 1856 Died State of paradigm in which he operated 1773 1744 1736 1739 1761 1770 1790 1788 1787 1790 1808 1806 1810 1798 1827 1836 1829 1840 1867 1879 1931 1946 On the beginning Fore-Paradigm Fore-Paradigm Fore-Paradigm Fore-Paradigm Genesis 1 Genesis 1 Genesis 1 Genesis 1 Genesis 1 Genesis 1 Growth 1 Universality 1 Universality 1 Crisis 1 Universality 1 Crisis 2 Growth 2 Growth 3 Growth 3 Breakdown 3 Universality 3 Universality 3 At the end Genesis 1 Genesis 1 Genesis 1 Genesis 1 Universality 1 Genesis 1 Growth 1 Universality t 1 Universality 1 Universality t 1 Universality 1 Universality 1 Universality 1 Crisis 1 Growth 2 Growth 3 Growth 2 Growth 3 Breakdown 3 Universality 3 Universality 3 Universality 3 Date of birth is not the only indicator of generation and even less of the state of paradigm, in which the particular researcher worked. Thus, the younger Priestley as writer and researcher began to work in the first growth of paradigm, although he was younger than the designers of its universality in the electrostatic Coulomb and Cavendish. The latter two have belonged to the generation of Galvani and Volta, but did not contribute much to their electrodynamics. Ampчre was indeed younger than Davy. However, with his mathematics he has actively interfered with electromagnetism, which remained foreign t║ Davy’s electr║dy═amics. Of these giants, the researchers of first two generations die at their forties, with the exception of Dцsaguliers. Later the miserable disease killed only Maxwell, but Davy did not fare much better because of his youthful exposure to chemicals. With the exception of physician Galvani and engineer Coulomb all other contemporaries used Priestley’s book. Similarly, Edison and other inventors have read Faraday’s experimental research as a handy guide for their future work. Especially Faraday’s advice Research-FinishPublish is just seemingly in rhyme with the modern Publish-or-perish. Priestley’s Queries were not numbered, unlike half a century older Newt║═’s queries ║f optics. Priestley rather divided his discussion into chapters, such as the "On the electricity of glass, or “On the atmosphere." These questionnaires had an impact on many future generations, just like before Newton’s queries. Thus, Cavallo tried electroshock affect the color of bodies under the initiative of one of the Priestley’s questionnaires, unfortunately not with too much success. As the century later Edison and other creators of useful electrodynamics with electromagnetism armed with Voltaic current and Faraday's manual, in Tesla’s case als║ with B║šk║vić’s The║ry, the researchers ║f electr║statics i═itially relied ║═ Leiden Jar and Priestley’s history. The "Alchemical period" of electricity, as it was christened by Faraday, is heard its swan song in the era before the French Revolution. As will subsequently be linked to the chemistry, the research of electrostatics was in the hands of physicians and physiologists. They gave her the characteristic color. It was not yet a science without a sufficient number of explicit experiments, but the literati had their a universal Priestley’s history and for the most orthodox among them also the Franklin’s letters were a kind of universal textbook. Almost all researchers of second and third generation tied the healing and treating with electricity. Many of them were also professional doctors, as Watson and later Galvani. From the fourth generation onwards, when the Volta’s electrolysis developed very close to the chemistry, also a career structure of researchers changed in favor of chemists as it was Davy and even the (young) Faraday. In the "interim period" the investigators of electricity quarreled about animal electricity from 1792 to 1800. The dispute in generation involved the twofold defenders of touch and chemical theories of Voltaic current. Change in the professional structure of the fourth "generation" of researchers of electricity and magnetism coincided with both revolutions, namely the industrial revolution and French revolution. Therefore, it has changed the social structure (origin) of the researchers of electricity and also of the other scientists. Specific changes were evident in France with the mercha═t’s s║═ Ampчre, and in England by Davy and Faraday as the sons of the craftworkers. Era of French Revolution with Electrostatics & Animal Electromagnetism for Parts of Third & Fourth Generation If Harvey was thinking with an example of a hydraulic machine, then the 18th century gave birth to two new suitable models resembling living bodies: - Steam engine was the most convenient model for the gigantic "natural machines" such as moisture in the atmosphere. - I═ 1747 Wats║═ i═tr║duced the ═ame “Electrical circuit”. He was also the pioneer of era of strong Leiden Jars in which the idea of the circuit was born. It was modelled on the early capitalist production chain, from supply of raw materials and processing to the consumer and their payment of the purchase price used later for the new supply. Already the first electrical charging of children and animals probably stimulated deep thinking. The good answers were offered with dripping capillaries, which after charging released the jet of water. Boze mentioned experiments with charged particles capillaries in his letter to Nollet in the year 1745. Nollet still questioned, since he was unable (or not versed enough?) to determine whether the jet from the electrified capillary flows in fact more water than the drops of nonelectrified water. Nollet was interested if electrical charge change the weight of the body. He electrified the pigeons and cats, and compared their weight after a long time with others that were not electrified. The amended by weight indicated on the idea that electricity stimulates the evaporation.. Nollet disliked the presumption of weight of electricity. Nollet had many supporters outside France, such as the Jesuits of Prague; however, a number of Nollet’s questions are waiting for their answers even today, because its research in the following centuries did not proceed, despite their obvious benefits for the economy. The logic of science and its funding does not cover (always) the logic of human stomachs. Soon researchers no longer denied even the most amazing results. The Italian physicians Bianchi and Pivati electrified his students and gave them into the hands the heavily fragrant Peruvian fruit. When one of the students in a few days was again electrified, the spirit of the fruit seemingly recovered.211 The "Life Secrets" of pre-revolutionary France and neighboring countries were brought to the surface by two physicians and one engineer. All three were more or less infatuated with the science of electricity. The German doctor Mesmer was initially an informal pupil of the Jesuit astronomer and rheumatism healer with magnets, Maximilian Hell. Mesmer later quickly decided to profit from the naivety of the Habsburg court. His "animal magnetism" was first preached in Vienna; but »Nem║ Pr║pheta i═ Patria sua«, and Mesmer was forced to flourish somewhere else, apparently also because of the rapid increase of the belly of blind pianist of Maria Theresa. A decade before the fall of the Bastille εesmer’s magnetism fascinated the high society of Paris. On his way Mesmer was constantly trying to create a reputation as a scientist. Mesmer medical dissertation on the "cosmic impact" did not raise a specific noise. Therefore, it was in 1775 when Mesmer with more "scientific" tuned parts of his ideas turned to all the renowned Academies of his days. Unfortunately he was honored with the response only from Berlin. Just the Munich Academy chose him for its member. Mesmer, of course, in his attempts did not use quantitative gauges; his theory has tried to get to science through analogies: 1. The "gravitational" tides in order to correspond with the tides of animal fluids, which endorsed the analogical periodicity of many life phenomena; 2. The ordinary magnetism, had the properties similar to the animal magnetism, even if the phenomena did not mutually interact. Thus Mesmer and also Galvani argued that their animal magnetism and electricity does not interact with ordinary phenomena of that name. Both were defeated by the main-current science of their days, but they both enjoyed a later development, which at least in part praised Mesmer and Galvani, put right, albeit outside the frame of physics. Despite some common points it is certain, however, that we should not throw in the 211 Nollet, 1749, 5: 420. same huts the professional scientist like Galvani with the circus-gambler like Mesmer. It is also not clear to what extent the Mesmer’s failure instilled in poor reception Galvani’s ideas in the camp of physicists-researchers of electricity; Mesmer’s debacle probably affected the most the work of Coulomb and other Frenchmen. Mesmer’s primary evidence was the testimony of his patients. Proportional to the mass and noise which allegedly cured at a sufficiently high level of Parisian society, the Parisian Academy was forced to constitute a commission to examine the scientific depth of "Mesmerism." The commission included the Academicians Franklin, Lavoisier, Gillotine and others. The US diplomat in France Franklin claimed that indeed it was impossible to establish scientific relations of mesmerism, but it seems that it operates in a secret force. Thus, the Commission in 1785 confirmed its own incompetence and at the same time annihilated Mesmer’s prestige. On the eve of the Revolution, the French military engineer A. Coulomb reached a climax and the final perfection of static electricity and magnetism. His main work was done by testing the utmost precision torsion balance, where the criteria of electric and magnetic forces through the sheer scales of equilibrium from 1777 to 1784. His first research was devoted exclusively to applied problems, including improving the production and design of compasses. Later his interest turned into search of forms of operation of electric and magnetic forces. He used primarily Aepinus’ calculati║═s. He ignored the effects of intermediates space and probably defended one-fluid theory. Coulomb has been nurturing an idea that was later borne much fruit t║ Ampчre. The formation of magnetic force due to the rotation of the fluid around the pole of matter was a kind of vortex reminding Descartes’ wh║ passed away already a half century earlier. We could figure out Coulomb’s thoughts from his description of the main characteristics of the electric fluid published in 1786: 1. The fluid does not bind the body with chemical affinity; 2. In the steady state the fluid is arranged on the surface of the body and it is not penetrating into the interior. So the peculiar skin-effect of later electrodynamics was subsequently familiar to the earlier researchers of electrostatics. Tesla very skillfully exploited it a century later. These two acts shows join in the fundamental law of electrostatics, which now rightly bears the name of Coulomb, although in the modern record ithe original Coulomb form has been modified to take into account the impact of the surrounding material: Fel ≡ e / r2 where F is the force, e charge r distance from the charge. I═ th║se C║ul║mb’s times als║ the University of Bologna was an important scientific center, especially for electricity, physiology and astronomy. The Bologna Jesuits Riccioli is sculptured in an ingenious conversation with half a century younger Tycho in the Old Prague Clementinum mathematics hall. Riccioli ingenious friend was Grimaldi. The Bologna city famous physiologist was Malpingi (1628-1694), but the highest climbed Luigi Galvani, who in the midst of the then revolutionary bustle published the Latin summary form of decades of his research of animal electricity. The analogy with an electric circuit led him to a surplus of the argument:212 "... Muscle fiber is a small Leiden Jar, the nerves are conductors ... electricity is created by the action of the brain is excreted from the blood enters the nerves and runs after them." Of course Galva═i’s rig║r║us scie═tific research was contrary to the Mesmer style. The Galva═i’s set of experiments, initially on frogs, and then also on the warm-blooded animals, has shown: a) The identity of the synthetic and atmospheric electricity in relation to the movement of the muscles under their respective influences, which had already been mentioned by B. Franklin. b) The similarity of animal and ordinary electricity, which is reflected in: i) The conductivity (which is not equal for both); ii) The selection of the shortest route; iii) The existence of positive and negative charge; iv) The dependence on the body. c) The rotation which coincides with animal electricity of torpedo and eel after testing on electric fish. The pioneers of electric fish research were the Empress' personal doctor Jan Ingenhousz (1733), Cavedish, Cavallo, and Faraday who tried the fish sent to him by Alexander von Humboldt from South America. d) The physiological considerations: i) The hollowness and fatness of nerve fibers necessary for keeping the insulation and at the same time the conducting electricity; ii) "... in the schools teach that nerves arouse muscle and not the opposite. We also demand the opposite possibility ... " iii) The arteriosclerosis is caused by an increased rate of electricity in the brain.213 iv) The nature of transfer of electricity between nerves and muscles is still unknown to the researchers. v) "... The experiments do not only heavily depend on the age of the animal, but also on the weather and time of year ..." Electrodynamics of the Fourth and Fifth Generation of Researchers of Electricity While Galvani tried to maximize his vision of animal electricity, the exploration of electricity (unnoticed) reached its scientific period. The literati gained so precise accelerometers that in 1785 Coulomb mathematically wrote a law of electric force falling with the distance from the source. For the second generation of researchers electricity meters were mainly physiological stress by sense-not shake or ║f the ki═d “towed or not t║wed”. Franklin and Nollet's have already endorsed at least two kinds of measuring devices: Oulik║vá, Petra. 2006. The Construction and Decoration of the Clementinum between 1556 and 1773. The Jesuits and the Clementinum (ed. Richter║vá, Ale═a; Č║r═ej║vá, Iva═a). Praga: Nár║d═i k═ih║v═a Českц republiky, 34; Grimaldi, Luigi. 1791. De Viribus Electritatis in Motu Musculari Comentarius. Bologna. Translation : 1960. London, part IV. 213 Grimaldi, 1791, part V. 212 1. The drain Lane’s electroscope; 2. The diverging Henly’s electrometer. Cavallo counted even four types of meters, with first two, which Franklin and Nolet did not state, as follows: 1. A single-threaded; 2. Canton’s Cork or pith-Balls; 3. Henly’s square from 1773; 4. Binnersley’s and Lane’s electrometers at discharge. Coulomb made efforts to explore magnetism with a torsion balance, which remained best electrometer up to Schweiger’s electromagnetism galvanometer designed in 1820. The best electroscope, of course, remained Galvani’s live fiber. The scale of these gauges was in degrees of an angle, so that even Faraday measured the voltage with the angles of the deflection from the vertical position. The history of imperialism (of Newton’s) 1 / r2 modified the development of the tools used for measuring: 1767 - Priestley deduced the validity of Newton-like laws from observations of the electrified hollow sphere; 1769 - Robinson concluded on its validity from studying the reflection of charged bodies. 1771 - Cavendish experimentally confirmed the law 1 / r2, but unfortunately his measurements were printed barely a century later. 1785-1789 - Coulomb conclusively proved that the spread of Newton's law of force also applies to the magnets and electricity. Even before the settling of the dust which Galvani raised with his discovery in northern Italian universities, Volta in the then Habsburg University of Pavia eight days after his reading of Galvani’s notes found convenient gauges:214 1. The frog preserved "á la Galva═i" is ten times more precise compared to the electroscopes used previously. 2. The animal electricity is much weaker than the ordinary. The scientific community was ambivalent about the second of both Volta’s arguments, and the physicists (Volta, Coulomb) escalated to a complete denial of the existence of animal electricity. The physicians and physiologists Galvani, his nephew, Gi║va══i Aldi═i († 1834), and A. von Humboldt in the opposite camp of course did ═║t appr║ve V║lta’s ideas. The dispute its revolutionized and soon also felicitous political dimension: Galvani refused to take the oath of "creedless" in Cisalpine Republic in 1797. Eight years Galva═i’s younger Volta turned his coat to the wind, and the Thermidorian-brumaire reaction soon gave him many honors. Although we are now sure that both of the disputing camps had their own right, the Napoleonic discord managed quite a different impact on the fate of the two main characters. A year later, more diplomatic Galva═i’s ═ephew Aldini arranged that his uncle Galvani was returned to the position of professor, even if already on his deathbed. In 1801, Napoleon 214 Bassano Cerminati, professor of medicine in Pavia, in a letter to Galvani signed on 5/4/1792. excelled Volta to figure as the Parisian professor even if only with a single lecture year. In 1810 Volta became a Senator Lombardian Kingdom. This stream from Voltaic cell was constant, albeit weaker than competitor from Leiden Jar. According to present estimates, it was possible from the unique capacitor-called Leiden Jar to get a voltage of 150 kV in a very short time of the order of 10-9 s. The generated currents were about 100 A. Volta assembled the solution cells of Cu and Zn "electrodes" as baptized later by Faraday. Volta sent the report on the success to the Royal Society in 1800. Volts original cells indeed were not strong, and therefore they gave just a weak constant current. I═ лc║le P║lytech═ique after the emperor's command the literati designed the powerful battery of 600 cells, each of 9 dm2 of surface area. The device achieved the tension U = 500 V and gave current of I = 10 A. Beyond the Channel Wollaston used the contributions from wealthy Englishmen to build a battery with 2,000 cells of 2 dm2 surfaces, which gave such smell and vapors that the equipment was set to the basement. Volta’s vision of "touch electricity" drove him to the invention of battery, which marked a new era in the exploration of electricity, where current spark suddenly turned into a steady stream ideal for a favorable long-term observation. The act of discharge in the shirt interval of time of former researchers passed on to the whole time zone. The novelty was similar to that of the observation with the naked eye which two centuries ago profited with the invention of the telescope or microscope, where the greater available optical surface is replaced with the greater space of time of electrical discharge event. Of course Volta’s times were significantly different, since there were no philosophical-religious oppositions against his inventions because of mutual tolerance between the clergy and the scientists, or rather, the lack of interest for a similar conflict. The victim of telescopic-Copernican conflict Galileo was not residing very far from V║lta’s Pavia. Yet something in the revolutionary birth of dynamic electricity was different from two centuries older telescopically-microscopic revolution: it happened in the era of steam engines, which acquired highly useful capitalist character. Of course, multiplying of the manufacture and their usefulness has been comparable with Leiden Jar: a strong Volt cell was in fact much more expensive device, comparable to a half century earlier early vacuum pump or accelerators a century and half later. Those who have had the strongest available Voltaic batteries picked up the "cream" with the discoveries of the new electrochemical phenomena in those pioneering years. H. Davy endorsed such successes, but also possibly caught his early disease, mainly because he had under his thumb the enormous Wollaston’s device. Problems that are most sting in the eyes of researchers of the electricity of those days were two: 1. From where comes the current in volt battery? They offered two possible answers: a) The contact of electricity as a contact of heterogeneous materials at different positions in the electro potential series of the Italian Volta, a German Pfaff, Ohm, or Zamboni; b) Chemical theory in two versions: i) The chemical forces of electrical nature; ii) The electrical contact force created by a chemical reaction. In 1806 Davy endorsed among the first the electrical nature of chemical forces. In 1812 Berzelius accepted his ideas as did Rodget in 1829, Wollaston, Oersted, de la Rive, Becquerel, Faraday in 1835, and Karl Robida in the year 1854. 2. What is the connection between electricity and magnetism? For this question, however, there was hiding a quandary that two decades after the V║lta’s discovery triggered the emergence of a whole new science called: Electromagnetism of the Fifth and Sixth Generation of Researchers of Electricity While half of Europe under the boot of the reaction after the fall of Napoleon sought to unravel the mysteries of electricity, in the relatively marginal Copenhagen Oersted applied the electric current to move the magnetic needle, albeit only after a warning of his promising student. But Oersted had a good Natural-philosophical preparation. His success has brought forth a universal communion in his old-fashioned Latin prescribed report.215 The phenomenon was long expected, but the "famous physicists" did not see it because they have not worked with Oersted’s experiments with a closed circuit. Oersted already for at least seven long years tried to reveal the relationship between the various physical forces. In Europe his discovery triggered a genuine research chills similar Volta’s two decades earlier. But now Oersted had more peaceful times. The Germans immediately staged a few first-class discoveries: J.T. Seebeck reported on the discovery of Thermoelectricity, in 1827 G.S. Ohm explained the electrical resistance with mathematical approaches that were not exactly domesticated for a while. The thermoelectricity and Schweiger’s galvanometer from the 1821 were presented in Paris lectures by Oersted barely two years later. Much more straightforward was the impact of Oersted’s discoveries in thinking about electromagnetism since the original concept of "electric conflict" is preserved today in the decisive Faraday’s lines of the forces. The swirl movement as the basis Oersted’s performance has become the foundation of the theory of electromagnetism of Ampчre. Oersted did not give up his purpose and continued with searching for a common ground of physical forces. With its electromagnetic models he tried to explain the polarization of light, but it was also the time when the same problem was effectively tackled by Fresnel after Ampчre’s suggestion. As soon as Arago explained to the Parisian academics the consequences of Oersterd’s wonderful discoveries, many began experimenting. Ampчre e═d║rsed the sore from cream and in a few weeks built a wh║le the║ry ║f electr║mag═etism. Ampчre has ═║t bee═ the ki═d of scholar that liked to describe his way to the discovery through the side valued accomplishments. He rather published the seemingly divine useful product. His thinking was 215 Oersted. H. 1820. Experimenta circa effectum conflictus electrici in actium nagneticam. Hafniae. No. 4; 1810. Journal de Schweigger, 29: 275. wondering around the attraction ot the opposite fluid and the reflection of the direct-current electric current loops in the vortex theory of magnetism. The magnet has become microscopic current loop by analogy with the current along the equator, which would cause the Earth's magnetism. Ampчre's ideas were born also under the influence of his friend Fresnel; very quickly they were implemented and adopted by the major Parisian circle of scientists. Soon the novelty has become a part of textbooks and there it insists t║ this day, despite Ampчre’s adverbial forgetfulness due to which he once went to the banks of Siena River and threw his pocket watch into the water instead of the stone. In 1812 Faraday was Davy’s assistant. He was hooking up the particular exploration chemistry by means of an electric current. Also, he has attracted a search for mutual influence of physical forces. In 1832, three years after Davy’s death, he managed to turn Oersted’s experiment: the magnet induced an electric current in a conductor, and thus opened the door wide to the mutual conversion of electrical and mechanical energy in electric motors and dynamos. Ampчre was mathematically much more versed compared to Faraday. Ampчre actually did not oppose Faraday directly, since they both addressed within each of its extreme model-like v║rtices. Ampчre was thi═ki═g strictly mathematically while Faraday held geometrical representation without the clutter of higher mathematics. Faraday was the closest to B║šk║vić’s idea of centers of particles forces. Ampчre and Faraday’s development of electromagnetism led to more statistically oriented quantum mechanics. Upon the occurrence they triggered upon the powerful opposition of the members of Laplace’s school Biot and Savart which were not rejected by Ampчre’s experiments, but from the derivative theory.216 Ampчre made a general theoretical model of the magnet electric vortex on the basis of specific electromagnetic phenomenon which shows that magnetic forces, unlike other forces in nature, does not act in radial direction. Such a force was completely new to science. Of course, it could not hope for widespread adoption before the natural extinction of the older scientists and the education of youth on textbooks writte═ i═ Ampчre’s spirit, who commanded the non-radial direction of the force. The Ampчre's theory of electromagnetism encountered serious objections. Faraday's thinking was received even with the lack of understanding and knowledge tied neglect. The basic Faraday novelty was the introduction of the operation-over-neighbors in physical thinking. In fact, in a recent science it was never likely be meaningful to defend the spread of disorder that it would not interfere with any intermediate substance. Nevertheless, Cotes in the famous preface to the third edition of Newton's Principles in 1722 seriously advocated "action at a distance" which caused his exchange of sharp letters with Leibniz. At the beginning of the French revolution of 1789 Coulomb still neglected the impact of intermediates to the transfer of electrical charge. Certainly it seemed to some individuals that it was a convenient idealized proxy, which greatly simplifies the mathematical techniques, like Galileo’s Vacuum ballistics, subsequent theory of an ideal gas, or even Bohr’s model of the hydrogen atom. Many people seemed to take into account the complex impact of the intermediates which do not change the results of the computation and thus the same objective in its own sanctifies the use of the wrong-unrealistic assets. Faraday has moved the opposite view. The operation of intermediates has now been shown to be essential for understanding the nature of the magnetic disturbance or of Faraday's "invention" of the field. Faraday innovations did not provide the real fruit for a large part of British mathematical physicists of the calibre of 216 Biot; Savart. 1820-1821. Reprint: 1885. Collection des mémoires relatives a la physique. Paris: S║ciцtц Fra═çaise de physique, T║me 2, εцm║ires sur l’цlectr║dy═amique, premier partie, p. 124. Stokes and W. Thomson. Already in his student days Maxwell became interested in Faraday’s i══║vati║═s a═d Maxwell translated them from Faraday's descriptive language into mathematical language of thinkers of the 19th century.217 Feynman was among the modern physicist convicted that new Faraday will never emerge because of modern mathematical structure of physics.218 εaxwell’s Great I═tegrati║═ i═ Physics Maxwell interference in physics is in this work called the fifth major merger. It resulted from conversions of heat and electromagnetic laws.219 He advantageously used the Fresnel’s ether. Maxwell ideological sources were: 1. Faraday's theory of electromagnetic forces and operating-over-neighbors. 2. Fresnel’s light ether, which served as the medium to spread the transverse electromagnetic waves. Fresnel ideas were developed and supplemented with a touch of British humor by Stokes, W. Thomson and others. In that way Maxwell used the already available mathematically sophisticated description of the fluid without the weight with all the problems that have tormented it by the requirements to minimize the viscosity of ether necessary for the smooth movement of celestial bodies in there-through, and at the same time maximizing the strength of ether, which alone can provide the measured rapid spread of transversal electromagnetic vibration through the ether. 3. Maxwell's equations described the relationship between light and electromagnetic quantities in the form of c-2 = ł ∙ μ wherei═ the speed ║f light is c, μ is permeability, and permittivity is noted by ł. They gave the same speed ║f light a═d electr║mag═etic waves i═ a vacuum, though the former experiments did not yet sufficiently precisely confirm that fact. Similarly to the almost simultaneous developed periodic system of Mendeleev, Maxwell also provided the previously not explored data with the announcement of the new results, which assumptions may also be falsified in a subsequent sense of Karl Popper. Thus the predictions of Mendeleev and Maxwell or later Einstein’s with Eddington’s supporting measurements, provided the necessary reputation for the new ideas. Maxwell's thinking had further called into better light the problems of physical units, which have been developed in terms of their own mysticism. 4. Already in the early 19th century, it became clear that a much broader spectrum of light exists compared to the one which was perceived by the human eye in all times. The ultraviolet and infrared light were traced primarily by their chemical and thermal effects. Bef║re Rö═tge═’s discoveries nothing limited their range. The frequency of oscillation had ranked the thermal phenomena to infrared light, and the electromagnetic oscillations had even lower frequency. Thus, the makeover seemingly renewed a century and half older phlogiston 217 Maxwell, James Clerk. 1855-1856. Transactions of the Cambridge Philosophical Society (On Faraday’s Lines of Force); Maxwell, James Clerk. 1858. Transactions of the Cambridge Philosophical Society (On Physics Lines Of Force). 218 Feynman, 2000, 193. 219 Maxwell, James Clerk. Theory of heat. German translation: 1878. Braumschweig; Maxwell, James Clerk. 1876. Matter and Motion. theory, which also alleged to have electricity, heat and light as grades of combustible principle called phlogiston. The new Maxwell theory, which used, of course, much more sophisticated math, replaced the forgotten phlogiston principle with the law of compensation of energy. 5. Unlike the first researchers of electromagnetic phenomena that were strictly related to the chemistry, the British W. Thomson, Stokes, Maxwell and colleagues were much more structuring in emerging physical theory of thermal phenomena. In 1876, three years before his painful premature death, Maxwell published an interesting booklet "Substance in motion". It was actually a brief tutorial, which brought some special views of the thermal phenomena. The statistical theory of gases, which paid due respects to ambiguities in the law of entropy, had no clear impact on the electromagnetic theory of light, although the two were carried out by the same man named Maxwell. Therefore, the law of conservation of energy directly encouraged the pooling of existing physical forces to offer them a common ground. Thus, Faraday and Maxwell were also trying to embrace the gravity in a large united aggregation of all the forces; unfortunately it remained too hard a nut to crack, and it shows its teeth even today. Like W. Thomson Lord Kelvin, who has actively participated in the laying of the cable under the Atlantic and telegraphed even his own offer of marriage to his second bride, Maxwell was also in a typical British way directed to applied sciences. He participated in the Community for electrical units, where he tried to arrange more convenient use of electromagnetic units, which are in many ways the foundation of the electromagnetic science. Already Faraday worked of the problem of physical units, but he had too little mathematical reputation to enforce his choices. Table 20: A typical example of the former metric confusion prior to the European metric decimal reforms endorsed in the French Revolution’s Bureau des Longitudes were various units of electrical resistance which were used even in the 19th century User Unit Jacobi, Siemens (Leipzig) W. Thomson Weber British Association Etalon (standard) Foot/second mm/s 107 m/s (B.A. unit = Ohm) According to Maxwell the experimental determinations of electrical resistance220 had a similar meaning as the atomic weight measurements in chemistry which Mendeleev just reformed. It was therefore not surprising that there were so many researchers trying to enforce the universally recognized units which would enable easier and quicker comparison between results of different measurements. 220 Maxwell, 1873, thought number 335. In many ways it a basing of electromagnetic units on the unique foundations supported εaxwell’s established links between the speeds of light and electromagnetic waves. But Maxwell did not advocate for a more logical naming as Popovič and Linnaeus did in a descriptive sciences or Lavoisier in chemistry in the late 19th century hand in hand with other reforms of decimal dimensions and weights of the French revolutionaries. The similar changes in electromagnetism would be more than justified, as the names of units inherited from the static theory before Volta’s invention did═’t m eet the new, dynamic conditions. On the eve of the French Revolution A. Coulomb performed extremely tolerant to both potential electrical theories the one-fluid and two-fluid. Similarly was the Maxwell position almost a century later. He said that the two-fluid theory brought more boom to mathematical theory of electricity. One-fluid theory would be in turn better because it does not give redundant data that could not be verified experimentally. Maxwell has also seriously considered the old Gilbert and Franklin’s idea of an electric atmosphere.221 Those ideas should be a modern vision of creating the induction in Maxwell days, whereas between the free surface of the charges and the source there was not created a sufficiently high voltage for their merger. However, according to Maxwell, these forces are much weaker than gradients of temperature and density, and therefore they are not detectable in meteorological phenomena, as B. Franklin hoped in his time. For Maxwell the electric atmosphere had mainly theoretical importance, as it enabled the displacement current of electricity which supposedly run similarly as an ordinary electric current, but in that the dielectrics (insulators) there was additional elasticity which drags the flow back after the disappearance of the electric driving force. The displacement current was not measurable, but it was necessary to record Faraday’s "picture equations" in a symmetrical mathematical form with εaxwell’s differential equations. Maxwell has assembled an absolute theory of electromagnetic phenomena, which was no longer dependent on mechanical analogies. Maxwell’s theory provided faultless internal mathematical structure. For Maxwell, the models could only be used as an illustration, without building theory conditionally upon them. With such a theory Maxwell did not solve the issue of the possible numbers of electric fluids, nor the question of the nature of the magnet, because for both the number of fluids and a theory of the magnet enumerate Maxwell just noted a variety of options.222 Na voljo je bila Poissonova vizija dvojnosti magnetnih fluidov v vsaki posamezni molekuli, proti-fluidna teorija po kateri naj bi magnetizacija kar iz vsake molekule naredila majhen magnet, ali pa Webrova danes najbolj sprejemljiva teorija o molekulah kot stalnih magnetih, ki jih zu═a═je p║lje zg║lj zasuka v e═║t═║ smer. εaxwell se ═i h║tel ║dl║čiti med p║═uje═imi i═ačicami. Še ma═j se je spuščal v razpravo o etru, ki je vlekla svoje moderne korenine iz Descartesovih vrtincev in iz Huygensovega etra. Vendar Maxwellov agnosticizem vsaj tu ni bil rav═║ ═a mestu, saj s║ bili teda═ji m║deli etra preveč različ═i med seb║j. At the will was the Poisson’s vision of duality of magnetic fluids in each molecule, anti-fluid theory according to which the magnetization makes a small magnet from each molecule, or Weber's now most acceptable theory of molecules like permanent magnets, which are just twisted by the external fields in unique direction. Maxwell did not want to decide between the 221 222 Maxwell, 1873, thought number 55. Maxwell, 1873, thought number 442. offered versions. Even less he was going into the debate on the ether, which has dragged its modern roots of Descartes' vortices and from Huygens' ether. However, Maxwell's agnosticism at least there was not exactly in place, because his contemporary models of the ethers were too different from each other. Maxwell was probably just too cautious as Newton before him with hid Hipotheses non fingo because both of them were aware that they are writing a book or at least the theory for the centuries to come and therefore each suspicious statement could be fatal in eyes of future readers. Table 21: Theories of ether in the 19th century In Release Author 1816-1819 1821 1828 1828 1839 Fresnel Navier Green Cauchy Cauchy 1846 1889 Stokes Kelvin Description Theory of reflection Even ether with variable strength Elastic medium with a negative compressibility due to which the speed of longitudinal waves if equal to zero. Kelvin called that model contractile or labile ether Ether (Aether) with rotational elasticity For Kelvin and other researchers who were looking for suitable mechanical models of electromagnetic phenomena it seemed that the Maxwell's theory did not answer any of their questions. Maxwell’s high academic position did not prevent the strong opposition against his ideas especially among his compatriots, as well as in the newly united Germany, where Helmholtz and Joseph Stefan began to defend εaxwell’s w║rk only in the 1880-s. Hardly in 1888 Hertz’s experiments u═der Helmh║ltz’ supervisi║═ confirmed the usefulness of Maxwell equitation and proved the equal speed of light and electromagnetic waves. The generation that was educated at the turn of the 20th century, has become so sure in Maxwell's theory that it become a strong and new foundation for physical sciences. Therefore J.J. Thomson adapted his “discovery” of the electron in Maxwell’s ║═ce Cave═dish’s lab║rat║ries to support εaxwell’s the║ry, and the very same did Lorentz with his new theory of the electron. As Hertz said, εaxwell’s the║ry were εaxwell’s equitati║═ alth║ugh Heaviside s║mewhat m║der═ized the ═║ti║═ ║f εaxwell’s equitati║═ f║r the m║der═ reader and Millikan somewhat adopted his measurements of the charge of an electron.223 Even Einstein in his General theory of relativity during the First World War rather preferred to shake Newton's theory of gravitation, when he realized that it opposes the Maxwell theory of electromagnetism. As always, is was very dangerous to dispute the just accepted theory, since the new accepted theory still had quite enthusiastic fighters against the former abandoned 223 Feynman, 2000, 211. theory and for them such gesture would usually mean a personal attack on their life's work. They were the fighters ready to fight again, like Arabs in disturbed Middle Eastern camps who grew up with the guns in their tents, or the blood-thirsty Serbians after Bosnian wars in 1990-s. The combat-ready supporters of the recently winning new idea often overlook the fact that advocates of novelties offer a third idea, not the old previous one, which with a lot of torment was just put in the dustbin of history. This is not only the case of the developments the physical theories, but is a general feature of the human psyche. That is why it was so hard to bring the writing in Slovenian language on the outskirts of the moribund Holy Roman Empire of Germanic nationalities so quickly after their written German language overtook the Latin Language. To the fighters for German Language, the similar Slovenian efforts were seen as an attack on their barely waged and won success, and they thereby overlooked that the new Slovenian language certainly was not the same as the old Latin, although during such linguistic quarrels the Croatian Sabor (Parliament) in fact returned to Latin, to avoid penetrating Hungarian because after the ban of Illyrian-idea they did not dare to swear in Croatian. Penetration of new Ideas in Scientifically Backwards Milieus: Case of Lands inhabited with Slovenes a) Introduction Capitalism passed off the veil from all human occupations and revealed them just the roles of ones of many ways to obtain the best possible earnings. Nothing much different did not fare to modern science, although it is true that scientists long before the victory of the contemporary capitalism just liked a livelihood with the selling of their know-how. The science also has a long tradition of "brain drain", which even today is eager to steal the educated brains from poorer center and to collect them in a more advanced country, where they enjoy better living and working conditions. Similarly, Slovenian brain-drain has been a fixture especially prior to the establishment of Klagenfurt, Ljubljana and Gorizia higher studies between mid-17th and the beginning of the 18th century. The brain-drain grew even greater after the abolition of those higher educational institutions after the Spring of Nations. The suppression of higher studies of physics in Ljubljana prevailed until the end of the First World War, in Klagenfurt much longer in the (New) Gorizia until recently. The exodus of educated to the foreign universities certainly impoverished their home intellectual environment, but their holiday returns on the other hand formed its rich international frameworks unless they were not going too far, but only to Vienna or Graz. b) Model of Vortices from Descartes to Quantum Mechanics With a lack of higher educational institutions or on their weaknesses Slovenia and similar areas endorsed the movement if scientific information and physical movement of the holdersinventers of those information-know-how in mostly one way, which is directed completely opposite in both cases. The new discoveries were mainly imported to Slovenia and much less exported from Slovenia and similar areas. However, the able scientists usually traveled in the opposite way from Slovenia and not into its areas. Of course there are certain models of scientific thinking, such as the swirl designs, which had so much to do with Descartes and which Newton was so loathed. The swirl designs were in interesting way developed in Slovenian territory so far as they were researched without the expensive equipment. But it is difficult to determine to what extent such Slovenian thought had reverse effect on major scientific centers, for example in comparison with the modern chaos theory of modern physics of Maribor physicists εatjaž Perc. c) I. Šubic’s Introduction of Modern Physics Ideas in Slovenian National Frame of late 19th Century Graz was, of course, Slovenian window to the world. From 1586 to 1782 at Vienna's four faculties 1,368 students of Carniola enrolled, and in two of Graz faculties (Theology and Philosophy) and the college gymnasium the numbers of the students were as much as 2,968. The Slovenian Gorenjska region with primarily town of Bish║ps δack (Šk║fja δ║ka) provided almost as much students as Dolenjska and Notranjska Regions together at the same time. Gorenjska provided much more students than the people of Ljubljana. Between 1657 and 1773 in Klagenfurt studied average of 15 to 39 Carniolans per year. In 1665 the Jesuits in Ljubljana enrolled 605 students, which was slightly less than the number of students in Klagenfurt and almost half less than in Graz or Vienna; unfortunately for Ljubljana studies we are lacking the albums with grades of students which are retained for Klagenfurt college or for Prague Kleme═ti═um, alth║ugh Ja═ez δudvik Schö═lebe═m wr║te for both, the College of Ljubljana and for the College of Klagenfurt. Up to 1640 among the rectors of Klagenfurt were also Carniolans. The first was Janez Rafael Kobencl a rector from 1620 to 1621, after him Janez Legat from 1630 to 1631 and Ljubljana-born Lawrence Kogler from 1638 to 1639. From 1657 to 1672 among the professors of Klagenfurt there were 39 (7.2%) Carniolans. Among them was the Prefect of Studies and Professor of Casuistry Anton Zergoll in 1657.224 A century after the suppression of Jesuits Josef Stefan’s opponent and older classmate Simon Subic was an associate professor of meteorology and theories of heat at the University of Graz. He often had a problem with the low number of participants-students on his lectures, so in the times controls the Slovenian students have deliberately atte═di═g Šubic’s classes t║ Ci═drič, Al║jz. 2014. Du═aj ali Gradec? Štude═ti s Kra═jske ═a graški i═ du═ajski u═iverzi od 1586 do 1782. Gradec in Slovenci (ed. Kar═ičar, δudwig; δebe═, A═dreas) Graz: I═stitut für Slawistik der Karl-FranzensU═iverität, 154, 159; Dr║besch, Wer═er. 2006. Die I═ter═ati║═alisieru═g der »Pr║vi═z«: Die Klage═furte═ Jesuiten-»Akademie« als überregi║═ale Bildu═gsstätte. Die Jesuiten in Innerösterreich. Celovec: Mohorjeva, 100, 107, 110-111; Kogler, Christian. 2006. Zu den Quellen der Klagenfurter Jesuitenchronik. Die Jesuiten in Innerösterreich. Celovec: Mohorjeva, 100, 107, 110-111; Richter║vá, Alena. 2006. The Jesuits and the Clementinum: Documents and Illustrations. The Jesuits and the Clementinum (ed. Richter║vá, Ale═a; Č║r═ej║vá, Iva═a). Praga: Nár║d═i k═ih║v═a Českц republiky, 98, 107, 114, 116, 126. 224 keep them afloat. In those times the Slovenian students in Graz often had a hard propose, for example, during the arrest of 35 students who were mostly Slovenians on 8/12/1872.225 Stefa═’s stude═t Iva═ Šubic represe═ts a g║║d example ║f breakthrough science with foreign universities during the Slovenian nutrients. As an educator and informal leader of Slovenian secondary continuing education was especially called for this role. On the one hand he organized the Carniola technical education on a strong Slovenian stumbling upon many troubles with the Germans. On the other hand, he was a science-physic stude═t i═ Stefa═’s Vienna Institute. He turned into Slovenian popular science writings starting with the time when the future Nobel laureate Fritz Pregl between 1880 and 1887 successfully attended grammar school in Ljubljana with the support of the German-speaking mother who wa a widow.226 d) Perspectives of a Small Nation The provincial scientific centers never endorsed many new discoveries. They were always just the sources for the greater centers for the education of the future literati in the neverending brain drain. The contemporary Athropocene division of the world at least just broadens the backwardness of the backward and the differences among the scientific centers. All of them endorse the institutions named universities and academies, but the smaller nations develop them in smaller scales which serve as the brain-drain food for the greater centers. e) Physics outside Western European Frame with Females for Leading Sciences of Anthropocene The leadership of physics after both destiny-making bombs thrown on Japanese was just a short-rated swan-song. Soon afterwards the flag of advancement passed to the biologists and specially the geneticists among them. In spite of descriptive Natural Historical heritage the geneticists endorsed many approaches of the previously developed universal methods of mathematical physics. The geneticists heavily relied on computer-supported statistics with which it flirted already i═ εe═del’s era. The m║═ey a═d with it the m║st pr║misi═g researchers focused mostly the research of genome. The bestsellers of Richard Dawkins and Jared Diamond even more proved that the balance is totally on the side of the (former) descriptive Natural History which with its computer-supporting approach das not really descriptive any more, but became mathematical as much as possible, although the universal mathematical methods were not the determinate differential equitation of the past physicists, but the statistics as the approach with huge number of facts towards the knowledge about life. The mathematical universal methods of statistics therefore survived in the first plane, but their primary object changed from physics-chemistry-astrophysics into genetics. They Eisma══, W║lfga═g. 2014. “Slavische Stude═te═exzesse” i═ Graz im Dezember 1872. Gradec in Slovenci (ed. Kar═ičar, δudwig; δebe═, A═dreas) Graz: I═stitut für Slawistik der Karl-Franzens-U═iverität, 135. 226 Stei═er, Walter. 2014. Der N║belpreisträger Fritz Pregl. Gradec in Slovenci (ed. Kar═ičar, Ludwig; Leben, A═dreas) Graz: I═stitut für Slawistik der Karl-Franzens-U═iverität, 48. 225 probably dragged into genetics some protagonists of their past successes in physics because eve═ Erwi═ Schrödi═ger like t║ flirt with bi║l║gy i═ his fam║us b║║k “What is life?” The dethronement of physics from the throne of the most important sciences followed the entrances of new sorts of people into the headquarters of full-time scientists. Among them were mostly the scientists educated outside the European-American traditions as well as female Literati from all continents. It is also possible to suppose that their work even enabled the prestige of genetics over the industry of accelerators and space fights. To get some insights into such pretty complicated question it will be certainly very helpful to get some insight into the history of development of physics and related fields outside the areas of influence of West-European institutions and their transatlantic clones. Its much harder to research the supposedly independent developments of physics of West-European women because it interacted too much with the contemporaneous research of men and therefore it was hardy a self-sustained entity. It will be probably the simplest approach to describe the simultaneous development of physics outside the main European centres, let say in the lands of modern Slovenia. Its a pity that even there we cannot expect much originality and independence. The more promising seems to be the development of Chinese physics which is known well enough at least in its aspects dealing with the Jesuits’ missi║═ary i═flue═ces, which is certai═ly a s║mewhat stra═ge result of Europocentric approach of past historians of sciences. Even in the eras between Mateo Ricci and Augustin Hallerstein it is hard to find such independent feedback of China to Europe or independent trends of Chinese mathematical physics comparable with the supposed independent pioneering invention of infinitesimal calculus in China. Table: The Development of Mechanics in Western Europe with its Satellites and outside them Western Europe with satellites Habsburg Near East Monarchy with Slovenian Lands Galileo Land Governor Auersperg and his brother prince Johan Weikhard collaborated with A. Kircher; P. Gurdin in Graz, Marcus Marci in Prague Valvas║r’s friendship with Newt║═’s frie═d Halley B║šk║vić’s B║šk║vić i═ Newton Mechanique Far East with Indian Subcontinent Russia and others Infinitesimal Calculus of India Peter I invited the Western experts to St. Petersburg Tych║’s S║lar G. Gruber’s Jesuit Analitique Ei═stei═’s relativity physics of pointcentres of force i═ J. Vega’s work; compressibility of water in works of Carinthian Herbert and Ljubljana professor A. Ambschell Rubinowitz in Ljubljana University Istanbul System with Kepler’s elliptical orbits in China schools with B║šk║vić’s physics in Russia; Euler as academician in St. Petersburg Atatürk’s reforms of scientific research Warm greeting for Einstein in China before the Cultural Revolution Problems of Ei═stei═’s followers under Stali═’s regime Table: The Development of Astrophysics in Western Europe with its Satellites and outside them Western Europe with satellites Habsburg Near East Monarchy with Slovenian Lands Galileo Ptolemy in Alexandria of Egypt; Euclid Aristarchus Galileo Tycho Brahe and Kepler in Prague; Land Governor Auersperg and his brother prince Johan Weikhard collaborated with A. Kircher; Andrej Kobav of Cerknica in Graz Newton Valvas║r’s friendship with Newt║═’s frie═d Halley B║šk║vić’s Mechanique Kircher researched Egyptian hieroglyphics and dedicated one part of his book Oedypus Egyptian to the prince Johann Weikhard Auersperg Far East with Indian Subcontinent Russia and others Samarkand and Copernicus in Indian Astronomers; Poland Moslem-Mongol astronomers in Beijing Court Polish Jesuits temporarily exported C║per═icus’ ideas t║ China Infinitesimal Calculus of India B║šk║vić missed Tych║’s S║lar Peter I invited the Western experts to St. Petersburg G. Gruber’s Jesuit Analitique observational the crossover of astronomy and J. Venus over the Vega disc of Sun in Istanbul Gauss misses the publication of his visions of NonEuclidean geometry B║yláu's N║═Euclidean geometry in Hungary Ei═stei═’s relativity Rubinowitz in Ljubljana University American space program Apollo System with Kepler’s elliptical orbits in China; Hallerstei═’s observations of comets in Beijing schools with B║šk║vić’s physics in Russia; Euler as academician in St. Petersburg δ║bačevski i═ Russia with NonEuclidean geometry and presumed triangulation in space; NonEuclidean geometry in Asian-AfricanNative AmericanPacific imaginations Warm greeting for Aleksandr Einstein in China Aleksa═dr║vič before the Cultural Fridma═’s the║ries Revolution of space in Russia Chandrasekar's black Russian space holes projects with Sputnik, Jurij Gagarin, and Valentina Terj║šk║va Table: The Development of Optics in Western Europe with its Satellites and outside them Western Europe with satellites Habsburg Near East Monarchy with Slovenian Lands Far East with Indian Subcontinent Russia and others Galileo Land Governor Auersperg and his brother prince Johan Weikhard collaborated with A. Kircher Valvas║r’s Ornaments in friendship with Mosques and Newt║═’s frie═d theories of Alhazen Terrentius brought the telescope to China Decorations of the Forbidden City and the theories of Bright colours in St. Petersburg of Peter I and in the Newton Wave optics of T. Young and Fresnel Ei═stei═’s relativity Halley; English Jesuits’ refugees in Belgium criticized Newt║═’s ║ptics Cauchy’s theories of ether developed in Gorizia Einstein in Prague in 1911 colours colours Orthodox sacred places Gruber’s Jesuits schools for B║šk║vić’s physics in Russia Malus among the Nap║le║═’s officers in Egypt Warm greeting for Einstein in China before the Cultural Revolution Table: The Development of Knowledge of Electricity and Magnetism in Western Europe with its Satellites and outside their Spheres of Influences Western Europe with satellites Habsburg Near East Monarchy with Slovenian Lands W. Gilbert’s Terrella227 in London Newton Benjamin Franklin against Nollet C║ul║mb’s electrostatic and magnetic force on torsion 227 Valvas║r’s friendship with Halley Bohemian Jesuits for Nollet, Leyden Jar in Ljubljana in 1755, Fra═kli═’s friend Ingenshousz Imperial physician in Vienna Arabian-Persian theories of compass and electricity of amber Gilbert, William, 1991. De Magnete. New York: Dover, 24. . Far East with Indian Subcontinent Russia and others Chinese invention of compass Eriketeru in Japan Richmann disastrous research of thunder lightning in 1753 balance for the mathematical electrostatics V║lta’s electrodynamics V║lta’s sec║═d cousin leads Idrija Mine; εarm║═t’s experiments in Ljubljana Beijing Jesuits research the early electrophorus Electromagnetis K. R║bida’s m of Faraday and “sputteri═g” a═d Maxwell his theories in Klagenfurt; Kleme═čič’s measurements of the velocity of electromagnetic disturbances in Graz Telegraphs, N. Tesla in Edis║═’s lamps Rakovac, Graz, Maribor, Prague, and Budapest Aepi═us’ a═alysis of Beijing early electrophorus; Vasilij Vladimir║vič Petrov with arclamps in Russia in 1802 Fed║r F║mič Petruševski i═ St. Petersburg in 1865 Jabl║čk║v's arclamps and transformer in 1876-1878; Popov's radio in 1895 Table: The Development of Knowledge of Heat in Western Europe with its Satellites and outside their Spheres of Influences Western Europe with satellites Habsburg Near East Monarchy with Slovenian Lands Becher and Stahl’s Phlogiston δav║isier’s caloric Becher as Viennese economist Hacquet Accepted δav║isier’s theories step-bystep, as did Žiga Zois Nikolaus Joseph baron Jacquin together with his son accepted δav║isier’s caloric and nomenclature Far East with Indian Subcontinent Russia and others Gruber’s Jesuit schools; δ║m║═║s║v’s chemistry among the first in Vienna Fourier among Nap║le║═’s officers in Egypt Mechanique Analitique Entropy in S. Carnot's analysis of steam engine Law of energy conservation of R. Mayer Clausius’s kinetic theory εaxwell’s statistical mechanics Rö═tge═ with his new rays; New Zealander Rutherford in Canada and Cambridge Quantum mechanics of Copenhagen interpretation Physics of particles, bombs, and accelerators Critique of Karl Robida J║žef Stefa═ a═d Boltzmann Philip Lenard of Bratislava Raman in India Schrödi═ger i═ Vienna and Graz Japanese Yukawa with his theory of atoms Hungarians Szilard, von Neumann and Teller in USA Nik║lai Nik║laevič Pirogov with his statistical mechanics in St. Petersburg of 1890 Kapica with Rutherford in Cambridge Kapica and Landau in Russia It is hard to answer to the many non-European-related questions of history of sciences, but it seems that most of Easterners did not questioned much the particle or wave theory of light before the First World War. They also did not care much about the supposed number of electrical fluids. Or it just look like that because the Easterners were not invited to comment on those question outside the Western Europe and its satellites before 20th century. The exception was most of all L. Euler with his monumental mathematical-physical opus finished in St. Petersburg. In that was we could more easily follow the Chinese or Slovenian reactions on the concrete inventions-novelties and their use compared to non-European comments on fundamental theories before the quantum mechanics. Without doubts the Easterners developed their own theories of colours. They did not have the privilege to publish in early European scientific journals even if they had the necessary linguistic knowledge, which was usually not the case. Therefore the Easterners were not straightforwardly included i═ debates ar║u═d Newt║═, εarat, ║r G║ethe’s ║ptical experime═ts in European media. Up to now we know just about some sporadic data about the Chinese achievements which J. Needham and his Chinese collaborators published. Besides the Jesuit missionary sch║║ls a═d their rep║rts we k═║w very little ab║ut the i═depe═de═t Easter═ers’ opinions. Because of the Russian pride there is much more data about Russian discoveries and inventions as they parallel the Westerners because the Russians like to name the phenomena with the names of their own scientists instead of the Westerner literati. The development of the history of science urgently need more case studies most of all about the up to date neglected female and non-white thinkers. The number of researched cases is still very small. The tabula raza are also the Near-eastern achievements during the Turkish Sultanate, and also the scientific work done in India during the two centuries of British patronage. The Indian achievements were most probably a part of the mutual feedback between the Indian Empire and British Kingdom in Victorian era. Even if the natives of India were not the first rate scientists before Raman and his nephew Chandrasekar, there was a considerable influence of British subjects born in Indian Sub-Continent and in Burma. The scie═ce ║f A═thr║p║ce═e is certai═ly a c║═gl║merate where the Wester═ers’ pred║mi═a═ce is put f║rward m║stly because ║f the rece═t pred║mi═a═ce ║f Wester═ers’ ec║═║mies which is already questioned with recent book of Chinese economy. Many forgot that P. Lenard was a native of Bratislava, Rutherford was raised in New Zealand, and Maria Curie was Polish. On the other hand the American historians of science like to neglect the Hungarian-Jewish origins of the most important protagonists of American atomic and hydrogen bombs, namely Szilard, von Neumann, or Teller. The catch is, as always, in details. The achievements of Mid-European and among them Car═i║la═ literati besides the w║rks ║f Jesuits’ missi║═aries i═ Chi═a a═d i═ ║ther destinations together with the works of their non-white hosts should be put on equal footing with the contemporaneous Westerner achievements. The result of such inter-geographic research will certai═ly rui═ Helmh║ltz’s visi║═ ║f f║ur bra═ches ║f physics determined with four human senses. Certainly the Chinese or Papuan organs of senses do not differ much from the Westerner organs of sense. In spite of that there is no need to branch the early Chinese Physics i═ Helmh║ltz’ way because the Chi═ese δiterati relied on history and literature and not on mathematics and were therefore much more inclined towards the history of science which was a for them belonged to Humanities as did the Chinese scientific research as well. There was no dichotomy and misunderstanding between Chinese early scientists and their Humanities contemporaries as it was in Western thought of polarization of 7/5/1959 in a speech of Charles Percy baron Snow ║f the City ║f δeicester (* 1905; † 1980) a═d S║kal’s affair.228 Table: The stages of development of physics outside the influence of Westerners and their satellites Time 228 Central and Southeast Europe Near East Far East with Indian Subcontinent Russia Feynman, Richard P. 2000. The Pleasure of Finding Things Out. London: Allen Lane, 22. Pacific, African, and American Aborigines Antiq Jason and ue Argonauts on their ways between Sava, Ljubljanica, and Adriatic Sea Aristarchus, Euclid, Heron in Alexandria in 62, Ptolemy, Hypatia Middl e ages In 1454 Peuerbach in Vienna as the astronomer of Hungarian king Ladislaus Posthumus under patronage of Ulrich II if Cilly; Regiomontanus in Vienna in 1457-1461; Viennese Styrian humanistic astronomers from Slovenian Gorice Perger (1464) and Perlach Alhaze═’s ║ptics i═ 1000; Avicenna in BukharaPersia in 1020; Persian Omar Khayam reformed calendar in 1074; Averoeas in CordobaMarekesh in 1160; Muhammed Taragaj Ulugh Beg in Samarkand with catalogue of stars in 1417 15001550 Hvale (Qualle) from Sava banks of Carniola with philosophy of nature in Vienna in 1513 and 1519; Perlach although Daniel Luger doubts his Slovenian origin roughly mentioned just i═ Celtis’ quarrels; Copernicus (1543), Paracelsus in Carinthia and Salzburg in 1540 Until 1600 Nikodemus Frischlin Ljubljana protestant rector against astrology 1582-1584; Santorio in Koper and in Military Border in 1590s; Kepler in Graz and in safe Prekmurje Petanjci on 28/9/1598; Tycho Brahe and Kepler in Prague (16001601) Kepler in Linz; early influences of Graz University with P. Guldin and A. Kobav for Ljubljana-GoricaKlagenfurt lower studies; Kobav in Ljubljana Wilpenhoffer reports to Kircher in Rome; Marcus Until 1650 Until 1700 Chinese notes of astronomical observations; Tsai Lun invented paper in 105 Astronomer Brahmagupta in Western India in 528: alchemist Geber in Mesopotamia in 800 MuslimMongolian astronomers for Chinese court Mayan calendars Khoresm (Khwarezm) state, Kiev Russia Columbus in Cuba Sigismund Herberstein visited Ivan the Terrible Cortez in Mexico and his cousin Pizarro among Incas Matteo Ricci in Indian and China; Indian infinitesimal calculus The spread of American cultures of potato, maize, and beans into Europe Mehmed pasha S║k║l║vić reformed navy and erected buildings with the architects from Turkish Balkans Former member of Academy dei Lincei Terrentius and Schall von Bell in China Amalgams and other mining-related discoveries in Latin America Jesuits in Belgrade and Petrovaradin Verbiest in Beijing Peter I invited Western experts Marci in Prague; Valvas║r’s correspondence with E. Halley Until 1750 Until 1800 Until 1850 Until 1900 Until Early in influences of Ljubljana-GoricaKlagenfurt higher philosophical-theological studies; mathematician Christian Goldbach (1690-1764) fr║m Kö═igsberg (Kali═i═grad) lived in Viennese Jesuit college from 6/8/1714 to 18/9/1714, and with intervals during his travels he staid in Vienna also from 15/12/1720 to 23/4/1724. He visited Ljubljana Jesuit college where Hallerstein was a young student of philosophy when Goldbach left Vienna for Venice on 15/5/1721 and returned to Vienna on 29/12/1721, tw║ m║═ths after Hallerstei═’s joined Jesuits in Vienna. In 1722 Goldbach sailed on Danube River to Serbia and returned to Vienna on 28/5/1722. On 15/10/1722 he visited Bohemia and Moravia and returned to Vienna on 19/1/1724. On 24/3/1724 in Prague he lived in the Jesuit College where he met his brother Henrich. On 5/4/1724 he left Prague for Berlin and later went to St. Petersburg where he became the academician together with Nicolaus II Bernoulli (1695-1726) and Jakob Hermann in 1725.229 In September 1722 Goldbach wrote to the Tyrolese Paolo Giuseppe Pasqualin about his frequent meetings with Marinoni who founded in Vienna the most modern observatory in Europe two years earlier. Marinoni230 described his observatory in his letter mailed to Goldbach to St. Petersburg. Marinoni was famous for his observations of Sun in projections on paper.231 He studied Kepler’s ma═uscripts, a═d after G║ldbach’s arrangement corresponded with Leonhard Euler.232 B║šk║vić i═ Ljubljana; hydroengineer Gabriel Gruber; Ambschell in Ljubljana and Vienna Jesuits in Petrovaradin Kögler, Mig'Antu, and Hallerstein in Beijing Establishment The Jesuits of of St. Paraguay for Petersburg Guara═í republic academy with Euler B║šk║vić i═ Istanbul; Vega took part in besiege of Belgrade Electrophorus in Beijing Euler, Richmann, Lomonosov, and Aepinus in St. Petersburg Jurij Vega with B║šk║vić’s mathematical physics in Vienna; Philipp Neumann a═d J║žef Je═k║ i═ δjublja═a and Vienna; Gregor Krašk║vič’s ball║║═s i═ Pesth and Vienna; εarm║═t’s electr║chemical experiments in Ljubljana; Karl Hummel in Ljubljana and Graz on electrophorus Karl R║bida, Karl Dežma═, Sim║═ Šubic, J║žef Stefa═, Boltzmann in Inner Austria and Vienna; Andrija ε║h║r║vičić i═ seism║l║gy in Croatia; Pole Marian Smoluchowski in low temperatures in 1898 Malus, Fourier, Monge, and Bertholet with Nap║le║═’s army in Egypt Gruber's Jesuit schools in St. Petersburg and Polotsk; δ║bačevski 1828 Grig║rije δazić on Physics Iva═ Šubic, Pavle Savič i═ Mendelejev 1869-1861; vector of Umov for electromagnetic energy Jakob Hermann Ber oulli * Basel; † Moskva: Nauka, 31-34, 46-48, 213)). Joha Jako Mari o i * 231 Mädler, 232 Juškevič, Kopelevič, , Vide ; † . . . , , , , . Kapica and Juškevič, A. P., J. H. Koplevič. 229 230 Hintaro Du aj . Rutherford of New . Hristian Goldbach. 1950 Nardin, Belgrade; Rubinowitz, Hugo astrophysicists in Sirk, Rihard Egypt Zupa═čič, A═t║═ Peterlin in Ljubljana; Ivan Supek in Zagreb Until 2000 Robert Blinc for NMR in Ljubljana Until 2050 Rudi Podgornik for biophysics in Ljubljana and USA; εatjaž Perc f║r “memes” i═ Maribor Nagaoka in Tokyo with a Saturn model of atom in 1904; Raman's scattering of light in Calcutta in 1928; Chadrasekar of India; Yukawa with meson in Japan in 1935 Landau; VavilovČere═k║v 1934 Zealand in Canada and Cambridge Bombsaccelerators Californian Jared Diamond in New Guinea Between the star-map of Ulugh Beg of Mongolian origin in Samarkand of modern Uzbekistan in 1417 and the Saturn model of atom of Japanese Nagaoka in 1904 the Westerner history of science does not recognize much successes of non-Europeans for nearly a half of millennium. The only exemptions are some Han-Mongolian-Manju collaborators of Beiji═g Jesuits as was a ε║═g║lia═ εi═g’A═tu, The Russia═ achieveme═ts g║t much m║re Western approval after the works of Euler, Richmann (1753), and Aepinus for St. Petersburg Academy. If Westerners recognize just a part of achievements which the Russians attribute to Lomonosov who also criticized the Westerner influence in Russia, there is no doubt about the success ║f Petr║v’s arc-lamps in 1802, Non-Euclidea═ ge║metry ║f δ║bačevski ║r εe═deleev’ peri║dic table. Theref║re the Russia═ were ║utside the t║p ║f scie═ces just i═ the first century after Galileo, before the pro-western reforms of Peter I. The Latin Americans had much greater problems after they endorsed few achievements in mining of 16th century, but Spaniard tried to hide even those from their Europeans rivals. In that situation the very first Nobel Prize among the Latin Americans got only the Argentina physiologist Bernardo Alberto Houssay in 1947, but even he was expelled from the university tw║ years earlier because ║f his critiques ║f the dictat║r Jua═ D║mi═g║ Peró═. Eve═ if the Indian ruler as non-ε║slem Ulugh Beg’s success║r i═vited Hallerstei═ t║ his ║bservat║ry in mid 1730s, soon the British military success followed and the next Indian scientists recognized in Europe was only Raman with light scattering measurements two centuries later in 1928. The African, New Guinea, Philippines or the Indonesian joined under Dutch rule had even harder times and do not have a representative place in history of science even nowadays. The Westerners do not recognize the merits even to their older generations of thinkers to be distinguished from at least partial Western recognition of Near Eastern, Chinese, Indian, εaya═, ║r eve═ I═ca’s merits. The physicists metam║rph║sed i═t║ a═ a═thr║p║l║gist Fra═z Boas certainly stated that the supposedly African invention of lighting and keeping the fire burning was much more important achieveme═t c║mpared t║ later i═cludi═g J. Watt’s but ═║b║dy liste═ed t║ B║as’ argume═ts. The Eur║ce═trism gave t║ Wester═ers their c║mplex ║f higher value and persuaded the others including the modern Turk with their complex of lesser values that the more advanced Western technology proves the higher values of Western cultures (and religions) in General. Just the higher values of European religions remained doubtful in spite of Western propaganda. That eurocentric way of thinking was not only the result of false pride, but it was also the clever investment because it caused the successful brain-drain into the Western scientific-industrial centres as soon as the feudal chains were broken and borders between states were not an obstacle any more in later half of 19th century. The process continued through 20th century and is still there in 21st century bringing cash to the already rich nations from their poor contemporaries< who educate their elite just to see them lost in foreign countries. The real history of science is much different from the facts which Western historian of science try to sell. Although Ulugh Beg died under the sable of his own son as supposedly not enough faithful Muslim, the Near-eastern astronomy did not follow him into the grave. But the Westerners of the next centuries gained enough self-assurance. They kind a believed that it is necessary for them just to copy the old non-western literati, but they do not need to copy the new ones because with their know-how they were supposedly already their match. The western feelings in those Renaissance times was somewhat related to Chinese feelings after the suppression of Jesuits (1773) when the Chinese decided that they learned enough from Jesuits and were now able to continue on their own, which proved to be wrong soon enough in the Opium Wars. The Westerner pride was not punished in that horrible way up to now. Because the Western texts did not mention the descendant geographically-ethnically related to Ulugh Beg or Averroes they were forgotten in historical memories as were the thinkers whom Laplace did not mention in his later masterpiece. The forgotten scientists went into oblivion as if they never existed. The non-westerners did not develop their own competitive history of science with the exception of Russians and to some extent the Chinese before 3rd millennium. Therefore the oblivion of the forgotten masters became permanent. If you were non-western and you did not research in the mean-stream of science it meant that your scientific achievements will be forgotten so deep that it will be hardly possible to get any information about them from some old dusty archives. The man is innovative thinking creature and even in the deep black Africa he or she all the time tried to make experimental observations and to find theoretical solutions for them in all historical situations. In illiterate societies the poor fellows were unable to preserve the knowledge except in the local folklore which we can just hardly translate to the modern symbolic scientific vocabulary. The western science even invented the complicated enough language which did not endorse many thins written in different language of foreign people. The Western philosophers invented the language to prevent unprofessional people to deal with modern philosophy, but the language of modern mathematicians was even much more complicated and not understandable by nonmathematicians, which also meant to the non-westerners. Was the destiny somewhat softer to the neighbour-scientists who were at home very near the borders of Western states in Iberian Peninsula, in Central Europe, in South or East Europe? The Germans and Russians hosted Western scientists and soon had their own moments of glorious domestic scientific achievements. It was much harder to the smaller nations as were the Slovenians. The flow of money into the centres of small nations was small because of the low quantity of population which gravitate towards those centres. There was not enough money to develop professional scientific institutions which were working also in Portugal, Spain, and after the Western threads against Turks also in Greece. In that situation the Slovenians mixed with other nationalities in Carniola, Carinthia, and Lower Styria were unable to develop local academic establishments and universities which could probably stop the fatal brain-drain. The Jesuits tried to establish the University of Klagenfurt which had pretty big income much valuable compared to Ljubljana, but in vain. Just the Jesuit University of Graz remained. The destiny of the small nations is hard. The Ljubljana inventions and discoveries were connected with Westerners or they became abortive. The first Ljubljana professors of physics relied mostly on the books of Roman professor Kircher who died few decades earlier. Among others Kircher tried to prove that the Babylon Tower touching the sky could surpass the weight of Earth and in that occasion would turn around for 90 degrees.233 The Ljubljana Jesuits were mostly interested in Kircher’s Su═-clocks, but they als║ pr║bably like the dedicati║═ ║f the part ║f Kircher’s Egyptian Oedipus to the Ljubljana-Carniola prince Johann Weikhard Auersperg. In their Ljubljana lectures on physics the Jesuits also included physical geography in the times when the sailors drew the islands as they saw them from the ships in spite of the fact that picture changed in different part of the year because of the vegetation and trees on island or the weather and therefore the picture could be modified to such extend as to became unrecognizable.234The first half of a century of Ljubljana Jesuits' studies of physics were cr║w═ed with three B║šk║vić’ visits which eve═tually e═abled δjublja═a achieveme═ts ║═ higher scale as was J. Schöttl’s measureme═t ║f the pass ║f Ve═us ║ver the disc ║f Su═, ║r Gabriel Gruber’s ═avigati║═al hydr║dy═amics. The fact that Hallerstei═ from Ljubljana became the leading Chinese scientist did not effect the Ljubljana Jesuits directly because Hallerstein probably never wrote to them directly. The Ljubljana Jesuits probably learned ab║ut Hallerstei═’s gl║ry sec║═dha═d fr║m his br║ther Jesuit Weikhard who served in Brussels, from his sister Maria-A══a i═ δjublja═a ║r εe═geš, by their first c║usi═s bar║═s Erbergs who provided the leading scientists and administrators for Ljubljana and nearby c║lleges. Pr║bably A. Hallerstei═’s letters mailed to his Viennese or Roman superiors did not provide much information for Ljubljana Jesuits. Although Hallerstein served in China under P║rtuguese flag he was still ═║ted i═ yearly catal║gues as the member Austria═ Jesuits’ province. In between the count Gian Rinaldo Carli of Koper became the university professor of navigational architecture in Padua and later the expert for money in Milan. The brothers from Ptuj the Styrian provincial of Franciscans Ferdinand and Graz meteorologist-astronomer Karl Tirnberger made their ═ame am║═g the Fra═cisca═ physicists a═ Graz Jesuits’ astronomers. Similar respected achievements belonged to the barons of the related Carniola families: Taufferers fr║m Thur═ by Viš═ja G║ra, Apfaltrers fr║m the Castle Grmače by δitija and Erbergs fr║m D║l by Sava River where als║ Hallerstei═’s m║ther was b║r═. The very first really important achievement of Ljubljana physicists was Ambschell-Herbert's measurement of the compressibility of water because before their work many considered the water as uncompressible and even Daniel Bernoulli described it in such a way in his influential laws of hydrodynamics. Next important events in Carniola physics were connected with the head of Idrija mine Inzaghi and his second cousin Alessando Volta, and even more with εarm║═t’s experime═ts with V║lta’s batteries i═ δjublja═a. Nap║le║═’s fav║urite a═d later traitor Marmont certainly tried to promote the fundamental theory which his Parisian friend later proved to be untrue. Ljubljana professor of Mathematics Karl Hummel discussed the electrophorus connected with the Beijing Jesuits experiments and Volta later inventions. 233 Ecco, 2012, 182; Kitcher, Athanasius. 1679. Turris Babel. 234 Ecco, 2012, 263. For next seven decades after Hummel left Ljubljana for Graz chair of physics there were no high university level studies of physics in Ljubljana (Klagenfurt or Gorizia). In that time the Sl║ve═ia═s had at least f║ur disti═guished physicists: Stefa═’s pri═cipal teacher a═d als║ pr║fess║r ║f physics Karl R║bida, Graz u═iversity pr║fess║r Sim║═ Šubic, J║žef Stefa═, a═d B║ltzma══’s stude═t Graz-Innsbruck pr║fess║r Ig═ac Kleme═čič. Tw║ ║f them were fr║m Gorenjska part of Carniola, one from Dolenjska, and one from Carinthia. Among the similar valuable Sl║ve═e physicists fr║m Styria we c║uld ═umber B║ltzma══’s br║ther-in-law G║rizia═ pr║fess║r A═t║═ Ša═tel. Cauchy’s tw║ years i═ G║rizia certai═ly i═flue═ced the development of the physics in city. If we sum it all it was pretty small output for Jesuit and later state Lyceum high school Ljubljana studies of physics among which each worked for seven decades (1704-1773 and 1774-1849 with an interval from 1785 to 1788) in 18th and the first half of 19th centuries. We could fairly assume that 16th century and Middle-Ages centuries were not much better without Ljubljana high schools. In that way bits a kind of surprise that the fame of Slovenian physicists was on its zenith after the Spring of Nations in 1848 when Slovenes had no higher studies in their areas. The reason was probably the final abolishment of the feudal chains after 1848 whe═ the peasa═ts’ s║═s became much more mobile and they were able to study as did Sim║═ Šubic ║r Ig═ac Kleme═čič. I═ previ║us ge═erati║═s their alm║st u═ique cha═ce f║r education was to join one of friar societies, as did the Benedictine friar Karl Robida. Without the Spri═g ║f Nati║═ Kleme═čič w║uld pr║bably j║i═ the Fra═cisca═s wh║ educated him i═ Novo Mesto Grammar school with Bernard Vovk as his teacher of physics. The similar sudden change in orientation of the youngsters was evident during the was 1941-1945 when many young Slovenian Partisans left their traditional religion to became literati, including the father of present writer. The feeling of success of Slovenian physicists in the era of boom of electric tech═ique, ki═etic the║ry ║f gases, a═d εaxwell’s electr║mag═etic field is certai═ly based on the success of one sole admirable Slovenian, J║žef Stefa═. He was far the m║st successful Slovenian physicist of all times. Even his success was in a way the result of the changes after the Spring of Nations because without that new freedom his father would not be able to move his craft to the suburb of Klagenfurt called St. Peter. After 1918 there was a kind of Renaissance of Ljubljana physics which was not so much c║══ected with all t║║ sh║rt R║bi═║witz' b║th years, but m║re with Peterli═ a═d Bli═c’s success in their solid state research which had their impacts worldwide. In spite of relatively nearer Paris or London the physics of Ljubljana did not live much traces in Western history of sciences which will be much more recognized compared to African, Latin-American or Pacific shares because Ljubljana as the capital of Slovenia govern just two millions souls whose voice is not heard worldwide. The Carniolans certainly liked the pub-debates about physics a═d added ma═y l║cal ideas, s║metimes eve═ published i═ l║cal media. J║žef Stefa═ was a real exception, because the other similar small nations never had Stefans of their own and non-Europeans could only dream about such local hero. The Croatians-Serbs had their B║šk║vić a═d Tesla, but their ═eighb║ri═g pe║ple ║f Serbia pr║per, Bulgaria ║r Ruma═ia without the accepted mechanisms of the transfer of talents to the great centers of knowledge did not have many great recognized physicists up to the modern times. The Physicists (or Physics) in Ljubljana Inside Inner Austria The physics of Ljubljana could be divided into stages beginning with Argonautic-Emona. The f║ll║wi═g stages were εiddle Ages, Pr║testa═t, Jesuits’ l║wer sch║║ls with s║me teachers of European fame 1597-1703/04, the higher Jesuit studies inside philosophy from 1704/05 to 1772/73, ex-Jesuits physics if its first stage from 1773/74 to 1784/85 with G. Schöttl.G. Gruber, J. εaffei, R║se═berger, a═d A═t║═ Ambschell, ex-Jesuits physocs of second stage from 1788/89 to 1802/03 of Viennese Anton Gruber and Bartholomew Schaller, the laic Lyceum physics of the first stage from 1803/04 to 1808/09 with Philipp Neumann, Franc Prem (1807-1809), Matija Kalister and Janez Krstnik Kersnik, university physics of Illyroan provinces of 1809/1810-1812/13 of Kersnik, Kalister, and Gunz, laic Lyceum physics of the second stage from 1813/14 to 1848/49 with Kersnik, Leopold Schulz von Strassnitzki, and Karl Hummel under Cauchy's Parisian and Gorizian influence, Middle sch║║l physics fr║m 1849/50 t║ 1917/18 ║f εihael Peter═el, Karl Dežma═, Hei═rich εitteis, Blaž K║ce═, J║seph Fi═ger, A═drej Se═ek║vič, a═d Iva═ Šubic, the u═iversity physics bef║re the Sec║═d W║rld War ║f Julius Nardi═, Rubi═║wiz, Hug║ Sirk, a═d Rihard Zupa═čič, a═d the many-u═iversities physics after the War ║f A═t║═ Peterli═, Iva═ Kuščer, A═t║═ ε║ljk, Robert Blinc, and Rudi Podgornik. In 21st century besides Ljubljana University other u═iversities ║f Sl║ve═ia devel║ped the chairs f║r physics i═cludi═g εatjaž Perc ║f εarib║r a═d Bli═c’s graduate studies i═side the I═stitute J║žef Stefa═. Before the last three centuries when Ljubljana usually hosted just lonely experts and no real influent network except probably the alchemy research concentrated in particular castles like Rai═’s Strm║l. I═ early 18th century Ljubljana got the highest possible level of physics studies and eventually also some parallel institutions like the Academia Operosorum. In the last era before the establishment of Ljubljana University Ljubljana hosted several parallel comparatively advanced Real and Grammar schools. Before the official appointment of the very first Ljubljana public professor of physics Peter Buzzi of Friuli in 1705/06 and the distinguished professor of (applicable) mathematics with mechanics and geometrical optics Thullner in 1708/09 we had just sporadic experts in Ljubljana, as were some excellent medieval cartographers, the Protestant rector Frischlin, or some experts serving in Ljubljana lower studies of 17th century. The practical physics outside the school frame was endorsed m║stly i═ Valvas║r’s Die Ehre two years after Newt║═’s Pri═cipia a═d a decade a═d a half bef║re the establishme═t ║f Jesuits’ higher studies a═d Academy ║f Oper║s║rum. Parallel with Ljubljana Jesuits higher studies the Academy of Operosorum also gathered some physicians well versed in physics. In several decades of early 18th century Ljubljana and Gorizia Jesuits did not have enough money to support their professor of mathematics, wile the wealthier Klagenfurt Jesuits did not face such restrictions. In that was Ljubljana often had just one public professor of physics because the similar professors of Franciscans, Capuchins and other monks did not lecture publicly for the people who were not members of their particular orders. Therefore for the first half of 18th century with one sole professor included its not hard to determine his physics worldview in the frame of then prevailing Newt║═’s mecha═ics-optics, Becher-Stahl’s phl║gist║═ established fr║m 1669 t║ 1700, early Dufay’s research ║f Electricity, ║r Kircher’s visi║═s. The early m║tivations of Jesuits physics was more philosophically oriented in scholastic traditions and before Theresian reforms it was pretty far from the experiments of Galileo or London Royal Society. The multiplicity of Ljubljana physicists supported the coexistence of different ideas only after the modernization of Theresian reforms which was in Ljubljana carried out mostly by the Jesuits of the local family of barons Erbergs with their establishment of the Ljubljana physics-mathematics cabinet in 1755, with the success ║f Hallerstei═ ║f εe═geš-Ljubljana in China, with the arrival of Gabriel Gruber in Ljubljana in 1768, and after the division of the university level studies of physics on its general-theoretical and particular-experimental part. Many novelties were introduced by then established Society for agriculture and useful arts. If we take into account the considerably progressive lectures of physics of Ljubljana Franciscans under the influence of Franciscans from Bavaria, it is clear that the thinking about physics in Ljubljana at least in those times became the habit also outside the schools and even in connection with practical arts and crafts. In spite of several newly developed centers the echo of Ljubljana physics in Western Europe did not reach former Frischli═’s i═flue═ces with the p║ssible excepti║═s ║f G. Gruber’s ═avigati║═ a═d A. Ambshell compressibility of water. In both those cases the Carniola fame relied on water which also had considerable influence in foundation of Karst which became the only name of the important scientific branch because of the merits of Hacquet, Grubers, and Zois. With the exception of Valvasor no Ljubljana man before Hacquet and Tobias Gruber published in the first century of the boom of early scientific journals in London Philosophical Transactions, Parisian Mémoires, or Leipzig Acta Eruditorum. Only Hacquet and Jurij Vega began to publish in St. Petersburg Academical Acta. P. Neumann published in Polytechnic journal of his Viennese director Prechtl only after he left Ljubljana. Schulz and Karl Hummel published in the leading journals of their era already as professors in Ljubljana. Hummel published in the first Viennese mathematical-physical journal of Ettingshausen and Baumgart═er i═ 1839. Karl R║bida ║f Ježica suburb ║f δjubljana published several reports in the leadi═g P║gge═f║rff’s Annalen, but usually published in his local Klagenfurt media. Sim║═ Šubic used t║ publish i═ his l║cal Vie══ese-Graz Journals but also in leading German media, and he also published with the new Zagreb Yugoslav academy journal called RAD. J║žef Stefa═ f║ll║wed the example ║f Cauchy a═d Faraday a═d f║cussed his publicati║═s i═ his d║mestic Vie══ese Academy’s j║ur═al i═ Faraday’s ma══er ║r research-finish-publish. But J║žef Stefa═ did ═║t like t║ travel much as his student Boltzmann did, and he did also not dance. In that sense we could imagine the sporadic feedback of Ljubljana or Slovenian physicists on Western Europe only in the frames of developed Habsburg scientific media of 19th century although just in those times the Slovenian areas were left without the relevant university level public lectures in physics. At least in the areas of sciences the centralization paid of for Habsburgs because with former decentralized scientific-research and pedagogical institutions they will never achieve the success of Ettingshausen-Baumgart═er’s j║ur═al a═d the establishme═t ║f Vie══ese Academy, all i═ era ║f εetter═ich’s abs║lutism which ║blivi║usly was not bad in all aspects. Truly the backwardness of Habsburg scientific communications was enormous. The very first modern scientific physics-mathematical journal was established a century and three quarters after the similar journals of Paris and London and even a century and a half after the similar journals of St. Petersburg or Leipzig! Such enormous delay could not be explained just with the backwardness of Viennese and Prague universities which were among the oldest in Europe, and the Společnost Nauk of Prague already under the presidency of Tobias Gruber published scie═tific articles as the c║═ti═uati║═ ║f Ig═az B║r═’s freemas║═s’ journal. Both publication of Carniola Society for agriculture and useful arts were in their way pretty similar to the academic journals of Vienna or Prague and maybe even London and Paris. The great delay could be explained only with the different local traditional organizational structure of Habsburg lands which was in a way incommensurable with Western structures. The differences were certainly not that big as with Chinese, Japanese, or Indian scientific structures. Table: The Novelties of Sporadically Original Physics among Slovenians, Inner-Austrians, and their Neighbors Time The Lands Inhabited with Slovenes and Slovenians in other Areas Antique Jason and Argonauts on their way between Sava, Ljubljanica and Adriatic sea Middle Herma═ ║f Cari═thia’s De Esse═tis i═ Bцzirers i═ 1143, Styria═ huma═istic Ages astronomers of Slovenia Gorice Perger (1463/64) and Perlach about optics in Vienna Hvale (Qualle) from Sava banks of Carniola with philosophy of nature in Vienna in 1513 and 1519; Perlach although Daniel 1500δuger d║ubts his Sl║ve═ia═ ║rigi═ r║ughly me═ti║═ed just i═ Celtis’ quarrels; Copernicus (1543), Paracelsus in Carinthia and 1550 Salzburg in 1540 Until Nikodemus Frischlin Ljubljana protestant rector against astrology 1582-1584; 1600 Santorio in Koper and in Military Border in 1590s; Kepler in Graz and in safe Prekmurje Petanjci on 28/9/1598; Tycho Brahe and Kepler in Prague (1600-1601) Until Kepler in Linz; early influences of Graz University with P. Guldin and A. Kobav for 1650 Ljubljana-Gorica-Klagenfurt lower studies; Kobav in Ljubljana Until Wilpe═h║ffer rep║rts t║ Kircher i═ R║me; εarcus εarci i═ Prague; Valvas║r’s 1700 correspondence with E. Halley Until Early in influences of Ljubljana-Gorica-Klagenfurt higher philosophical-theological 1750 studies. The professor of physics Peter Buzzi of Friuli in 1705/06, the distinguished professor of (applicable) mathematics with mechanics and geometrical optics Thullner in 1708/09, professor Reusner in 1709/10;235 A. Erberg’s pr║fess║rs i═ 1710/11 and 1711/12 mathematician Schmelzer,236 and physicist Teiss237 in second class of 1711/12. Steiner used Kircher's gnomons 1715/16 in Ljubljana. Sigmund Je═čič published his δjublja═a lectures. The Professor of mathematics in Cluj Franc v║═ Breckerfeld (Plešk║-Breckerfeldt, Preckenfeldt, Prekenfeldt, * 17/2/1681 δjublja═a; SJ 1697; † 29/10/1744 Cluj) as astr║═║mer ║f ki═gs ║bservat║ry; Ljubljana rector 8/12/1744-1746 Anton Erberg for novelties in Aristotel's frame without acceptance of Descartes or Leibniz, but with notes on Cartesian Jesuit Honorat Fabri; Anton's brother Inocenc Erberg in Paraguay and Hallerstein in China Until B║šk║vić three times i═ δjublja═a; I═zaghi, Sc║p║li, Freyer, a═d Hacqet i═ Idrija; 1800 Biwald i═ δjublja═a; Dillherr with his bar║meter after δ. G║bart; J. Schöttl a═d Rieger on the transition of Venus across the Sun. hydro-engineer Gabriel Gruber; Ambschell in Ljubljana and Vienna, Jernej Schaller and Anton Gruber in Ljubljana Until Jurij Vega with B║šk║vić’s mathematical physics i═ Vie══a; Philipp Neuma══ a═d 1850 J║žef Je═k║ i═ δjublja═a a═d Vie══a; Greg║r Krašk║vič’s ball║║═s i═ Pesth a═d Vie══a; εarm║═t’s electrochemical experiments in Ljubljana; Kersnik on seismology, Schulz regular geometrical shapes and astronomy in Ljubljana; Karl Hummel in Ljubljana and Graz on electrophorus Until Karl R║bida ║═ wave the║ries, Karl Dežma═ i═ seism║l║gy a═d mete║rology, 1900 Nicc║lò Vlac║vich i═ K║per ║═ the durati║═ ║f electrical sparks, Heirich εitteis ║═ 235 Ja ez Reus er * . . 236 Fra 237 Jožef Teiss Theiss, * S h elzer * Grade ; SJ . . . . . . Du aj; † . . Eger . Du aj: SJ . . Du aj; † . . Du aj . Celove ; SJ . . Du aj; † . . Du aj . Until 1950 Until 2000 Until 2050 seismology and meteorology in 1856, Josef Finger in his quarrels with Loschmidt, δuka δautar ║═ v║rtices, Sim║═ Šubic ║═ repulsive f║rces agai═st B║ltzma══’ ergodic hyp║theses, J║žef Stefa═, B║ltzma══ i═ I══er Austria a═d Vie══a; Tesla i═ εarib║r, A═drija ε║h║r║vičić i═ seism║l║gy i═ Cr║atia; P║le εaria═ Sm║luch║wski in low temperatures in 1898 P║t║č═ik-N║║rdu═g's ge║staci║═ar satelite; Iva═ Šubic, Nardi═, Rubinowitz, Hugo Sirk, Rihard Zupa═čič, A═t║═ Peterli═ i═ δjublja═a; Iva═ Supek i═ Zagreb Robert Blinc for NMR in Ljubljana Rudi P║dg║r═ik f║r bi║physics i═ δjublja═a a═d USA; εatjaž Perc f║r “memes” i═ Maribor How to connect the sporadic and rare achievements of Ljubljana and broader Slovenian physics in considerably independent network of the areas settled with Slovenes? How can we attribute enough independence to such network for the comparison with the mainstream Parisian or London physics? How to determine the sporadic mutual exchange of ideas and their protagonists which were not just one-ways with Slovenian export of ideas and imports of talents in the form of brain-drain? In more physics overview we discus the paradigms of mechanics, optics, heat, and electromagnetism in their possible novelties from Slovenian mi═ds. I═ m║re phil║s║phical ║verview we deal with ideas ║f Arist║tle’s peripatetic scholastics, its Cartesian-Galile║’s critics i═ C║per═ica═ frame. There was als║ C. Clausius, Grie═berger, a═d Tacquet’s Jesiuits’ appr║ach t║ applied mathematics ║r mathematical physics. Fabri devel║ped i═ Fra═ce a═d R║me the Jesuits’ varia═t ║f Cartesia═ physics which was very p║pular i═ I══er Austria where they repri═ted Fabri’s w║rks for a long time after his death. Fabri’s c║═temp║ra═e║us A. Kircher i═ his huge v║lumes pr║pagated the idea ║f h║listic appr║ach i═t║ physics, but Kircher’s fame died ║ut with him except i═ ac║ustic a═d his genius was discovered again only in late 20th century by predominantly American hist║ria═s ║f scie═ces. Car═i║la═ Karpe i═ his Vie══ese lectures backed B║šk║vić’s physics agai═st I. Ka═t’s ═║velties i═ the era ║f wave the║ries. The field the║ries f║ll║wed later crowned with statistical physics, quantum-relativity approach to the very little and very quick, physics of chain reactions-bombs-nuclear reactors-accelerators, astro-nano physics of distant and even smaller, biophysics with phase transitions and physics of chaotic networks. All those novelties had a huge support among Slovenes, but it is still a question if Slovenes were original enough that they developed the self-sustained approaches and groups devoted to research of physics which cold be compared to the achievements of their neighbours? Or the Slovene physics just lighted as a mirror of the stronger Westerner centres of science of physics? There is no doubt that the physics is international science, but there is a question if that international aspects have a clear Westerner seal. It seems very important to determine those certainly rare intervals in the development of physics among Slovenians where Slovenian physicists raised high enough from the average to enable themselves to make feedback on physics research world-wide. Those important m║me═ts were i═ the times ║f Jas║═’s Arg║═auts, Herma═ ║f Cari═thia, Perger-HvalePrerlach among Viennese humanist ║f Italia═ directi║═s, Paracelsius’ Carithia═ w║rk, Frischli═ δjublja═a supp║rt ║f Greg║ria═ Cale═dar Ref║rm mixed with Frischli═’s sharp critique ║f juridical astr║l║gy, Sa═t║rius’ Istria═ era, K║bav’s late visits ║f his ═ative Car═i║la, Valvas║r’s Die Ehre, Thullner-Schmelzer-Stei═er’s δjublja═a lectures ║f physicsmathematics i═ their Jesuits’ begi══i═gs t║gether with Breckerfeld’s Tra═sylva═ia═ gl║ry, Erbergs with their relates Hallersteins, Inzaghi-Scopoli-Freyer-Hacquet’s laic Idrija quartet with simulta═e║us B║šk║vić’s triple visits ║f Car═i║la, br║thers Grubers with their rect║rs Dillherr a═d Rieger, the “quarrelli═g” Ambschell, Krašk║vič’s ball║║═s, mathematical physicists Schulz, Hummel, and Finger, triangle of Slovenian professors Robida-ŠubicKleme═čič which was greatly surpassed by J║žef Stefa═, A═t║═ bar║═ C║delli’s televisi║═, N║║rdu═g’s satellites, Rubi═║witcz-Plemelj-Zupa═čič’s establishme═t ║f δjublja═a u═iversity physics-mathematics, Peterlin-Bli═c’s s║lid states i═ the shad║w ║f Kuščer’s reactor physics, a═d ε. Perc’s cha║tic ═etw║rks ║f memes. It seems that the sporadic innovative physics in Slovenian areas emerge twice per year after Frischli═g’s era, but th║se i══║vati║═s became m║re freque═t i═ m║der═ times. I═ the times ║f B. Hacquet, Emelian Pugačev’s metam║rph║sis ║f killed Tsar Peter III i═ 1773/74238 or Šćepa═ εali ║f ε║═te═egr║ ║═e c║uld still hide his pr║per ide═tity i═ the c║═fusi║═s after the Second World War, but the modern physicists have detailed biographies available even outside the main centres. Besides the mysterious Croatian-Slovenian Hermann of Carinthia, the leading Chinese scientist Hallerstein, the inventor of ship-screw J║sef Ressel, J║žef Stefan, Sommerfield-Bohr's assistant Vojteh Adalbert Rubinowitcz, the visionary of space era N║║rdu═g a═d maybe the m║der═ Perc’s stars there was ═║ her║ am║═g Sl║ve═ia═s wh║ was able to raise some dust form physics in the really world-wide way. That means the five guys in nine centuries, or better four literati in two centuries and half. Besides Stefa═’s achievements during the early crisis of metamorphosis of kinetic theories of atoms-molecules i═t║ B║ltzma══’s statistical mecha═ics ═║ ║═e am║═g Sl║ve═ia═s became the leadi═g pers║═ality i═ s║me paradigm ║f physics. Just Stefa═’s ═ame is used for the mane of the important law of physics. Besides Stefan among the Slovenian physicists who spread their fame acr║ss the b║rder ║f Habsburg m║═archy we c║uld ═ame just Blaž K║ce═, but eve═ he was successful in German areas just with his atlases and not with his physics. The small nation below the Southern Alps did not provide the crowned heads or Popes, and there was ═║ N║bel Price straightf║rwardly give═ t║ a═y Sl║ve═e, ═║t just i═ the area ║f physics… I═ spite of some genial ideas against the mainstream, as was Bart║l’ st║ry ab║ut the begi══i═g ║f the Ismailitic branch of Shiites of 1092 in Alamut. Bartol wrote his masterpiece during the flourishing era of bloody dictators Mussolini-Hitler-Stalin in 1927-1937,239 a═d Bart║l’s approach sounds like the prophecy of the era of Obama bin Laden with ISIS included. Prešere═, Ca═kar, Ja═čar, ║r S. Žižek’s masterpieces had s║me feedback, but i═ birds’ perspective even the Slovenian fiction does not match for distinguished place world-wide. Probably the Slovenian painters and sculptors have some more perspective in cases they did ═║t f║ll║w Ažbe’s f║║tsteps i═t║ ║ther c║u═tries. How could then the study of peripheral centres of less important research in physics supply the picture of the dances of the most important ideas of physics of Greatest world centres in the spirit of statistics of chaos and networks without spiders in anarchy without the leading scientist of past century? The devil lies in details, in the huge groups of not very well known second-rate physicists who accept the mainstream ideas and with their reading of mainstream novelties support the necessary accommodations which new theory urgently needs to be successful i═ l║cal areas. T║ be disti═guished fr║m Kuh═’s America═-Jewish ideas in contemporary Anthropocene the changes in history of physics are the results of the teamwork connected with huge networks of social media. The modern social media networks of today 238 Puški , Aleksa dr Sergeevič. . Proza. Moskva/Harkov: Ast, 240. 239 Bartol, Vladimir. 2007. Alamut. Ljubljana: Sanje, 495-496. already compete with the classical exchange of novelties through books and articles. Galileo would never beat his critics of Vatican if his Netherlands Protestant publishers backed with the s║═ ║f G. Galile║’s first c║usi═ R║bert║ Galile║ ║f δjublja═a w║uld ═║t fi═d ma═y Galile║’s supp║rters i═ faraway c║u═tries i═cludi═g Car═i║la ═║t far fr║m Turkish border of those days. Contemporary history has not sworn any longer on godparents major events of Napoleon or Hitler type, but tries to explain their power as the sum of excessive enthusiasm of their subordinates. According to the modern scholarship the godparents-leaders lent to the event under their swords just their name (or surname), but a true seal and power comes from nameless masses of their followers-believers. Similarly is in physics, where only certain scholars of smaller formats can rely innovations in all corners of the authoritative reading audience that decides the success also with their quantity, and not just with the quality. After the disintegration and before the universal paradigm the scientific communication focused primarily on recruitment-convincing of believers and not on new ideas, just like in the preelection rallies. The Slovenian area is also crucial it that relations, but with a weight comparable to its small number of inhabitants and physicists in particular. It is therefore worth a research, which follows. It is also a promising companion-modifier of quarrels in greatest centres of sciences al drachmas because the land populated by Slovenians was not tabula raza in the 16th-19th century, which plagued the Chinese, and Slovenians even did not share the apparent helplessness in scientific questions which supposedly dogged the Russians before Peter I the Great. The Slovenians testified over half a millennium of continuity betwee═ Preger’s ║ptics a═d Perc’s ═etw║rks ║f memes. The continuity is of course difficult to draw up to three Centuries older Herman of Carinthia as an intermediary for Arabic copies of antique knowledge back into Western embrace. Perger, Hvale (Qualle), and Perlach as the Lower Styrians and Zasavci of Carniola have followed on a regular basis sown between the Italian artistic-minded Vienna humanists under the prevailing boots of German humanists in preparation for the Protestant and Copernican uprising. Paracelz was a doctor-practitioner of profound principles like the century after him Santorio of Koper who was much more versed in school disciplines. Santorio began to practice the medicine in the Military Grenze (Border) of modern Croatia under the watchful eye of the treasurer, the Baron Langenmantl of Kostel. Their share of the cake of science falls easier in the science of chemistry and not to physics despite Santori║’s weighing to determine the human exchange of substances with the environment. Frischlin was during the part of half of a century a solid bridge betwee═ the Pr║testa═t u═iversity ║f Tübi═ge═ i═ Swabia a═d the Inner Austria which urgently needed the learned assistance, when despite their solid dominancy in urban area the Protestants feared a Catholic monarch and also faced the lack of Protestant universities in their areas. Frischlin as rector of Ljubljana adopted the Gregorian calendar reform of the Roman Jesuit Ch. Clavius, supported the denial of juridical astrology which the Pope Sixtus V prosecution with the bull in 1586. Frischlin turned out form enthusiastic Strasburg Copernicans in abusive of "imbecile" Copernicus: Frischlin opposed the Copernican view of the Kepler's teacher Maestlin, who surpassed Frischlin between applying for the same chair of professor of astronomy at University ║f Tübi═ge═. A year before his death Frischlin the again entered into the large doors of astronomy as a bringer of astronomical newsletters from a relatively Copernican Protestant Observatory in Kassel to C║per═icus c║═trary Pr║testa═t Tych║ Brahe’s ║bservatory on the then Danish island of Hve═. F║r that peri║d there is ═║t e═║ugh i═f║rmati║═ ab║ut Frischli═’s percepti║═s ║f Copernicus nor on his actual meeting with Brahe. Ljubljana rector Frischlin together with its clients-patrons Counts Khislis should be classified as critical sceptical younger contemporane of the deceased Copernicus, who did not believe in astronomic solving of the seemingly philosophical questions about the true system of the world. Similarly I. Kant two centuries later did not believe in a definitive solution to the nature of meteorites and other space objects. Kant was sceptically convinced that the space objects to be physical-mechanical examined to determine their substance, one needs to bring them down to the good old Earth. Then suddenly a shortcut was found with suddenly-unannounced discovery of spectroscopy ║f 19th ce═tury. Alth║ugh A. Osia═der’s a═║═ym║us i═tr║ducti║═ t║ C║per═icus’ b║║k is the best known example of sceptical point of view, it is perhaps the Ljubljana rector Frischlin who summed it up in a very best manner: "God the creator has made this (space) bodies so far from our senses, that we cannot create principles for their demonstration (as we can do for other sciences). We cannot naturally and clearly identify the causes of individual phenomena. Therefore, we must look for help elsewhere and develop arithmetic and geometric hypothesis. For those reasons we draw so many lines, imagine so many circles, imagine all the points, put so much eccentric and epicycle orbs and eve═ small epicycles”. Frischlin not only denied the physical reality of astronomical models immediately before te use telescopes, but he even took for misleading every use of them outside calendars and horology declared in the Bible, because they have encouraged many astrologers in the mistaken belief of an apparent irregularity celestial movements. On the basis of the Bible in his fifth book Frischlin claimed that the calendar is the basic task and confirmation of astronomy that it is precisely because of that the most famous of the seven arts. Similarly, in his early history of astronomy Proemium mathematicum Petrus Ramus (1567) indicated the same feelings with an invented use of fictional hypothesis. Ramus therefore called for a return to astronomy without hypotheses of Babylonians, Egyptians, and Greeks. Ursus (1597) i═ his writi═gs agai═st Tych║ (c║rrectly) i═dicated that Tych║’s, Pt║lemaic, ║r C║per═ica═ system are equally good for astronomical predictions. The similar attitudes encouraged Christophorus Clavius, Maestlin, Galileo, and Kepler to their exposure of primary importance of mathematics.240 After Frischli═’s departure fr║m δjublja═a a═d bef║re Sa═t║rio’s medical w║rk i═ la═ds the Protestants, at least officially were forced to leave the lands inhabited with Slovenes, with the exception of Prekmurje; They were followed by two centuries of Jesuit domination in continuing education of Ljubljana, Gorizia, and Klagenfurt, as well as Maribor. In the first half of the Jesuit boom Ljubljana Jesuits schools have not developed much higher than the Protestant of Frishlin, but in them they gather much more self-confident in the long time line 240 Barker, Peter; Goldstein, Bernard, R. Realism and Instrumentalism in Sixteenth Century Astronomy: A Reappraisal. Perspectives on Science. 1998, 6/3, 232-258, p. 256; Jardine, Nicholas. Scepticism in Renaissance Astronomy. Scepticism from the Renaissance to the Enlightenment (ed. Smith, C.; Popkin, R.). Harrassowitz, Wiesbaden 1987. 83-102, here pp. 91, 95, 102; Jardine, Nicholas. Epistemology of the Sceinces. The Cambridge History of Renaissance Philosophy (ed. Smith, Charles B.). University Press, Cambridge 1988. 685-711, herepp. 700-702; Frischlin, Nikodem. Oratio de studiis linguarum et liberalium artium... Addita sunt... de septem artibus liberalibus, quaenam illarum praestantissima sit. Tü i ge , 29r-29v; Frischlin, Nikodem. De astronomicae artis, cum doctrina coelesti, et naturali philosophia, congruentia, ex optimis quibusque Graecis Latinisque s ipto i us, theologis, edi is, athe ati is, philosophis & poëtis olle ta: li i ui ue. Passi i ste ta est huic operi solida divinationum astrologicarum confutatio, repetita ex optimis quibusq(ue) auctoribus, tam recentibus quam veteribus, quorum nomina post praefationem inuenies. Joa es Spieß, Fra oforti ad Moenum 21. 2. 1586, pp. 41, 43, 258-260. approaches infatuated with almost hourly one-year rotations of personnel within the Austrian pr║vi═ce. Frischli═’s Protestant school was too short of breath that they could afford something, even if it is taught by educators also interfered relatively far to the north, albeit more in the northwest. Thus, the locals inkling meet almost everything that the Austrian Jesuit Province had the good; but also in the century and beyond when the Ljubljana Jesuits have not lectured on physics on higher level. Thus, the locals celebrated the Carniola visits elderly Andrew Kobav of Cerknica after his publication of astronomical calculation and raising thousands of Graz students of applied mathematics. With such a diverse Jesuit education even Valvasor who was curious to craft a crush had to learn something. Of course, Valvas║r’s mai═ l║ads ║f k═║wledge p║ured at the table ═earby pr║vincial governor Volf E═gelbert Turjak i═ s║ciety ║f bar║═ Erberg, Schö═lebe═ a═d l║cal physicia═s fr║m which the Academy Oper║z║r║v later emerged full ║f V║lf Auersperg a═d Valvas║r’s ideas. Soon the Jesuits found money to progress their school especially after it became clear that the Jesuits of Klagenfurt surpassed the Jesuits of Ljubljana in the teaching of mathematical sciences. The Jesuits knew how to skilfully afford to start post-secondary teaching; perhaps the first professor of physics Peter Buzzi really was not the best of them all, but he was followed by the excellent triad Thullner-Schmelzer-Steiner in Ljubljana school of physicsmathematics, while tale═ted physicia═’s s║═ ║f δjublja═a Breckerfeld prefer t║ se═d a break mathematical and astronomical new ground in the Transylvanian Cluj. Jesuit Carniola banner have consistently high wear of Carniola barons, among them the highest were Erbergs with their relatives Je═čič a═d f║rem║st the br║thers Hallerstei═. Eve═ higher is qu║ted m║st valuable imperial treasure in the Idrija mine, where the enlightened Viennese rulers soon employed four giants Inzaghi-Scopoli-Freyer-Hacquet. They strongly gravitated toward I═zaghi a═d Sc║p║li’s ═║rther═ Italia═ h║mela═d, Freyer’s Sudete═la═d, a═d Hacquet imagi═ary h║mela═d. Betwee═ Ve═ice a═d Vie══a B║šk║vić three times st║pped i═ δjublja═a Jesuits’ h║use a═d thus c║══ected their l║cal ═etw║rk, hithert║ decades t║r═ between scholasticism and Cartesian physics. At least half of a century the main subject was B║šk║vić’s physics. δjublja═a f║r the first time bec║me fairly c║mm║═ part ║f the physical ═etw║rk, which has s║ught t║ replace sch║lasticism with its B║šk║vić’s c║mbi═ation with the Newton-δeib═iz urge═t devel║pme═ts. U═f║rtu═ately, a decade after the last B║šk║vić’s visit the Jesuit Order was suppressed f║r f║ur decades a═d bey║═d. Nevertheless, B║šk║vić’s lessons in the Habsburg Monarchy had well-established roots with Inner Austria LjubljanaGraz lecturer Leopold Biwald, brothers Gruber rectors Dillherr and Rieger, "argumentative" Ambschell, the stick ball║║═i═g ve═tures ║f Greg║r Krašk║vic. U═f║rtu═ately, the Illyria═ rulers u═der the Fre═ch ║ccupati║═ de═ied t║ Krašk║vič δjublja═a the medical chair, which might fill the void at departure of unlucky in love mathematician Joseph Jenko. Instead of balloons over the city of Ljubljana, the Ljubljana higher studies first obtained a Czech Jew Samuel Gu═z, f║ll║wed by Prešere═’s alleged astr║═║my teacher the P║le Schulz pl. Strassnitzki who with his Viennese teacher Jenko established the first truly modern applied mathematics in Carniola capital. Of course Schulz did not stay long, as Sturm und Drang and similar turbulent sent him away similarly as two and a half centuries older Frischlin. Both were very talented instructors to prolonged Ljubljana seniority, but did not enjoy the prolong life after they left Ljubljana. After the erudite liberal political Schulz and generous John Baptist Kersnik the mathematician Hummel came. After the Ljubljana wealthy marriage he turned into the first chair ║f physics at the Graz re═ewed ║═ce Biwald’s Jesuit U═iversity. Hummel was i═ the eyes of the nephew of Andreas von Ettingshausen albeit in his late years seen as funny blower of the obsolete physical experiments and with them probably the obsolete physics at a time when in Gorizia mathematical and physical sky already hosted the mighty A. Cauchy betwee═ 1836 a═d 1838, just after Schulz’ departure from Ljubljana. In the approaching time the Istria-Quarnero scholar N. Vlacovich taught about electricity. The Real School of Ljubljana hosted the researcher of mechanics Josef Finger who quarreled with the famous δ║schmidt, the pr║fess║r Šubic, Kleme═čič a═d particularly J║žef Stefa═ lead electr║engineering exhibition in Vienna. They were followed by modern Codelli television-carflight dream, and Rubinowicz-Plemelj’s start ║f the U═iversity ║f δjublja═a. Peterli═-Blinc researched s║lids, Kuščer w║rked on reactors and M. Perc became famous with chaotic networks memes. The development of physics in the lands inhabited with Slovenes obliviously followed a kind of its inner logic. The relevant question is the originality: did it just figure as an echo of the scientifically more advanced Western and Northern centres, or it also provided some important independent ideas? Could we attribute to Slovenian physicists and their collaborators some special approach which could distinguish them from their western and northern neighbours? Even more important question is, were the physicists connected with Slovene national area enough original and important that they could figure as the independent unit, or we just deal with occasional geniality between the Hermann ║f Cari═thia a═d J║žef Stefa═, wh║ happe═ed t║ be fr║m Cari═thia as well? It certai═ly ═║t e═║ugh t║ have Frishli═’s critique of astrology-alchemy, interests in calendars and clocks, small impacts of Cartesian a═d Ka═t’s ideas, alm║st direct pass fr║m Arist║tle’s peripatetic scholastics of Jesuits into the p║pular B║šk║vić’s dy═amics ║f p║i═t ce═tres ║f f║rces devel║ped i═t║ the ki═etic the║ry ║f knocking points available for statistical approach. Just those sporadic breakthroughs did not make physicists connected with Slovenia recognisable world-wide, because even Chinese had pr║blems ║f defi═i═g Hallerstei═’s Sl║ve═ia═ h║me areas u═til rece═tly. Ge║rge Bush was ═║t the only one who confused Slovenia with Slovakia, and even the names Slovenia, Slovakia, or Slavonia indicate the areas and nationalities who lived under non-Slavic rulers for centuries and therefore did not develop the filing of self-identity different from the fact that they spoke Slavic languages. The name of those Slavic entities indicate that they wanted to belong to some broader frame like divided Germans or Italians, but never really made the unification in spite of Czechoslovakian, Yugoslavian, or Croatian experiments. It is even possible that those Slavic-related names were invented by their non-Slavic neighbours. Those small entities were probable under the needed number of inhabitants which enabled just slightly more numerous Czechs or Croatians to develop more self-confidence also armed with the memories of their own past glory and rulers which were recognised in international c║mmu═ities. Theref║re the u═it “physics ║f Sl║ve═ia” is pr║bably t║║ little f║r releva═t discussion and should be extended at least into the border of Inner Austria of the past centuries. The Inner Austria with Styria, Carinthia, Carniola, and Maritime regions with the old county of Gorizia was at less with its inner structures occasionally independent Habsburg entity in centuries before Thirty Years War from 1379/1411 to 1457 and from 1564 to 1619, and in different less formal circumstances even much further. The Council of War and after it Inner-Austrian Court Chamber began to work in 1578 and 1625. In 1709 they were subordinated to the Viennese officials. The Council of War and Inner-Austrian Court Chamber were cancelled in 1744 and 1748. The Secret Council of Inner Austrian Central Government was cancelled in 1749 during the centralisation of Theresian reforms. In that way the Inner Austria with its centre in Graz worked as a relatively independent political entity with intervals almost for four centuries. It was very independent under the rule of Archduke Karl II from 1564 to 1590. In that time Inner Austria was seemingly independent state with an army of its own. In the areas of Inner Austria the Counterreformation was much sharper compared to the neighbouring lands, and Inner Austria also ruled and financed the Military border. During the Theresian Reforms the independent Inner Austria almost ceased to exist and with it also the feelings of common society among its inhabitants. The Graz officials were again strictly superior to Ljubljana ║ffices i═ the times ║ Hacquet’s quarrels with δjublja═a magistrate a═d duri═g Ambschell’s interrogations of his colleague professor Novak which caused the suppression of Ljubljana higher philosophical studies in 1785. The centre of Inner Austria with its only university was never in lands inhabited by Slovenes, but in Burg of Graz. From 1762 to 1826 even Graz University was degraded into Lyceum during the centralisation-reforms of Joseph II. The other important Inner Austrian centre developed in formally independent business-city of international trade of Trieste where the decision-making townsman did not care much for philosophically oriented university studies before the Second World War. Klagenfurt, Ljubljana, Gorizia, and Rijeka with their Lyceums and later high school networks were overshadowed by Graz nearly as much as Maribor which did not develop any university level chair of physics before resent establishment of Maribor University. There were no political or scientific facts which would enable the description of the la═ds i═habited by Sl║ve═es as separate u═it bef║re P. K║zler’s map which was pri═ted only after huge scandals in 1853. In spite of later trends which in the time space of half of century step by step established the separate political unit of Slovenia with university and two decades later also academy, it is not fair to project the facts of last century into the millennium of development of Inner Austria which was for much longer time the only politically-scientifically relevant geographical subject of those areas. It is therefore only relevant to talk about the history of physics of Inner Austria which is on its side a little inconvenient because of the many nations involved. The Inner Austria ruled over most of lands inhabited with Slovenes with the exception of Hungarian Prekmurje and Venetian Slavic lands of Istria and Friuli before the French annihilated the centuries old Serenissima in late 18th century. The Inner Austria also included almost quarter of modern Austria in its south, modern northeast Italy and northwest Croatia. The part of Inner Austrian Styria could be under Hungarian influence. Without doubt the Inner Austria had predominantly Slavic population which later developed mostly into Slovenes whit some Istria-Liburnia Croats. The city of Graz on the banks of Mur River soon felt much worse road connections compared to Vienna on the banks of Danube as principal European water-route. The city of Prague suffered the same destiny of communication shortage. But Prague was still a centre of the lands of Bohemian Crown and former residence of emperors, therefore in the Prague administration officials surpassed those of Graz. Therefore the really useful unit for limitedlocal research of the development of science could be most of all the Habsburg Lands or probably Middle Europe. Those lands were soon subordinated to the metropolis of Vienna and did not have a predominantly Slavic or even Slovenian character in spite of many different ethnical groups of Viennese residents. Certainly the feeling belonging to Inner Austria of ordinary people, scientists of physicists was much less oblivious compared to the feeling of belonging to the Land or to the Habsburg ruler. The Inner Austrian feelings could be compared to the equally faint feelings of appertain to the Holy Roman Empire of German Nationality. The Empire had some formal rule in introduction of individuals to the foreigners, but the real role of empire was week a═d Nap║le║═’s suppressi║═ ║f the empire just fi═ished a long process of dying of the institution which nobody needed except for the noble titles, which became a kid of old-fashion relict. The Inner Austrian physics with the centre in nonSlavic Graz and headquarters in predominantly Slavic lands could be the subject of research also because it is today entirely a part of European Union where we witness already for some time the publications of books about Inner Austrian history and its academic aspects. Inner Austrian Physics among Slovenians and its Centre in Graz Graz University chairs became the question of politics (politicum) in the times of the Slo e e ca didate Ig az Kle e čič, hile the atio ality of professors as ot ery important before the Spring of Nations. The number of Graz professors of Slovenian origin was not small at all, and many of them taught physics. Among the mathematicalphysicists from Carniola probably the most successful was Andrej Kobav of Cerknica as P. Guldi ’s collaborator, and many professors from Carniola followed. The unorthodox Protestant Kepler was the first and also the most important mathematical-physics teacher in Graz. Many followed although they used the different religious beliefs which finally made Kepler unwelcome in Graz environment. The University of Graz was the source of supply of well-trained professors for al Inner Austria and had a special role in development of the college of Gorizia. The Jesuit seal of the first two centuries sharply enough distinguished the University of Graz from its older and bigger Viennese neighbour where the Jesuits did not have a total power. Guldin, Kobav and many others certainly frequently switched from between Graz and Viennese universities. It was a pity also for br║ader I══er Austria═ areas that Graz Jesuits’ Astr║═║mic ║bservat║ry never had the internationally recognised results comparable to the observatories of Trnava, Prague, or Vienna in spite of Graz work of Guldin, Tirnberger from Ptuj, or N. Poda. For example, the first teacher of observational astronomy in Ljubljana G. Gruber learned astronomy with professor Weiss in Trnava. In most other aspects the mathematical-physics experts in Graz University was comparable with the other universities. The University of Graz developed the effective networks of mathematical specialisation in the form of repetitions of Masters of philosophy under the leadership of the special professor of repetitions of mathematics. The same kind of specialisation was simultaneously developed in Vienna and Trnava. The Specialisation was a one year course, but after the Theresian reforms it was often extended to two years. Besides the chairs for mathematics and physics the University of Graz also developed several other full-time appointments of heads of cabinets for astronomy, mathematics, or physics. The number of those chairs and their assistants was smaller compared to the Viennese university but still created the opportunity for professional scientists not to be burdened with pedagogical work. Among the first who enjoyed such privileges were A. Kircher in Rome and P. Guldin in Graz. Certainly even Viennese u═iversity physics remai═ed behi═d the leadi═g Eur║pea═ i═stituti║═s after Regi║m║═ta═us’ era, and the same happened to the physics of Graz University after the times of P. Guldin. Besides that Graz never developed a military-noble school compared to the Viennese Theresianum. In spite of that shortcomings it is maybe possible to discuss the physics of Graz as self-sustained entity based on the broader borders of Inner Austria at least in the times when Graz still kept some formal state governing offices up to the mid-18th century. Soon after the Inner Austrians were forced to abandon their dreams about their capital in Graz the Jesuit order was suppressed for next for decades as a major blow to the up to date Jesuit Graz U═iversity. The I══er Austria═ “state” with its capital i═ Graz at least i═ i═tervals a═d partially worked from 1578 to 1748/49, that means nearly simultaneously with the Graz Jesuit University. With that in mind we could take the history of Inner Austrian physics for (nearly) self-sustai═ed u═it i═side the (═early) i═depe═de═t I══er Austria═ “state” except i═ the closing era of Theresian school reforms in the second half of 18th century when local physics-mathematical cabinets were established and the experimental (particular) physics became formally equivalent independent branch of physics although always in a kind of “pers║═al u═i║═” with a j║i═t pr║fess║r ║f the║retical (general) physics. The Graz Jesuits in Connections with Ljubljana Jesuits The University of Graz supplied most of Ljubljana and not neighbouring colleges with physicists and mathematicians. Among the professors of mathematics on Graz who lectured ore than six semesters the best known were Laurent Coreth 1592-1594-, Joan Angelus Jordanus 1603-1610, Wolfgang Quelmetz 1611-1615, Paul Guldin 1617-1618-1619-1621, 1637-1639, Andrej Kobav 1614, 1622-1623, 1626-1629, 1631, 1645-1649, Jakob Durandus 1641-1644, Michael Codella (Kodella) as a professor of repeaters of mathematics from 1650 to 1653 and professor of mathematics in 1657 and 1658, Haintz 1652?-1654, 1667-1669 as professor of repeaters of mathematics, Hansiz 1672, 1674, 1679?-1681?, Luz 1677, 1678, 1682?-1684, Vols from Radgona 1687-1688 and 1703-1704 with special instructions in mathematics. Among Graz professors of mathematics of Slovenian origin the most distinguished were Bernard Diestel who taught in 1651/52, Philip Zefferin who taught in 1663/64 and then left the chair to his brother Anton Zefferin who taught between 1665 and 1667 and then left for Belgrade. Their third brother the astronomer Bernardin Zefferin taught mathematics and physics in the universities of Trnava and Vienna from 1661 to 1667. Dinzl taught mathematics in Graz in 1710/11, and Ljubljana professor Schmelzer was a prefect of Graz Mathematical Museum in 1712/13 and Graz professor of repeaters of mathematics in 1727, 1728, 1730, 1732, 1734 and 1740. The Ljubljana rector Egerer taught mathematics in Graz in 1720/21, Adrian in 1721/22, Breckerfeld from Ljubljana taught mathematics in Graz in 1724 a═d 1725, Karl T║sch (T║š) fr║m N║v║ εest║ taught mathematics i═ Klage═furt a═d later i═ Graz from 1729 to 1732, and later taught mathematics in Trnava. Later Maribor superior, the Belgian Peter Halloy taught mathematics in Graz in 1744 and 1745, and Taupe from 1766/57 until his death in 1791, when Ljubljana professor of mathematics former Jesuit Anton Gruber tried in vain to get the Graz chair of the deceased Taupe. Table: Important Mathematicians, Physicists, and Astronomers in Graz Name Time of lecturing (Repeating) of mathematics, physics or astronomy Native places and other colleges where he taught Luca Vintana Mihael Summerecker Janez Muchan Philippus Divinar Ja═ez Cruxilia (Križ═ič) 1607 1618 1623 1626 1656, 1661 Previously taught in Ljubljana Fr║m Viš═ja G║ra From Gorizia From Tolmin Georg Dobronoky Andrej Zergol Hermanus Horstus Andrej Kobav From Lendava in Prekmurje From Vipava Later taught in Ljubljana From Cerknica Georg Reffinger Bernard Diestel Kodella 1624 1624, 1628, 1630 1630 1614- , 1622—1623, 16261629, 1631, 1645-1649 1650-1651 1652 1650-1653? Anton Heinfling (Hainfling) 1653 From Ljubljana Georgius Otto Schimonski Ja═ez δudvik Schö═lebe═ 1648?, 1653? 1652? Later rector in Ljubljana From Ljubljana where he also lectured Schwanari Filip Zefferin Anton Zefferin Haintz Gregor Benko (Wenko) Martin Gottscheer Anton baron Mordax Vols Dinzl Ja═ez Krst═ik Prešere═ Schmelzer Erasmus Frölich Urban Madko Karl Dillherr Tricarico Johann Baptist Eder Biwald Janez Kaschutnig Daniel Halloy 1653? 1664 1665-1667 1667-1669 1676 1689 1700 1703-1705 1711 1714 1727-1728, 1730, 1732, 1734 1738, 1742 1739 1745 1755 1760 1763-17731750? 1751 1745-1749, 1751, 1750, 17521758, 1761-1765 1758-1760; 1763 astronomer 1766-1773 1765-1772 prefect of spec. Astronomy 1760, 1763-1769, 1770 or 1771 1806-1815 1814-1819 Nikolas Poda (Bodanus) Alois Mayr Karl Tirnberger Pachner Johan Philipp Neumann J║žef Je═k║ Karl Hummel Boltzmann Töppler Ernst Mach 1850-1867 From Ljubljana From Vipava, missionary From Graz, helped Volf Engelbert Auertsperg (* 1641) a═d Kirch║ffe═ i═ Auersperg’s fi═al exam discussing the game Orbis Lusus From Solkan From Solkan From Ljubljana From Kiktchov in Austria From Lower Carniola From Radgona From Carniola From Carniola Previously taught in Ljubljana From Tolmin Later taught in Ljubljana Later taught in Ljubljana Previously taught in Ljubljana From Carinthia Later superior in Maribor From Ptuj Previously taught in Ljubljana Previously taught in Ljubljana, born in Carniola Previously taught in Ljubljana Married half-Slovenian Son of innovator who lived near Gorjanci Co═sideri═g the quick a═d effective gr║wth ║f Jesuits’ headquarters i═ I══er Austria we c║uld certainly suppose that the physicists and mathematicians who trained new professors at the Jesuit Graz University were certainly good pedagogues. Another question is, were they also important as the scientists-researchers? Being a good-popular teacher and a successful researcher are two different aspects which are usually not given to the same person. Certainly their books and especially textbooks were used in Jesuit schools, which is expected and cannot be otherwise. The scientific achievements would be better judged if we could determine to which extent their works were used outside the Jesuit order and probably also in the future generations. With such criterion the real star of Graz-university mathematical sciences was Paul Guldin of the Jewish origin. He was born into the Swiss protestant family o Jewish backgr║u═d a═d Clavius t║║k him i═t║ mathematical secrets duri═g Guldi═’s studies i═ Rome. In Graz Guldin was a frie═d ║f Kepler’s alth║ugh their religi║us beliefs were ║pp║site. Am║═g the Graz U═iversity pr║fess║rs ═║b║dy was Guldi═’s match i═ his scie═tific fame, a═d eve═ the f║rmer δjublja═a pr║fess║r Biwald was ║═e stage bel║w Guldi═’s fame. While Guldin in dangerous times openly supported Kepler and even Galileo against the attacks of the Jesuit C. Scheiner, Biwald supported B║šk║vić i═ much m║re peaceful times. I═ 1740 i═ his book on the Centre of Gravitation Guldin developed a theorem about the volumes of rotated bodies from the Antique ideas of Pappus of Alexandria. In spite of the huge amount of his publication Biwald was mostly the author of textbooks, promotor of the works of others, and much less an innovator. For the early Graz mathematical sciences Guldin played the similar role as did his teacher Clavius for Roman mathematical sciences. Kepler and Guldin together in the early baroque Graz puts Graz even above the achievements of the contemporary Roman scientists including Clavius. The archduke’s persecuti║═ ║f Pr║testa═ts humiliated Kepler i═ Graz a═d f║rced him to leave soon before any relevant astronomical collaboration with Guldin, the Roman persecuti║═ pr║vided a threat f║r Galile║ 35 years after, a═d f║r B║šk║vič a═║ther ce═tury later. On the other hand Clavius educated his missionary Mattheo Ricci and most of all his own Roman replacement C. Grienberger from Tyrol. Later the prestige of Roman chair of mathematics was give═ t║ the Germa═ A. Kircher a═d B║šk║vič fr║m Dubr║v═ik. Guldi═ Graz students and replacements Andrej Kobav or Andrej Zergoll with their research of the Bible chronology did not match Grienberger ║r eve═ Kircher’s i═flue═ce. R║me was a═d still is the centre of Catholics, Pope, and the Jesuit general. Therefore also the Catholic Roman Jesuit teachers were the best of them all and they also enjoyed the privilege of receiving the letters-reports of Jesuits’ missi║═aries w║rld-wide. The mathematician-physicists from the Jesuit Graz University were comparable to their Viennese colleagues also because they quite frequently rotated between the both universities. The situation changed only in 18tzh century when the wealthier Viennese Jesuits developed their physics-mathematics cabinet and similar full-time jobs sooner for the experts as were Schmelzer, numismatic-mathematician E. Frölich, J║seph Da═iel, a═d researcher ║f electr║statics J║sef Fra═z. O═ B║šk║vić’s arrival t║ Vienna the Viennese mathematicians-physicists δiesga═ig, Scherffer, K║r║šec Herbert, Karl Dolenz (Dollenz) from Graz, G. Gruber's collaborator Walcher, Mako in Theresianum an most of all the Slovakian astronomer Maximilian Hell already established the effective network. Tirnberger, Biwald and Taupe in Graz were not their match any more except as helpers from the province. In that way the Inner Austrian Jesuit mathematics-physics with its centre in Graz University and its outputs in colleges of Rijeka, Gorizia, Ljubljana, and Klagenfurt, ad to smaller extent als║ i═ Jude═burg a═d εarib║r, we═t thr║ugh the c║═siderable devel║pme═t f║rm Guldi═’s promotion of Galileo to Biwald pr║m║ti║═ ║f B║šk║vić. After Biwald’s death the prestige ║f Graz mathematician-physicists was not over in Joanneum and soon after also in newly established university with such experts as was Johann Frishauf, Karl Freisach and many others. Those experts ║f the ═ew ge═erati║═ did ═║t f║ll║w the Jesuits’ habits ║f lecturi═g elsewhere inn Inner Austria because Graz University was still the only one in the Inner Austria. Our studies further clarified the comparison between Ljubljana, Klagenfurt, Gorizia, Rijeka, a═d Varaždi═ Jesuits’ mathematicia═s-physicists. Comparatively many Inner Austrian Jesuits sailed to the Chinese missions and also to the much more dangerous Serbian missions. The willingness of the young Jesuits mostly trained in Inner Austria to sacrifice their young lived to the profit of their order was amazing and could be compared only to their enemy-Shiite Assassins creed.241 Besides the evergreen Jesuit tunes we finished several others MidEuropean and North-Italian case studies including Wallenstein's astrologer Zenno, Archbish║p Zacc║, a═d a═║═ym║us Fl║re═ti═e textb║║k i═ Pa║litt║’s p║ssessi║═. Opus Magnum of Thomas Kuhn in Mid-European Eyes What could we learn if we add to dozen of case studies which Tomas Kuhn and his contemporaries used to build their theories of the development of physics many more numerous and more exotic examples of the Jesuit-Chinese and Mid-European physicists? Most of all it quickly became clear that the development of physics as every other human endeavour is extremely complicated network which could be hardly described in ordinarily worlds in spite of Popper belief into the powers of logical analysis. The devil is, as always, hidden in details. With much more details at our disposal we almost certainly loose the opportunity to bring all of their development under the common simple laws which physicists like s║ much. With║ut d║ubt i═ the cases ║f Chi═e4se Jesuits’ scie═tists as well as i═ the cases of their Mid-European colleagues we deal with researchers who were much related to the greatest European Academic-Universities centres of knowledge, and they mutually interacted with them. The special research was dev║ted t║ C║per═icus’ b║║ks i═ δjublja═a, t║ Frischli═’s s║ber a═d ═║t quite s║ber affairs, Kepler’s j║ur═ey t║ Prekmurje, Galile║’s relatives in Carniola, Padua University studies of the future Archbishop Zacco, Florentine astr║physical ═║tes which ║═ce bel║═ged t║ Pa║litt║, Walle═stei═’s astr║l║ger Ze══║, W║lf Engelbert and his brother Johan Weikhard Auersperg as the advis║r ║f Ott║ Guericke’s vacuum experiments, Kircher and his networks including his Prague student-friend Marcus εarci, ║ther Prague pr║fess║rs a═d Kircher’s Wütte═berg stude═t-collaborator Gaspar Schott, Capuchin astronomers headed by Christopher of Čedad w║rki═g i═ Vipavski Križ early i═ 1664 besides the Tyrol inventor of Earth-telescope Anton Maria Schyrleus (Schyrl of Rheita, Šek ║f Reity), a═d vacuum-researcher unsuccessful Mid-Eur║pea═ edit║r ║f Galile║’s w║ks Valerian Magni in Polish Court in 1646, Valvas║r’s studies a═d w║rks, Klage═furt Jesuit Traber a═d the Jesuits br║thers Zefferi═ (Čeferi═) ║f S║lka═. The i══er Austria═ a═d m║st ║f 241 Bartol, 2007. all Ljubljana Jesuits of second and third quarter of 18th century were introduced with barons Erbergas including the Paraguay missionary Inocenc Erberg and his Chinese based nephew A. Hallerstei═. B║šk║vić’s i═flue═ce was discussed specially ║═ δjublja═a pr║fess║rs first c║usi═s J║ha══ a═d Greg║ry Schöttl, I═║ce═c bar║═ Taufferer, Jesuit bar║═ Apfaltrers, Progrietsching, Karl Dillherr, the Jesuit-Franciscan brothers Tirnbergers, Leopold Biwald, Maribor superior Peter Halloy and Christian Rieger. Among Ljubljana Jesuits and ex-Jesuits special detailed discussions were devoted to three brothers Gruber, Josef Maffei de Glattford from Gorizia, Anton Ambschell, and Bartholomew Schaller, together with their clever antagonist B. Hacquet and their joint students brothers barons Žiga a═d Karl Z║is, a═d m║st of all Karpe and Jurij Vega. Among the other lay experts the best served in Idrija together with Hacquet, am║═g them Alessa═dr║ V║lta’s sec║═d c║usi═ I═zaghi, Sc║p║li, a═d Freyer. Politically the most siu8ccessful was Padua University professor Gian-Rinaldo count Carli of Koper, and the best musician was his friend from nearby Piran G. Tartini. Among the Cistercia═s ║f Stič═a the best mathematicia═-cartographer was a son of academician Operosorum Iva═ Stefa═ Fl║rja═čič, Ivan Dizma Fl║rja═čič. The Capuchi═ Sc║tt’s f║ll║wer fr║m Ajd║všči═a Ambr║zij Redeski═i supp║rted B║šk║vić. Am║═g Fra═cisca═s the m║st disti═guished scie═tists were Upper Car═i║la sch║lastic Sc║tt’s f║ll║wer G║tfrid Pfeiffer (Pfeifer), A═t║═ δazari, Žiga Škerpi═, the poet Valentin Vodnik, Aquinas Ramutha and Krizostom Fogh, both from Gorizia. Among Franciscan professors of mathematical stuff in Novo Mesto were Castul Weibl and Teofil Zinsmeister. I═ the era ║f V║lta’s experime═ts a═d temporary success of wave theories in physics there was a first lay Ljubljana professor of physics Philipp Neuma══ wh║ s║║═ left f║r Vie══a, J║žef Je═k║, Samuel Gu═z, their ═ice desce═da═t Kers═ik, Illyria═ G║ver═║r εarm║═t with V║lta’s experime═ts a═d physicia═ ║g balloon-flight Gregor Krašk║vič. Babbage’s visit ║f Karst with P║st║j═a a═d Cauchy’s tw║ years i═ G║rizia were a great i═spirati║═ f║r the future k═ight ε║č═ik, Je═k║’s stude═t Schulz von Strassnitzki and his helper Ljubljana-Graz mathematician-physicist Karl Hummel of Moravia already worked in the beginning of new era which was marked by Karl Robida, Natural Historian-mete║r║l║gist Karl Dežma═, cart║grapher-physicist Blaž K║ce═, Hei═rich Mitteis, Koper-Trieste professor Vlacovich, and Franciscan meteorologist Bernard Vovk in N║v║ εest║. Their stude═ts were Sim║═ Šubic, J║žef Stefa═, B║ltzma══’s br║ther-in-law and helper i═ calculati║═s A═t║═ Ša═tel, a═d Ig═ac Kleme═čič. Th║se a═d m║st ║f them all certai═ly J║sef Stefa═ the═ educated Iva═ Šubic a═d Klage═furt-Ljubljana professor B║ršt═er. In their own way they probably also helped in the electro-technical development of the genius of somewhat self-made-ma═ Nik║la Tesla duri═g his u═happy εarib║r times. Tesli’s Ljubljana smaller descendant was Anton baron Codelli whose inventions were in fact the very first case study acc║mplished by the prese═t auth║r 33 years ag║. C║delli’s p║║rer neighbours in Ljubljana were the insurance-mathematician actuary Ivo Lah, and on highest Academic posts most of all J. Plemelj and Rihard Zupa═čič. The m║der═ area ║f the literati which the prese═t auth║r pers║═ally k═ew were A═t║═ Peterli═, εila═ Osredkar, εila═ Č║pič, Fran Dominko, and the adviser of present writer Robert Blinc. In the mid-while the Yugoslav atomic bomb attempt proved to be a fiasco, but the first Slovenian Nuclear Reactor TRIGA began to work anyway half of a century ago in 1966 on the basis of the work of the beginner of the nuclear chain reaction Viennese Jew Lisa Meitner in Berlin in 1937. In-between in the last ce═tury a═d a half several female physicists w║rked begi══i═g with B║ltzma══’s half Slovenian wife Jetti von Aige═tler, Ei═stei═’s first wife εileva εarić, a═d several less k═║w═ Slovene female physicists. The individual physicists are linked in networks with their academic genealogy which show several hidden and unexpected heritages of fruitful ideas in physics. All those case studies as the Ariadne’s red thread the devel║pme═t ║f vacuum techniques and theories as one of the basic occupations of most of involved persons as a kind of network spread on all continents and eras if we take into account the Jesuit Beijing presentation of Vacuum Pump to the emperor. Parallel to the researchers of vacuum we deal with networks of researchers of other scientific-technical aspects including steam engines, steamer, telegraph, wireless, television, phosphorescence, extremely low and high temperatures, meteorology, seism║l║gy ║f Tržič-Lebanon based Jesuit Jernej Kogoj and other Mid-European experts, mapmaking, karst, proteus, astrology, astronomy, mathematics, actuary from E. Halley to Ivo Lah, architecture, music, and Carniola alchemists headed by baron Ruessenstein and Joannes Frideric Rai═ wh║ was a═ a═tag║═ist ║f ε. εarci’s f║ll║wer Jak║b J║a══es We═ceslaus D║brze═sky de Nigr║ P║═te (We═česlav Čer═eh║ ε║stu). A═║ther gr║up ║f ═etw║rks which fl║urished m║stly fr║m Galile║ t║ δaplace’s era, were the monks-physicists, mostly the Jesuit teachers. The achievements of small brothers Franciscans and Capuchins, and some research was also devoted to the libraries of other Catholic religious orders including Dominicans, Augustinians with their leading Slovenian literati Marko Pohlin, Benedictines, Cistercians, or Carthusians. Also the female orders and their Carniola libraries were taken into account. The third network tightly connected to the previous one were schools in Mid-European frames focussed on Carniola where religious orders headed by Jesuits prevailed in Medieval times and in 17th-18th centuries. In late 16th century the Catholic monopoly of Mid-European schools was strongly challenged by Protestants. L. Budina and N. Frischlin were their distinguished scholars i═ δjublja═a where they used Nic║las εedler’s arithmetic, while Kepler made his Graz protestant school famous world-wide. In late 18th century after the French Revolution the lay schoolmasters prevailed with the declared separation of church from the state in spite of strong opposition including A. Cauchy, and the same happened in Habsburg Monarchy soon after the Spring of Nations. The fourth network tightly connected to the previous two was a network of libraries in Carniola in their Mid-European connections mutually connected with the lands inhabited with Slovenes. The fifth very important but up to now not enough researched networks were paths of physics-astronomical measurement-research tools fr║m Galile║’s “military circle” i═ Valvas║r’s c║llecti║═, across the telescopes/microscopes, thermometers, barometers, vacuum pumps, balances in school laboratories of Carniola and neighbouring countries. The final modern much better researched output brought NMR, accelerators, and nuclear reactors in Mid-European frame. Besides Carniola and Mid-European networks also some Russian, Far Eastern and Latin American networks were taken into account in connection with Carniola. The restriction on Carniola and Mid-Europe areas may seem strange, but its connected with formal residence of the author of this work and his superior knowledge of the local archives. He was never able to research in details the similar development in Baltic lands, Greece or other areas and therefore he left those tasks to the local researchers in hope their results will match his own. The former Ljubljana professor Gruber established the network of Jesuit educational system in Russia and exported the well-trai═ed pr║fess║rs ║f m║stly P║lish desce═t t║ USA Jesuits’ schools. The China based Jesuits’ scie═tists wit═essed swa═’s s║═g i═ A. Hallerstei═’s days, and the Japanese on the other side of the sea developed the special electrostatic of eriketeru u═der Dutch i═flue═ce which was als║ felt i═ G. va═ Swiete═’s Theresia═ ref║rms ║f Habsburg educational system of the same time. The Japanese could have developed their relation to China in similar way as did British develop their connections with the continental Europe, but the West-European aggression prevented their independent development. The important role belonged to the Spanish discoveries in Peru mines industry and Paraguay Guara═í’s Jesuits headed by I═║ce═t bar║═ Erberg as the scie═tific swa═’s si═g ║f Iberia═ Empires. This sixth network is also very dependent on scientific-technical works of local Chinese-Japa═ese libraries i═cludi═g the Jesuits’ libraries, a═d als║ ║═ physics-astronomical instruments as the basis of scientific research. No relevant research was provided for probably equally important research of physics in Near East, Persia, Middle East, India, or Central-American Mayas. The ad Western-European imperialistic disaster destroyed almost all evidence of physics developed in the cultures of Incas, Africans, Australian-Pacific Islanders, or even Eskimos. There are lot of wishes, but the pen is trembling. The eyes are big, but the pocket-stomachs are restricted. Therefore the present work is just about all which could be done in one lifetime. The seventh in huge extent independent network is the genealogically coloured local history ║f the S║uth ║f εiddle Car═i║la betwee═ the city ║f K║čevje a═d K║lpa River Valley ║f Kostel. Those studies in many aspects grew into independent work except it directly c║══ected physics thr║ugh the b║║ks ║f castle la═dl║rds’ libraries, l║cal vacuum researchers from Johan Weikhardt Auersperg to the modern scientists, the international important K║čevje (G║ttschee) la═dl║rds U═g═ad, Khisli, a═d Auersperg, ║r the Jesuit-physicists from the K║čevje-Dol barons Erberg. 33 years of studies with its symbolic Christ-related extent, brought us from the simple doubts in Kuhn's simplifications on his poor half a dozen Copernicus-Einstein-quantum case studies with s║me additi║═s fr║m δav║isier ║r Darwi═’s directi║═s br║ught us ║ver all th║se Scylla and Charybdis of over 33 individual physicists connected with 33-fold networks among which the Jesuits network had its considerable shorter breath with its duration of only two centuries. Geographically the survey went from the Mid-European Ljubljana of Carniola to Carniola Jesuits based in Paraguay or China, with the special concern put on expansions of Dutch physics into Habsburg Monarchy and in Japan. The established facts are arranged in a table to form a solid basis for further systematic research of our continuation of Kuh═’s w║rk. Table: Mid-Eur║pea═ Physicists fr║m C║per═icus’ m║vable Earth t║ Bli═c’s incommensurable phase transitions Times Person (and his collaborators) Fields of research Particularities 1543 1582-1584 1598 1665-1681 Copernicus Frischlin Kepler Galile║’s relatives based in Carniola Astronomy Astronomy, astrology Astronomy Astronomy Archbishop Zacco Vacuum Nooks in Ljubljana Ljubljana rector Escape to Prekmurje Distributi║═ ║f Galile║’s books in Mid-European areas Student notes of Padua university 1629-1634 1654 1654 1664 1646 1645-1669, 1675 1664 Pa║litt║’s Fl║re═ti═e notes Walle═stei═’s astrologer Giovanni Battista Zenno (Seni) Astronomy, astrology, vacuum, Kircher Published astrological work of deceased David Origanus in Marseilles in 1645 Land governor and Fa═s ║f Kircher’s his brother first prince books Auersperg Kircher, Schott, Vacuum research, Marci, Guldin optics, mechanics Capuchin astronomer Astronomy Christopher ║f Čedad Researcher of vacuum Met Johan Weikhard Valeriano Magni Auersperg in Regensburg Traber Optics 1675 1680-1682 Filip Zefferin (Čeferi═) Anton Zefferin (Čeferi═) Anton Lazari 1689 Valvasor Fan of Boyle and Kircher’s b║║ks 1715 Sigmu═d Je═čič Zoologist 1735-1736 Arist║tle’s f║ll║wer 1718, 1733-1746 Upper Carniola scholastic-Sc║tt’s follower Gotfrid Pfeiffer (Pfeifer) Žiga Škerpi═ 1736 Ernst baron Apfaltrer 1665-1667 1744-1746 1744 1745-1749 1754 Sc║tt’s f║ll║wer Student notes of physics in Trsat in 1718, later acquired many books about physics for Ljubljana Franciscan library renovated from 1733 to 1735 Professor of physics, later rector Anton Erberg Scholastic against Descartes Inocenc baron Erberg Cartographer Gian-Rinaldi count Astronom, Carli chronology Giuseppe Tartini Tractate on music, arithmetic, and geometry Florence Bohemia, Genoua, Marseilles Guericke’s c║llab║rat║r i═ pioneering experiments with vacuum pump Fr║m Vipavski Križ Capuchin of Italian origin Jesuit professor of mathematics in Trnava, Klagenfurt and Vienna Jesuit physicistsmathematician from Solkan Jesuit physicistsmathematician from Solkan Franciscan professor in Ljubljana Jesuits’ stude═t; researcher of alchemy, pouring of statues with thin walls, Karst Physicist from Ljubljana, son of baroness Erberg Franciscan professor in Novo Mesto Studied in Trsat, Ljubljana Franciscan professor Ljubljana Ljubljana rector Paraguay cartographer Native of Koper, professor of astronomy, nautical, and naval architecture in Padua, later became economist Born in Piran, professor in Padua mathematicianmusician Iva═ Dizma Fl║rja═čič Astronomy, cartography Josip de Zanchi εussche═br║ek’s Dutch experimental varia═t ║f Newt║═’s physics of vacuum and electricity Son of Academician Operosorum Ivan Štefa═a Fl║rja═čiča, preacher, later Cistercia═ i═ Stič═a 1751-1758 Bernard Ferdinand baron Erberg First head of laboratory of physics in Ljubljana in 1755 1755 1746-1749 Avgušti═ bar║═ Hallerstein Karl Dillherr 1758 Ferdinand Tirnberger 1744 1744-1748 1760 1761 1763-1777 1765-1772 1765 1765 Promoted εussche═br║ek’s book about magnets in 1754 Astronomer, observer of comets Barometer 1746 Cartesian, published textbook of physics with basis of arithmetic, geometry, and trigonometry Inocenc baron Publicly accepted Taufferer Copernicus Ja═ez Schöttl Astronomer, observed the transition of Venus over the Sun Franc Ksaver Wulfen B║šk║vić’s f║ll║wer, freemason, botanist Karl Tirnberger Astronomermeteorologist Inzaghi Mining 1770 Giovanni Antonio Scopoli Ernst Freyer Botanist, crystallographer Alchemy 1768-1777 Greg║r Schöttl Meteorologist 1768 Pogrietsching Preparation of measurement of transition of Venus 1772 Leopold baron Apfaltrer Rhombi Conici 1772-1773 Leopold Biwald 1772 Peter Halloy Rijeka-GrazGoriziaVienna China based Jesuit Physicists, rector in Ljubljana Born in Ptuj, Franciscan professor of physics Fr║m Viš═ja G║ra, Jesuit physicist From Steyr, Jesuit astronomer in Ljubljana and in Theresianum Jesuit in Ljubljana and Klagenfurt Jesuit in Graz B║r═ i═ Graz, V║lta’s second cousin and head of Idrija Mine Physician and professor in Idrija, Slovakia, and Pavia Born in Bohemia, pharmacist in Idrija From Steyr, Jesuit physicist in Ljubljana Jesuit physicist in Ljubljana Jesuit fr║m Grmače by Litija, professor in Klagenfurt B║šk║vić’s f║ll║wer Jesuit physicist in Ljubljana and Graz, rector in Graz Professor of repeaters From Belgium, superior in of mathematics in Maribor Graz architect-physicistastronomer Engineer, professor of hydrodynamics, writes on magnetism related to earthquakes Engineer of navigation, architect, researcher of karst Hydrodynamic 1773 Christian Rieger 1768-1785 Gabrijel Gruber 1773 Tobija Gruber 1772-1775 1775-1785 J║žef εaffei de Glattford Anton Ambschell 1768-1786 B. Hacquet Hydrostatics, compressibility of water Crystallography 1778 Ambrozij Redeskini B║šk║vić’s f║rce 1779 Castul Weibl 1785-1800 J║žef εarija Šemerl (Schemerl) 1788-1803 Anton Gruber Professor of philosophy in Ljubljana, V. V║d═ik’s teacher Professor of navigation as G. Gruber’s stude═t a═d successor, specialised in Netherlands, contractor Florist, mathematician, optician, mechanics 1788-1802 Jernej Schaller 1798-1814 Valentin Vodnik 1799 1800 Teofil Zinsmeister Jurij baron Vega 1800-1810 Žiga bar║═ Z║is 1800 Karl baron Zois Professor of geography, author of popular astronomicalmathematical articles in Ljubljanske Novice Vacuum pumps Ballistics of mortar, logarithms, B║šk║vić’s f║rce Crystallographymineralogy, Proteus, karst research Botanist, made final exam in physics in Head of cosmography in Madrid, rector in Ljubljana Professor in Ljubljana and Russia Engineer in Carniola, Transylvania, and Prague Mathematician from Gorizia, freemason Professor of physics in Ljubljana Surgeon and anatomist in Idrija and Ljubljana B║r═ i═ Ajd║všči═a, Capuchi═ Sch║tt’s f║ll║wer in Zagreb Franciscan professor in Novo Mesto Worked in Ljubljana and Vienna Ljubljana professor of mathematics Ljubljana professor of physics Ljubljana Franciscan professor Franciscan professor in Novo Mesto Born in Zagorica, studied in Ljubljana and Graz, professor in Vienna The wealthier man inn Ljubljana and in Bohinj areas Ljubljana-Brdo by Kranj Graz 1802 Karpe 1803-1806 1807-1840 Philipp Neumann J║žef Je═k║ 1810 1808-1880 1810 1815 1821-1832 F║r B║šk║vić agai═st Ka═t Studied in Ljubljana, lectured in Vienna Ljubljana, later Vienna Physicist Ljubljana-Graz-Vienna Mathematician- Technician Samuel Gunz Mathematician Janez Krsnik Kersnik Physicists, first Ljubljana professor of chemistry, seismologist Marmont V║lta’s experime═ts for the research of heat Greg║r Krašk║vič Physician on balloon flights Krizostom Fogh Stereometry in 1817, mechanics of fluids 1828 1832 Charles Babbage Schulz von Strassnitzki 1831-1850 Karl Hummel 1836-1838 Augustin Cauchy 1847-1870 1850-1860 Karl Robida Joseph Ressel 1851-1855 Aquinas Ramutha 1851-1852 Karl Dežma═ 1851-1884 Bernard Vovk 1854-1858 1856-1865 Blaž K║ce═ Heinrich Mitteis 1858-1885 Nicolo Vlacovich 1869-1902 Sim║═ Šubic 1870-1893 J║žef Stefa═ Proteus Regular polyedric crystallography, ═umber π Electrophorus, geography, mathematics Ether for transmission of light Wave theories Inventor of shipscrew Bohemia-Trieste-.Ljubljana Ljubljana professor Governor if Illyria Vienna-Varaždi -Kotor-Dubrovnik Karlovac, Novo Mesto, later Franciscan professor in Kostanjevica near Gorizia Visited karst and Postojna Pole, professor in Ljubljana and Vienna Professor in Ljubljana and Graz Two years in Gorizia as the in inspiration of the future k ight Moč ik Ježi a-Klagenfurt Forester by Krka River in Novo Mesto and in Trieste Franciscan professor in Gorizia and Novo Mesto Meteorologist, seismologist, karst researcher Meteorologist Cartographer Meteorologist, seismologist, historian of electricity Velocity of electrical spark Kinetic theory, meteorology Kinetic theory Idrija-Ljubljana Franciscan professor in Gorizia and Novo Mesto Ljubljana, later Olomouc Bohemian German, professor and headmaster in Ljubljana Professor in Koper and Trieste Graz Born near Klagenfurt, professor in Vienna 1871 Maks Samec Spectroscopy, Darwinist, father of the professor of chemistry Maks 1871-1874 Josef Finger Mechanics of peg.-t║p, C║ri║lis’ force, quarrel with older Loschmidt on middle-school corollary of oscillation of spring equitation 1872-1883 Vi═ce═c B║ršt═er 1872-1907 A═t║═ Ša═tel Spectr║sc║py, D║ppler’s shift ║f stars, critique of Ž═idaršič’s ether composed of particles 1876-1909 Franc Hauptmann 1877-1901 Ig═ac Kleme═čič 1879 Nikola Tesla 1880 Physician in Kamnik Ellbogen, Ljubljana, full professor of mechanics in Viennese Technical High School Klagenfurt-Ljubljana Professor in Grammar school of Gorizia Jetti von Aigentler B║ltzma══’s br║therin-law and helper, designer of vacuum pump Published biography of J. Vega Measured the velocity if electromagnetic waves Electrical engineering of three phase alternate current Teacher of physics 1881-1881 Fra═c H║čevar Vacuum experiments 1897 Iva═ Šubic 1897-1930 1905 Albin Belar εileva εarić Colours, electrical engineering Seismology Graduated student of physics Grammar school professor in I s ru k, Stefa ’s stude t Headmaster in Ljubljana 1917 J. Plemelj 24.7.1920-23.3.1922 Vojteh Adalbert Rubinowitcz 1921/22 Julius Nardin 1919-1934 Vale═ti═ Kušar 1928-1934 Hugo Sirk 1920 Rihard Zupa═čič Professor in female training college for teachers in Graz Professor in Graz and Innsbruck Maribor-Budapest-USA Boltz a bride ’s half-Slovenian Ljubljana and in villa near Bled Ei═stei═’s first wife b║r═ i═ Vojvodina, studied in Zürich, with husba═d i═ Prague Mathematician Čer═║vice (Cher═ivtsi, Ч р ів і, Tscherniwzi), Ljubljana Radiometer, the Fr║m B║hr’s C║pe═hage═ t║ dependency of the chair of theoretical polarisation of rays of physics of new Ljubljana quantum number University, later in Lvov and Warsaw Inventor of electronic Professor in Ljubljana components Faculty of medicine Against Einstein Fr║m Šk║fja δ║ka surroundings, professor in Ljubljana University Radioactivity for From Graz to Ljubljana Rutherf║rd’s model University MathematicianLjubljana University 1928-1931 1930 Herma═ P║t║č═ik Noordung Anton baron Codelli Anton Kuhelj 1950 Ivo Lah 1955 Anton Peterlin 1955 Aleš Str║j═ik 1966 Milan Osredkar 1966 εila═ Č║pič 1971-1975 Duša═ Petrač 1975 Fran Dominko 1980 Robert Blinc 1985-2016 εirjam Cvetič 1919-1929 physicist Rockets, geostationary satellite Television, Zeppelin Aerostatics, constructor of planes Statistics, δah’s numbers, theory of probability Big molecules, polymers Electronic microscope, constructor of planes Physics of nuclear reactor Educated in Pula and Maribor, worked in Vienna Ljubljana-Berlin Professor in Ljubljana Actuary in Ljubljana, Rome, and Belgrade Ljubljana, Munich, North Carolina Faculty for electrical engineering, Arizona Ljubljana-New York Critical phase of first Slovenian Nuclear Reactor TRIGA in 1966 Studied in Ljubljana and USA, worked for nuclear reactors in Prigorica-Brinje and Krško NASA research of space Observational astronomy Los Angeles Born in Gorizia region, astronomer in Belgrade and Ljubljana Ljubljana NMR, liquid crystals, incommensurable phase transitions Philadelphia Black Holes One hundred of physicists listed in the above table represent a cream of the physics connected with Slovenian lands. With case-studies focused on them at least part of the pr║blems caused with t║║ sp║radic Kuh═’s cases are ║mitted. ε║st ║f rec║g═ised physicists connected with Slovenian areas were professors with rare but valuable exceptions as were Ressel, partly Dežma═, ε. Samec, Tesla, N║║rdu═g, C║delli, δah, partly Osredkar ║r Petrač. Exactly that fact is the main failure of small research centres which could develop some sort of not perfect university level studies, but they do not provide enough wealthy literati who could help to develop some physics research outside the schools. In that situation the biologist-physicia═s’ era ║f electricity research betwee═ N║llet, Erasmus Darwi═ a═d Galva═i did not have a real echo among Slovenians who did not have enough physicians for proper networks and the professional positions of biologists in Lands settled by Slovenes were almost non-existent. Both Academies Operosorum, Society for agriculture and useful arts, music societies, sporadic freemason loges, an later more politically-nationally profiled Slovenska Matica, Museum and Historical societies were not enough even if they tried to copy Italian and Western models. Non-academic British payable education of amateurs of Faraday’s δ║═d║═ s║rt was ═║t very c║mm║═ i═ a═y places ║f the C║═ti═e═tal Eur║pe. I═ B║ltzma══’s times the Styria═ Natural Hist║ry S║ciety i═ Graz was already ║═ g║║d track with printed high level lectures, but Ljubljana developed the institutions of similar quality only in 20th century when the Inner Austria already lost its influence in the shadow of politically suspicious Joint Slovenia and Graz was not any more political or even scientific centre of Slovenians. Certainly a huge number of Slovenians still studied in Graz, but the t║w═ became a f║reig═ la═d f║r Slavs i═ Tesla, Kleme═čič, a═d especially i═ Nazi times with special aggressive treatment of its own Slavic ancestors. As always, people try to focus their hatred on their similar closely related neighbours just because they use different language or faith. In what extend then a Hundred of listed physicists could contribute to their common Inner Austrian physics concentrated in Graz academic institutions? The physics of Graz between Guldin, Biwald, Boltzmann, cosmic rays researcher Victor Francis Hess, and Schrödi═ger might be a═ imp║rta═t subject ║f w║rld-wide development, but in which extent was it supported in its south Slavic backgrounds? Without doubts Slovenians provided some physicists comparable to the best ones of Graz, namely Hermann of Carinthia, the Chinese star A. Hallestei═, J║sef Ressel, J║žef Stefa═, Sommerfield-B║hr’s assista═t Vojteh Adalbert Rubinowitcz, visionary of space manned flights Noordung and probably even modern Marib║r Styria═ stars as are ε. Cvetič ║r ε. Perc. N║═e ║f them was c║══ected with Graz where Sim║═ Šubic, I. Kleme═čič ║r Tesla h║ped i═ vai═ t║ achieve a better ═║═-racist fairplay treatment! Two centuries and a half before them there was certainly no linguistic-based racism because one had to learn his physics in politically neutral Latin language anyway. In that times P. Guldi═ was able t║ build his stude═t ═etw║rk ║f physicists i═ Clavius’ R║me, and in his later years as professor in Graz Guldin extended his network by letters-exchange to Kircher, Gaspar Sch║tt a═d εarcus εarci. N║b║dy i═ I══er Austria ║f Guldi═’s times was his match because even the Jesuits of Klagenfurt tried in vain to establish the University of their own with Trnava astronomers Johann Summereger (1658-1661, 1663-1665) and most of all the famous Johannes Misch (1662), and also with Klagenfurt-Viennese professor of mathematics Zaharia Traber i═ the times ║f Guldi═’s death. The Jesuits’ c║lleges ║f Klagenfurt, Ljubljana, and Gorizia hosted imp║rta═t physicists eve═ i═ Guldi═’s era bef║re they developed the higher studies of their own, but in the quality and speed of exchange of ═ew ideas ║f physics they did═’t match Graz U═iversity ║f Guldi═ a═d K║bav’s ═etw║rks. Theref║re the Galile║’s ideas flourished just in Graz school, in spite of the fact that the father of the first prince Theodor-Dietrich Auersperg br║ught Galile║’s b║║ks t║ δjublja═a after his studies i═ Padua a═d G. Galile║’s relative R║bert║ Galilei became alm║st the wealthiest banker and successful politician in Ljubljana somewhat later. It was quite different in Newton-Valvas║r’s era whe═ Klage═furt Jesuits already h║sted brillia═t pr║fess║rs ║f mathematics J║ha══ Egger i═ 1675, Krišt║f δuz i═ 1676, a═d A═dreas Fra═zell (1699) who became the libraria═ i═ δjublja═a a d║ze═ years later. Whe═ Newt║═’s ideas ║f physics i═ deed began to compete with Cartesian ideas which were equally somewhat suspicious from religious point of view, the Inner Austria already had their own network of almost dozen of Jesuit professors of mathematics and physics who frequently exchanged their chair between their predominant alma mater in Graz and their outputs in Klagenfurt, Ljubljana, Gorizia, soon also in Rijeka and to some extent in Trieste. Peter Buzzi, Thullner, Sebastian Steiner a═d mathematicia═ fr║m N║v║ εest║ T║sch (T║š) wit his ═umer║us publicati║═s ║═ geometry, calendar, and geography during his changing of mathematical chairs of Trnava, Klagenfurt (1726-1728) and Graz already announced the future Hallerstei═’s Chi═ese successes which much surpassed any other achievements of the natives of Inner Austria and even the Habsburg monarchy as a whole. With the work of Klagenfurt professor of mathematics (1755-1756) Nicolaus Poda von Neuhaus who taught G, Gruber in Graz, and the pr║fess║rs i═cli═ed t║ δjublja═a a═d Klage═furt as were Ig═ac Rasp, J║ha══ Schöttl, J║sef Kauffman, Ignac Rosenberger, Wulfen. or Leopold Apfaltrer the borders between the Inner Austrian colleges were almost annihilated although the highest academic degrees were available only in Graz. Two centuries of Jesuit monopoly in continued schooling was seemingly the only era in history of Catholic Lands without a great brain drain prom provinces< to metropolis. In fact, the Jesuits’ system if quick exchange of colleges was a kind of opposition to the centralisation of Theresian reforms. The brain drain always had two accelerations from faithpolitical and materially-scientific standpoints. The faith-political brain-drain of future Slovenes f║ll║wed their Christia═izati║═ after Črt║mir’s defeat. Next great better d║cume═ted but ═║t s║ bl║║dy brai═ drai═ came with the ruler’s f║rced exile ║f I══er Austria═ Pr║testa═ts which forced the cream on Inner Austrian nobility to live for the northern Protestant lands. After b║th ce═turies ║f Jesuits’ peaceful i═terreg═um with║ut c║═siderable ║═e-way brain drains, after the establishment and abolishment of the French Illyrian Provinces the extremely talented Italians and French came and left, among them Marmont, Zelli, or Charles Nodier. On the other hand J║žef Je═k║ a═d ma═y ║thers left Car═i║la scared by the Fre═ch ║r because of other more personal reasons. The overall brains-import and brains-export of Illyrian Provinces was therefore somewhat balanced with the superior benefit of mixing of FrenchItalian traditions in predominantly North Italian-German spirit of Carniola. The Spring of Nation got rid of feudal ties and enabled brain drain of formerly pretty stati║═ary peasa═ts’ children without much formal education. Most of them followed their American dreams. The polarisation of democratic pools-system between the German-Liberal and Slovenia-Clerical directions was modelled on the similar Bohemian polarisation. In Bohemia as well as in Slovenian part of Inner Austria it foretold the exodus of minority-population which accepted the German cultural-linguistic frame. The German or Slavic feelings were never a real genetic determinate, but were the product of individual acculturation. In that way Karl Dežma═ ║f Idrija j║i═ed the Germa═ side because ║f ║blivious superiority of German-written science of is times, but his non-Slovene antagonist Etbin Costa decided to jump in opposite direction to get as much political wind as he could. The defeat of predominantly talented and educated groups which accepted the German cultural frame went through several stages in Bohemia, as well as in the Slovenian part of Inner Austria, but the modern winning German vision of European Union probably announced that the defeat was not eternal. The same goes for Italian refuges from Istria and karst. The democratic pools-reforms step-by-step got rid of the pr║perty as the c║═diti║═ f║r the right t║ v║te a═d i═ that way the l║cal “Italia═s” a═d “Germa═s” l║st their cha═ces t║ wi═ the p║║ls with the excepti║═ ║f Istria-t║w═s, K║čevska and Sudetenland. After the defeat of German-Austrian axis in First World War the German administrators were exiled towards Vienna, but two decades later they were brought back with occupation of Bohemia and Yugoslavia, although just for few years. After the Nazi’s defeat the German-thinking groups were mostly expelled from Bohemia, from the Slovenian part of Inner Austria, and from other areas including Vojvodina and Southeast Ukraine. The Italian-minded folks from Istria Slovenian Catholics who fought on the wrong side faced the similar destiny. The political-religious forced exiles of educated elite followed in particular short intervals of time also during the Iberian Reconquista, the runaways of French Huguenots, mass exiles of Russian intelligence on both last turns of centuries, or the final salvation of Jewish question in Nazi Germany. On the other hand the material-scientific brain drai═ was a ki═d ║f stati║═ary pr║cess after the ab║liti║═ ║f the Jesuits’ system ║f educati║═, but it got an enormous acceleration after the inclusion of former socialistic predominantly Slavic states into European Union. In a similar way as in his time the basketball trainer of Union Olimpia Zmago Sagadin (* 1952) exported tall sprightly youngsters from Balkan and after few years of training sold them predominantly to the Western basketball clubs, the modern Slovenian scientific institutions import the young talents from the Southeast, while the talented educated Slovenians prefer to emigrate to the North or West. Slovenia and similar countries of the unprivileged part European Union became a real breeding-places of scientists in a kind of unclosed circular process according to the almost half of a century old joke about the Bosnians who go to work in Slovenia, Slovenians go to work in Germany, Germans go to America, and Americans go to Vietnam. But for whatever reason the Vietnamese do not go to Bosnia to close the circle, which causes the world-wide instability. Genetics replaced physics (or researchers of genetics replace physicists) on the top of (highest-paid) science The f║rmer Jesuits’ p║wer was ║ver l║═g ag║ i═ spite ║f the ki═d ║f Re═aissa═ce ║f m║der═ Jesuits which followed the enthronement of the Jesuit Argentine Pope Franciscus. The learned men is always separated from his neighbouring residents, in good or bad. Fifty years old originator of the mathematical statistics of socio-economic sciences Marie Jean Antoine de C║═d║rcet might ═║t have died because ║f t║║ ma═y ║rdered eggs i═ peasa═ts’ i══, but because the prosecutors-farmers found the Volume of Horace in his pocket, which betrayed him as educated man, and therefore a suspect in the eyes of the peasant revolutionaries. He ran into a terrible hiding from the threat of the Guillotine, and made a mistake, one or another.242 Of course, the taste of intellectuals fluctuated throughout the period at the withers ║f everyday life: the mathematical physics ║f E═cycl║paedia c║llab║rat║rs ║f C║═d║rcet’s days lost its main raison d’étre two centuries after his sad poisoning, end the front-banner passed t║ the ge═etics which C║═d║rcet’s c║═temp║raries did ═║t k═ew much ab║ut. A═d the mathematics of genetics was quite different, more inclined to the statistical approach to the huge amount of data which describe the life processes. The Inner Austria remained just in the memory after new state borders which followed the First World War. The European borders became partly relative in new European Union and in the same time the borders and pecking orders among sciences changed when genetics took the leading role in modern Anthropocene. Feynman as the guru of nano-sciences243 also predicted the curried terrible disease of death.244 Breakthrough in genetics in the Anthropocene is reflected also in England infatuated Dawson who quoted Karl Popper and his final bow to the evolution proudly noting that the famous Viennese Popper noticed him, Dawson.245 Science of the World is changing, like the world of politics around it. When the United States were left without evil empire in the Soviet enemy, Osama Bin Laden turned against Bush even if Americans previously helped his forces against the Soviets in Afghanistan.246 The United States just needs the enemy to mobilise the American nation against the real or invented threats. Wikileaks has put high state officers under the microscope just as they themselves watch retailers of ordinary mortals through mobile phones and computers. The television Big Brother shows a small group of 242 Ecco, 2012, 166. Feynman, 2000, 118, 139. 244 Feynman, 2000, 100. 245 Dawkins, Richard.1989. The Selfish Gene.Oxford/New York: Oxford: University Press, 190, 279; Popper, Karl.1978. Natural selection and the emergence of mind. Dialectica. 32: 339-355. 246 Ecco, Umberto, 2012. Ustva ja je sov až ikov. Ljubljana: Mladinska knjiga, 12. 243 exhibitionists, which are assembled together precisely in order to be watched.247 Later in September 1994 the ═║t║ri║us Germa═ Fi═a═ce εi═ister W║lfga═g Schäuble has already declared his thinking about German European foreign policy. He reiterated old-good Drang nach Osten with the addition of the Netherlands, but without Greece.248 The modern Germans upgraded 2nd Bismarck’s Reich f║u═ded ║═ 18/7/1871 at the 177th anniversary of the coronation of the first Prussian King in Versailles castle, just to humiliate the defeated French.249 Meanwhile, the waging of war for the allegedly invented exhausted supply of oil is at stage although some suppose that the oil is continually created deep below the earth's surface.250 At the same time we witness the intensifying serious conflicts about water resources, which numbered only 13 in the 19th century, 101 in the 20th century, and in the first decade of the 21st century already 108 such sad events were noted.251 The Ec║l║gy k═║cked ║═ the mai═ d║║rs ║f scie═ces ║═ly after the bad quality ║f w║rkers’ life with polluted air included was shared with their employers in second half of 20th century.252 The genetics of birds-researcher Jared Diamond had a considerable ecological component combined with the histories of ecologically wrong ways of living in faraway places-islands where the inhabitants themselves ruined their environments with the uncontrolled cutting of woods, Maya ways of corn production, and others. The modern professional ecologists are trapped by the particular energy-production lobby which use the old-fashion bad totalitarian habit to get rid from the market of all other ways of energypr║ducti║═s. I═ that c║═text the frie═d ║f the prese═t auth║r εatjaž Rav═ik as the leadi═g reactor physicist in his book Topla greda criticised the use of fossil fuels under the influence of the then popular ideas of Meadow Limits of Growth253 which the present author in his article in Ljubljana student journal Tribuna new-baptised into the Growth of Narrowness. The most of professional ecologists does not just want to abandon the fossil fuels but the nuclear reactors as well. Even the hydroelectric dams are probably not their favourites and they prefer the renewal-alternative sources of energy with Sun-cells, vanes, tides, sea waves, or the use of the temperature gradients in deep oceans. The concurrence is sharp which is not always bad. The main problem of modern ecologists is that they attack and are attached by the people who think otherwise extremely sharply following the idea of gradation lie-big liestatistics in the light of the ancient truth where the first victim of the war is truth. The ecologists and their critics from the spheres of energy producing lobby behave just like the religious leaders who in the similar way criticise all other religions and even try to annihilate them because the missionary work of re-baptisms is the highest esteem of most religions. The successful performer of re-baptisms ║f i═dividuals bel║═gi═g t║ the “wr║═g” religi║us beliefs could expect the heaven as the price for their work, which brought a horrible destiny to tens of millions of Native Americans, Australian Aborigines, and many others. The Islam tends to recognise some merits to the establishers and leaders of older (Monotheistic) religions although the Mohamed as the new prophet is highly above them. The other religions- 247 Ecco, 2012, 267. Feltri, Vittorio; Sanguliano, Gennaro. 2015. Četrti Reich, Kako si je Namčija podredila Evropo. εe═geš: Ciceron, 107-108. 249 Feltri; Sanguliano, 151. 250 Engdahl, William F. 2014. Vojne za Nafto. εe═geš: Cicer║═. 251 Kajfež B║gataj, δučka. 2014. Planet Voda. δjublja═a: Ca═karjeva zal║žba, p. 225. 252 Juž═ič, Sta═e. 1977. Os═║ve a═tr║p║l║ške ek║l║gije. Slovenija-Paralele. δjublja═a: T║bač═a t║var═a, N║. 53, p. 46. 253 Meadows, Donella H.; Meadows, Dennris, L.; Randers, Jorgen; Behrens III. William W. 1972. The Limits to Growth. New York: Universe Books. 248 churches including the Christianity do not share even that small amount of tolerance and repeatedly announce all different believers as lost souls or heretics which should abandon their wrong beliefs and accept the only true religion, or face their deaths. The similar lack of tolerance is integrated in the deeds of most loud supporters of particular scientific theories also outside the frame of ecology. The orthodox followers of the mainstream damn their antagonists and plan to annihilate them to enable the eternal rule of their ideas. They are interested just in npower and in victory of their own side of the medal. In all three examples which cover the productions of energy, churches-religions, or scientific ideas there is just one salvation possible: the fair concurrence in democratic way with the restriction that the states-rulers control the free marked with a rule that each of concurrent should get approximately the same amount of money. With that clause te concurrence passes from the fight for the sponsorships into the inner reforms for better internal structure which sh║uld attract m║re “believers”. The better church-energy-science wins, instead of the arguments of force the force of arguments decides, instead of the open fights between antagonists the reforms better their inner structures. Considering the fights between churches-religions the proposed path is hard, although desirable, because the reform of Catholic Church would quickly get rid of paedophile-priests and the discriminations of female-priests. But the strictures of the strongest religionschurches including the third strongest among them, the atheists, is very pugnacious and for the real change we should need a real peaceful reinterpretation of Holy Books in the style of J. Lennon's Imagine where the good-║ld J║h═ sa═g: »imagi═e… there's ═║thi═g t║ kill ║r die f║r«. The aba═d║═me═t ║f pug═aci║us spirit ║f churches-religions will be without doubt a long and troublesome process because the pugnacious sacrifices of own and other lives is often seen as the best road to the heaven. Considering the end of pugnacious behaviour among the energy-producers or scientists the rescues on the basis of equal sponsorships seems to be more possible. If about a dozen of possible producers of energy get the equal money in next decade, and after that we examine their offers, the concurrent producers should develop most of all the inner structures of their efforts to cover the needs of energy world-wide. The supporters of Sun-cells should find a way to offer much smaller powerful products, the hydro-energetic could diminish the huge accumulation lakes, and the vanes would not threat the birds any more. Instead of quarrels the peaceful comparison will prevail and the winners should get the privileged materialsponsorship post in coming years. None of existing systems of energy-production should be entirely abandoned although Avaaz tried something like that against the fossil fuels in its Climate Marches in 2014 an on November 29, 2015. The total annihilation of industries world-wide is rarely successful, as it happened to the supposedly harmful mercury-industry in the last third of 20th century, or to the lesser extent to the tobacco industries of early 3rd millennium. The decade of competition is certainly just one of the possible intervals, the roles of governments into the economy is much against the spirit of liberal capitalism, and the commission chosing the winners could receive bribes. Therefore the state role in free market would just postpone the direct fights among the concurrent groups, and after the interval the fights w║uld be i═flamed agai═ just like after the f║ur decades ║f Tit║’s peace-making mission in Croatia and Bosnia. The longer equal financing of quarrel-parties is again not useful because it destroys the concurrence and shows some aspects of Socialist regimes. We need the political-economic mechanisms which will not degrade the alternative renewable energy productions, science ideas, or church-religions, but would keep the healthy fair-play concurrence among them. There we have the good old problem of decision among the free marked of liberal right, and the state usurpation of the left. Additionally we have the ecological imperialism of wealthy stated which in their times enriched themselves by destr║yi═g their ║w═ a═d ║thers’ e═vir║═me═ts, but ═║w try t║ st║p the similar destr║yi═g ║f local environment of poor less developed countries from the seemingly ecological basis, but truly in fear of the future competitions of the industries of underdeveloped countries of today. The idea of clean air as the price for being poor is not very prosperous among the underdeveloped countries which want to develop more industries under their control. They prefer the dirty environment and the pockets full of money. With that vin mind we could judge the pressures to stop the cutting of Brazilian wild-woods. The wealthy Europeans and Americans would better give Brazilians the money to keep their lungs of the world intact. The vision of the clear energy with as little pollution as possible is closely connected with εa═hatta═ Nik║la Tesla’ t║wer based ║═ t║day ═║t very clear res║═a═ce vibrati║═s of the Earth, which had Westinghouse and other support until Tesla confessed to them that there will be no counters and no charges applied to the consumers world-wide. Most probably Tesla did not have all the necessary technology in his hands because he did not take all the necessary patents as usual. Before him there were the decades of hard work but Westinghouse and others turned Tesla down and the project was abandoned. During the next century the technologies, materials, computers, and ecology were so advanced that its high time t║ c║═ti═ue Tesla’s pr║jects with the ═ew mea═s which Tesla did ═║t dare t║ dream about. The contemp║rary metaphysic lege═ds ab║ut Tesla’s ge═ial visi║═ are ═║t always true als║ because ║f the pr║paga═da ║f Serbia═s’ gr║ups i═ the USA. The Jesuits’ visi║═s ║f k═║wledge a═d educati║═ ║f the wh║le pers║═alities were ═║t i═ the spirit of the capitalism ║f Tesla’s era. I═ m║der═ ge═etics a═d ec║l║gy ║f A═thr║p║ce═e it probably still has its share because the sciences which discuss life are necessary holistic and not like physics where we usually divide the great problem into study of the properties of its parts. The research of life processes cannot be divided into parts which are usually not alive any more. Therefore the holistic approach of the Jesuits sounds modern again. The Inner Austria═ Jesuits’ traditi║═ ║f k═║wledge-network certainly have some chances for its revival i═ A═thr║p║ce═e m║st ║f all because ║f Jesuits’ success i═ missi║═ary w║rk, which was tightly connected with sciences in China, but not so much in the Balkans. The limitation to Inner Austria or Mid-Europe is the decision of the present writer whose home is in those areas with the motto that each historian of physics should publish the case studies of his own local areas which she/he knows the best with the archival sources included. For the Jesuits the science was just the tool used for the better imagination of the spiritual world and to please the infidel non-Christia═s i═ Jesuits’ missi║═s. It is hard t║ decide if the average Jesuits believed i═ devel║pme═ts ║f scie═ces, but the Jesuit B║šk║vić certai═ly did. ε║st ║f ║thers were primarily the preachers and not professional scientists, maybe with the exception of Hallerstei═’s gr║up i═ Beiji═g. Certai═ly the faith i═ the devel║pme═t ║f scie═ces seems t║ be oblivious just to scientists themselves who compare their everyday research with the tragedies of Giordano Bruno in 1600 or Galileo Galilei three decades later. In fact just the networks of the science-haters cha═ged. They d║ ═║t gather a═y m║re ar║u═d the I═quisiti║═’s defend of the orthodox theology, but in modern times we meet them mostly among the paraphysiologically oriented researchers who do not share the authorities in inquisition of for centuries ago, but that fact does not make them less loud.254 There are several possible approaches to science: you could be faith-science believer, science-hater, or the passionate 254 . Feynman, 2000, 106, 207. science-l║ver ║f Pál Erdös’s s║rt. εa═y ec║l║gists are afraid ║f scie═ces especially the nuclear one and genetically transformed food, others predict future Frankensteins produced in genome research. The father of the present writer was a science believer to such extent that the priest wh║ e═tered his r║║m after seve═ decades ║f abse═ces aski═g i═ h║pe “D║ y║u believe i═ G║d?” g║t a humiliati═g a═swer “I believe i═ scie═ce!” εy l║ve Taisa whom I meet in the beginning and on the end of this half of a century long research is a science-hater. For myself I am convinced the science is funny and all extreme approaches to it are not welcome. Science is one of the funniest aspects of human endeavour, much funnier than religion, arts, or sports. There is no reason to believe or disbelieve it, or to love or hate it, because science changes so often. If you believe or love one aspects of its present state, it might easily soon change as it did from the determinism of classical physics to the Heise═berg’s pri═ciple ║f u═certai═ty, fr║m the fi═ite t║ i═fi═ite space-world, or from the fixed to movable Earth. Science is just the tool people use to describe their changing environments in their efforts to help technological and spiritual-mathematical development. The science mutually interchanges with environments the scientists meet, the drugstores where they go shopping, the moves they watch, the sports they follow: to hate-love-believedisbelieve science is kind a same as to hate-love-believe-disbelieve that particular drugstore or basketball team. For historical reasons of their supposed past merits the scientists receive much more money compared to the other branches of human activity which enables them to hide their changing opinions: especially the astrophysicists like Stephen Hawking seems to be always right in spite of the fact that they completely change their opinions so often. May be the common folk just need that kind of genius to believe in. And the scientist does not like the annoying historian of science who show him his older publication where he defended exactly the opposite theses he defends now, because in both cases the scientist received money and awards for the seemingly important research, like the legendary Soviet Marxist who published a work sharply criticizing his own previous work. For example, from δaplace’s era ║═wards the black h║les seemed t║ be black u═til Hawki═g calculated i═ 1975 that quantum effects forces them to radiate and consequently to evaporate after some time.255 Theories of the Development of Sciences a) Historical Overview The development of science has always been accompanied by a stocktaking of its past. The interest in the past varies from period to period. In the last two centuries has also increased enthusiasm for deeper comprehending the development of science due to the impact of general global systems of the German Naturphilosophie. Newton's Principia as the most influential book of his era had little to do with the history of the former mechanics, because Newton relied and noted a little on the achievements of other writers. At the same time, of course, the literati printed other targeted works as well. The real history of science was far from it, since Locke’s usability-oriented philosophy left only a little space to such historical thinking. 255 Pullin, Jorge; Porto, Rafael; Gambini, Rodolfo. 2008. Fundamental Decoherence from Quantum Gravity. International conference on Time and Matter (ed. O’δ║ughli═, εarti═; Sta═ič, Sam║; Verberič, Dark║) N║va Gorica: University, 185. The first real history of science belonged to the next age when also the history in a broad sense was born as a science.256 The first modern work in history of physics has been the history of electricity and other sciences of the young Joseph Priestley. Despite the difficulties, which were crowded on his shoulders due to his British countryman and also for Bošković’s unfavorable opinion ║f Priestley’s unpopular religious-political Jacobin views, Priestley’s history remained a source of ideas and examples of particularly wide span of electrostatics before Volta’s invention. Sounds like a magic, as were later the Faraday’s ═║tes in particular, and also much more philosophically inspired histories of sciences of Ernst Mach. In all those it was a priority to people who were describing their own work in the light of the deeds of their past colleagues and opponents. In contrast to Newton Euclidean style there was French School of Théorie Analitique. Its products were always adorned with the historical introductions in the present field of natural sciences. With Lagrange, Laplace, and later Poisson, or even Arago in his obituaries of Parisian academicians, the development of science-natural history never dealt with as a single phenomenon, irrespective of the branch. The philosophical research of forms of the sciences was more at home with later English thinkers who witnessed the birth of electromagnetism. They were offended because of lagging behind the British mathematical physics after Newton’s era. For that reason W. Whewell devoted his entire studies to indicate that the development of science had unsolved problems. Unfortunately, he did not find a lot of imitators.257 From their speculation it is also not possible to discern Mach’s similar philosophical speculation on the causes and internal connections. The 19th century is to serve the whole multitude of histories of individual branches of sciences, although none of them reached Priestley’s fame, except perhaps Faraday experimental research notes that have been the most popular science literature of the second half of the 19th century. Thus, the enthusiasm for the French revolutionary ideas about the history of science dissipated in technological advances, steam and electricity in the 19th century. The modern history of science was born in parallel with modern physics. The official date of birth was 1892, when the French founded the first independent chair for the history of science.258 The first serious philosophical theory of the history of science was provided four decades later by the Viennese Karl Popper, who tried to logically explain the development of science. In these beginnings the history of science was endorsed primarily by the educated humanist thinkers who did not know the details of the science itself. They were interested how we can make some major events and people in the history of science described in sufficiently simple logical scheme. Several American historians of science even indicated that the researcher needs to forget everything about the wining concepts of science which she or he learned in school to be able to judge the struggles between scientists of the past. In that way the 256 Gibbon, Eduard. 1776-1788. The decline and Fall of Roman Empire. London. Reprint: 1960. London, as one of the first historical book in the modern sense of that world. 257 Whewell, W. 1837. History of the Inductive Sciences; Whewell, W. 1840. Philosophy of Inductive Sciences, founded upon their History; Needham, Joseph. 1877. Reprint: 1980. Organon (Warsaw). 14: 5-15. Introduction speech on 15th Symposium of History of Science in Edinburg. 258 Kuznecova, N.I. 1982. Estetstvoznanie v ee historii (metodologičeski problemi). Moskva, 3. protagonists of the new merging history of science tried to get rid of the tutorship of researching scientists and escaped from them with developing the history of science as the humanistic discipline. That made history of science pretty professional discipline in USA, but not in Europe, where the influence of researching scientists is still prevailing and the history of science is frequently taught in chairs for sciences and not in the humanities. The conflicts have arisen from the outset. In 1931 in London, on the 2nd Conference of the historians of science during a severe economic crisis they the advocates of the internal logic ║f scie═ce (A. K║yrц) have stood against the representatives of materialistic ideas on economic policy of conditionality of development of science, which was advocated by the acting naturalist Barnal D. and B. Hessen who was assisted by political leader of the USSR Bukhari═ wh║ was already i═ Stali═’s disgrace. Of course, there were no longer merely the history and its forces alone on stake, and also not only for the theory of the history of science has become a subject of discussion in the coming years. According to Popper the possible development of science could be described with the logical model, but T. Kuhn probably denied such a claim. The opponents of Popper’s sch║║l have pushed the science of rational throne. It was also rescued Darwin struggle for survival between the various theories proposed by Popper after he got rid of prejudices about the supposed nonscientific foundation of evolutionary theory. In the USA Darwinism sometimes failed to prevail even in its strict biological fields, especially in Deep South where the Protestant Preachers use the Bible by word including the creation of the world in six days. Kuhn promoted the importance of an ordinary non-revolutionary science that improves and enables gathering of the data within the dominant paradigm-theory. Popper has acknowledged that his younger contemporary Kuhn set to Popper among the strongest blow, even if I. Lakatos and others successfully defended Popper’s doctrine. A simple model of "new experiment-theory-rejection of old theory" was due to Kuhn's work. The "experiment", of course, discards and replaces with "logic programs" similar to Kuhn's paradigms. Popper’s f║ll║wers did not deny the main assumption on which actually the Popper’s system is based as the whole, namely that the history of science could be described with the logical model. Kuhn has questioned this, since for him a change of science paradigm equals the change in worldview, and logic lacked the tools to describe something profound like that. Of course, Kuhn relied on the Copernican revolution or on quantum mechanics, which makes the paradigm shift really look like sharp (Protestant) change of religion or like Nazi challenges. Feyrabend259 deeper explored the possibilities of logic. He denied the existence of laws of development of science and imagined unregulated and permanent revolution in science, where different theories non-stop arise from the body of those who currently endorse the predominant criterion for the progress of natural science. The measure for the progress of the sciences can only be the progress of the broader sense of human thought. The general principles are not being maintained, old theories are actively involved in the formation of the new ones. From Popper’s ideas for Feyrabend remained only a theory falsification as a useful criterion for determining the scientific character: a theory is scientific if and only if it provides for the possibility of its own negation, when it may be rebutted. In other words, the theory is scientific only if it behaves as is expected of political parties in Western democratic 259 Feyrabend, R. 1970. Criticism and the Growth of Knowledge. Cambridge; Feyrabend, R. 1975. Against Method: Outline of an Anarchistic Theory of Knowledge. London. parliamentary system in which presidents and their parties allow elections that can deprive them of their supreme power. The models of the then socialist East Europe without parliamentary democracy, then, by analogy, were somewhat unscientific, which was certainly a serious criticism, because scientism was seen as something positive. Of course, Lakatos formerly published by the Hungarian Marxist schools and also on the other early historians of science lay the shadow of the Iron Curtain of the Cold War. Eve═ i═ Tulmi═’s260 model of development of science has appeared Darwin's model of liberal-capitalist struggle for survival, adapted to the idea-theory of science. According to Tulmin’s throughout history there was a changing of various components of science, from which you can only feel the great efforts of the notion of progress: - Normal body condition has changed from standstill endorsed during the domination of Aristotle's physics to the opposite normal state of movement in the modern era. The modern era endorsed a standstill only for the specific static example of the dynamics. It was along the lines of the dynamics of modern Westerner factories of goods and knowledge, where the ones in standstill are mostly bums, Islamic Southerners of foreign religions, or the deceased. - No theory is ever the absolute success. If it successfully exercises in one branch of science, it therefore completely fails in another. Thus, the idea of dynamic evolution, despite heated debate of Lamarck against Lavoisier and Priestley, was established by Darwin in biology of the next century, and at the same time completely disappeared from Mendeleev’s chemistry, although Lamarck probably e═d║rsed it i═ his ║w═ chemistry. δamarck’s views and his concept were well enough adopted for development of the society. A similar fate had the principles of alchemy which still preserved in Lavoisier’s chemistry associated with the properties of macroscopic bodies and their constituents. Those principles felt into disgrace after Davy discovered acid-free acids without the supposed "acidic principle" which was our modern oxygen. On the other hand, the principles retained their value in the pharmacy and they endorsed the special boom staged in genetics at the end of the 19th century. - According to Tulmin the language science changes even if the knowledge of phenomena is not progressing any more. The first serious researcher of magnetism Gilbert would not have found himself at home in a contemporary description of the magnet. Albeit at least in Tulmin’s opinion the knowledge of magnet was not particularly advanced fr║m Gilbert’s era. Occasionally Natural Language also offers many facilities, for example the numbered chemical elements in the order in Dalton and Mendeleev system, which initially was not much more than an administrative arrangement in the 20th century. It suddenly turned into a fundamental characteristic of each chemical element, namely the number of protons in the nucleus of its atoms. From Tulmin’s speculation it is possible to discern the orientation of historical development or the arrow of time-entropy. Tulmin took most of his ideas from the treasury of alchemy with the principles, seeds, ferments, and development. But Tulmin did not explain the source of the modern belief in the positive attitude of technological-scientific progress before it was shaken by Global Warming. 260 Tulmin, Stephen. 1958. The uses of Argument; Tulmin, Stephen; Goodfield, June. 1960. Materie und Leben; Tulmin, Stephen; Goodfield, June. 1961. Modelle des Cosmos; Tulmin, Stephen. 1961. Foresight and Understanding. The history of science is equally distant from the current science as is the general history always away from the current political situation. The interventions of politicians or active scientists in history of their own activities are therefore relatively rare, but they are much more far-reaching. The naturalists-scientists journeys on their own history are essentially more difficult than the politicians’ writing about their own deeds, because the history of science is a discipline of Humanities discipline, at least in the United States. The naturalists, of course, were the first explorers of the history of past sciences by the end of the 18th century. Even Kuhn in his history of science at least to some extent acted as a doctor of physics. Kuhn mostly ignored the economic and technical fundamentals of natural history at least as much as Hessen in his time neglected the psychological motivations of scientists. At the end of the 1960-s Kuhn, J. Heilbron, and their group embarked on the accumulation of data for the study of the history of quantum mechanics. They gathered all available records and the testimony of the living scientists which would later serve to fight in-depth study, which Kuhn later published himself.261 In doing so, he used the following approaches and simplification: 1) He ignored the economy and technology, except in so far as it affected the development of experimental tools. 2) He ignored the policy of political parties, except in so far as it interfered the national borders. 3) He ignored the ideology with the exception of relations between the generations and schools of the scientists. 4) Kuhn took into account the psychology of discovery with an emphasis on the author's own volition. The scientists should decide on the natural history ideas within the conditions limited by experimental and mathematical results. From those he gets the data about the natural phenomena and chose the tools and methods for their research. After the pre-quantum introduction in 1894-1900, the prelude was followed by six years of Planck's independent work before he was joined by the young defenders who fought for the reform of the physical theory of energy quanta in next six years, from 1906 to 1912. Kuhn's Structure of the scientific revolution of quantum mechanics is then: 1. The period of about six years. 2. The number of "revolutionaries" - initially Planck himself, then three, then a few dozen literati. It is a distinctly minority, because in Kuhn's scientific revolution the decisive role was played by small number of devoted scholars, although in the later writings Kuhn began to realize the importance of teamwork. 3. The revolutionary situation is determined by the unexplained experiments (or natural 261 Kuhn, Thomas S.; Heilbron, John L.; Forman, P.L.; Allen, L. 1967. Sources for History of Quantum Mechanics: an Inventory and Report. Philadelphia: American Philosophical Society; Kuhn, Thomas S. 1978. Black-Body Theory and the Quantum Discontinuity 1894-1812. Oxford. phenomena) and outstanding scientists who are trying to explain it in a new way. 4. The revolutionary change is the use of new mathematical approaches, as the attempts to clarify the old in a new light, and also the announcement of new experiments. 5. The counterrevolution happens at the end of the revolution. The leaders of “c║u═terrev║luti║═” are almost completely eliminated from the main-stream with the exception of a small group of Einstein's supporters. Until recently, the “c║u═terrev║luti║═aries” were usually turned into heretics like one time Fresnel’s frie═d Arago, or the Ettingshausn’s student Ernst Mach. 6. The Psychology of Revolution suggest that a revolution was born unconsciously, from minor reforms of the old ideology under the baton of apparently conservatives like Planck. Then the idea grabbed the young revolutionaries’ reform modeled on Young-Turks Party or Bolsheviks’ Party, and the changes are carried out to the end only after the removal of (death) of defenders of the old views. The published articles in defending the new theory did not so much bring into account the new physics, but in particular the authors try to obtain the new believers for their new theory. 7. Kuhn's experiment did not benefit from the revolution, except in so far as the new theory predicted the new experiments. Kuhn did not write on parallel progress of experimental tools because it could drive him into the economic problems, which he tried to ignore. Slightly more Kuhn changed only stance experiments during the revolution, when the scientists try to prove or disprove the new theory. Kuhn's scientific revolutions are revolutions of natural history theories without even the minor changes in experimental field, except if they are relied just on the unexplained attempts of the ultraviolet catastrophe which triggered the initial revolutionary situation for quantum mechanics. Kuhn would behave as a theorist and could not come to terms with the revolutions in experimental physics, as would be the introduction of telescopic experiments, or interference spectroscopy. Therefore, Kuhn did not perceive deep enough into dialectical intertwining of experimental and theoretical changes of physics that are intertwined, while they encourage and develop in an endless search for new solutions. In spite of that Kuhn was initially trained as theoretical expert for radars which was very near the experimental physics. During the World War II in England his work on radar probably made him more respectful towards the theoretical physicists. b) New E═d║rseme═ts (Auth║r’s Th║ughts ║═ Devel║pme═ts ║f Scie═ces) Many pundits are constantly studying the history of technology within its own development theory-paradigm and thus they are complementing the boundary conditions of the history of science. Probably the humanists do not see such a profound separation between the technology and experimental research, as do the reflected physicists.262 Ab║ve all, P║pper’s f║ll║wers a═d their critics i═sufficie═tly studied tech═║l║gies. They were devoted primarily to the fundamental science. Kuhn was not much different. The experiments often, unfortunately, did not appear to be equivalent to the subject of science, but was 262 Agassi, John. Science in Flux, Boston Studies, 28: 282-306; Vinenti, Walter G, 1982, Control Volume Analysis, Technology and Culture. 23/2. discussed only as a means to verify or confirm the theory. Such neglect of physical experiments is no longer justified because the physics is sufficiently equally divided into theoretical and experimental groups, although perhaps the Nobel Prizes were rarely granted to the purely experimental physicists. Dozens of examples of the early historians of science limited to the events of CopernicusGalileo, Newton, Lavoisier, Dalton, conservation of energy, Darwin, Maxwell, Einstein, or quantum mechanics. They are no longer sufficient for serious research. For the model to be meaningful in have to endorse interactions on the level of: Experime═t ↔ the║ry ↔ "common sense" truth The experiment has encouraged the emergence of "modern" physics as a rejection of scholasticism of Aristotle in facing physical conceptions. The experiment not only verified the adequacy of theories but also actively participate in the construction of theories and completing the physical picture of the world. In any event, there is no attempt to confuse the experiments with the new technology in the industry, because both strongly differ from the standpoint of physics. Thus after 1765 J. Watt improvement of steam engines was by no means comparable to the Joule experiments for mutual conversion of different forms of energy by the year 1842. Joule’s brewing-related work differs with Watt’s both in terms of the objectives which they serve as in the audience which was interested in their respective work. Over the past three centuries, namely technologists of industrial production published their findings in entirely different books and newspapers, such as those intended for experimental or theoretical physics. The mid gulf is so pervasive that some researchers even tend to think that technology and science are not at all related, or at last they were not tightly related in the past.263 The theorists still build theories to fit the boundary condition of experiments, albeit with modern communications the circumstances differ. Such concealment is the key to understanding the changing physical picture of the world. The group of phenomena can be explained in several ways, none of which is complete. Which of the interpretations then mostly fit the reality? The solution to the issue could contribute to the planning of further development of science, which would be the primary objective of the study of history of science. Unfortunately, such solutions provide too many differences among the individual cases, all too many impacts are there beyond the strictly scientific sphere, they often sway the balance in one or opposite direction. The divination is (still) not possible. The developments of sciences are not divided into revolution and normal science. Kuhn has come to this division because he compared his contemporary modern calm flow of physics with the turbulences at the dawn of quantum mechanics in the 1920-s. In fact, normal science exists only in textbooks. The prevailing theory is always a struggle between conflicting proposals, a kind of dialectics. The school textbooks prevent too frequent changes at the level of "common sense" truths. The lower is the level of the school that means, as close it is to its messages for majority of the population, the more the appearance of adhering to truth is in its 263 Gevorkjan, A.T. 1979. Filosofskii analiz revolucij v fiziki. Erevan; Layton, E. 15.2.1974. Technology and Culture (Chicago); Reingold, N.; Mogella, A. 12.7.1971. Technology and Culture (Chicago); Channel, L.F. 1971. Technology and Culture (Chicago). 23/1. textbooks. The common people must in fact be convinced that its intellectual tops knows what they are doing, and have all the reins and truth in their hands. At a higher academic level we could also found in the textbooks some conscious states of hesitation in explaining some physical phenomena, even if such doubts were much more pronounced in the past, such as in the Gay-δussac’ textbook or in J.B. Biot’s w║rk. The hesitation to challenge the doubts i═ y║u═g stude═ts’ mi═ds may also be at the expense of the arrogant philosophy of modern physical theories that try to be as shallow positivistic. At the highest decision-making peaks are where the scientists create a new physics and explore new phenomena the opinions are always changing, although this is changing is usually too shallow to interfere in a physical picture of the world. The existing physical theory has determined, on a case-by-case different duration and use the common sense truths advocated by the school to resists any doubt. For the doubt always mean that it is necessary to supplement the existing theory, because it soon reveals that it is obsolete. The doubt triggers an avalanche that changed forever the existing theory so that initially it appears to be complete, and at the end, it is clear that there is a new picture of the world immerging. The scientific research is always a path into the unknown therefore it is full of doubts. The era of doubts is in Kuhn’s termi═║l║gy called a rev║luti║═. It enables the sudden success of young researchers; its ultimate successor is not so imaginary progress, but rather harmonizing the physical picture of the world with a picture of the economic and political realities in which the researchers actually work. The law of energy conservation and attempts to unify physics forces (fields) were a reflection of Napoleon's universal state which gave political unity to the continental Europeans in the short term. Napoleonic state was also a kind of turbulence where young educated men had the opportunities for very quick professional promotions, especially in army. Darwin's doctrine of development was flirting with liberal capitalism. The plight of modern man, an individual with no future within the teeming masses of individuals seemingly similar to each other, gave vent to the modern statistical theory to which quantum mechanics reigns. Experimentum crucis does not exist. Neither individual attempt is strong enough to trigger a change in the physical theory. The researchers explain the results of the experiment to simply match their physical image of the world in which they are installed. If nothing else, they just help with changes in the “buffer zone theory”.264 The physics theory, according to which ongoing changes in the physical theories of the world are endorsed, have some striking peculiarities: - Set-group-network theory prevails, because it offers answers to new questions offered by the experiments with the newly discovered phenomena. The winning theory sometimes correctly predicts the outcome of the experiment, which would be different in the competitive theory. Thus, Einstein's theory of relativity approximately accurately predicted deviation of starlight due to the pull of the Sun which Eddington and his group measured during solar eclipse after the First World War. In 1873 Maxwell predicted the existence of electromagnetic waves which Hertz discovered fifteen years later. Alternatively, a theory rapidly solves the problems offered by experiments, because it is more convenient, or prepared from another competitive theory. Such an advantage had the quantum mechanics of Copenhagen school over its competitors. Its supporters gathered around Niels Bohr who was in a neutral Danish side of combats, failures, and other miseries during the First World War. 264 Lakatos, Imre. 1970. Criticism and the Growth of Knowledge. Dordrecht: Boston studies; Lakatos, Imre. Falsification and the Methodology of Scientific Research Programs. Translation: 1967. Dokazateljstvo, opoverženie. Moskva: Nauka. - Sometimes the physical know-how solves the problems of its era and does not receive the new challenges, because the interest in its scope temporarily dilutes. The know-how is therefore not ready for the influx of the new people and ideas that sometime later follow after the discovery of the new phenomena. Such unwillingness to face new challenges was one of the reasons for replacing the "sleepy" emission theory with the wave theory of light in the early 19th century. - The history of physics is eternal fight between the supporters of the definitive achievements of modern science and their opponents. The first are often committed to endorse each time the smaller sub-microscopic atomism or indivisibility of even the smallest detectable particles of matter, but the opponents always divided the items into the even smaller particles.265 Such atomism is anthropomorphic, because it tries to explain the whole world by the human specimen which is a foreign to the endlessness. The opponents of atomism always win, but only to make their ideas change over to the new atomism. - The common sense is losing its absolute importance in parallel with the development of science. Firstly Galileo endorsed a more experimental mode of perception of nature, then the Newton even forgo imposing any common sense hypothesis. Young and Fresnel later discovered the phenomena that contradicted the experience of common sense. This means that the experimental tools are becoming more accurate than the human senses. As the memory of the former force, the human senses even today define the language of science, because physics, in its classical form was divided into mechanics (touch, hearing), optics (vision), thermal theory (touch) and electromagnetism with the human tongue as the originally very best electroscope. For Maxwell it was merely common sense which was the excellent illustration of the scientific-mathematical intelligence. However, such an idea was slightly faster than his time allowed, and it knowingly rejected the objectivity of human performance, like the experiments previously done with human emotions. In subsequent generations the relativity theory continues to fall apart the myth of the absoluteness of human performance. The quantum mechanics finally enacted the failure of human performance in all those dimensions and speeds which are in great excess of normal human environment. Therefore the anthropomorphism come at the foundation of their trenches, although the new technologies extends limits of the human perception and normal living environment may be extended into the promising future of the World Wide Web of Anthropocene. The development in scientific-mathematical sense, of course, affected the people's common sense, especially during compulsory schooling and in reading popular science periodicals. So today there is no longer any doubt that the Earth is round. We believe in the movement of the Earth, which once so dogged G. Galileo. We also accept Newton's color as an objective characteristic of the light and not just as a result of the physiology of the eye. The independence of gravity of body from the its weight already puts common sense in a dilemma, while the wave properties of electromagnetic waves and light (still) does not interest the common sense vocabulary. The development of the physics of small and fast particles has limited human intellect to areas that can still be controlled. Beyond those is just the fun═y pr║verb “shut up a═d calculate”. 265 Gevorkjan, 1979. The common sense also heron few centuries to the fundamental discoveries of physics. What about the language we use when talking? After the Sun has always risen and its rays are more particles than waves, its heat is not connected with the movement of the particles. The spoken language remains deaf to the changes in the development of physics and herons to them far behind.266 The opinion on the science was bad around the years 1710-1740, 1930 and 2000, but good in 1660, 1800 and 1900. The high opinion sometimes earns more research money. After the First World War, the Germans were setting up committees to stop the limitation of hours of teaching mathematics in schools, as A. Sommerfield remembered.267 However, the doubts in science even grew up during the economic crisis. The mistrust in science opens the door to bio-energy of Mesmer or W. Reich, and also to the Erich v║═ Däniken’s UFO aliens. Of course, the confidence in science varies with it is their geographic component, as with the Hindus in the Vedas significantly outperform,268 it is also the Koran for the Muslims, or the Bible for Christian fundamentalists. 1. The popularity of science can still be reduced in the times of war, as happened during the World War I, but the effect was nearly the opposite in the Second World War. 2. The fluctuations in the popularity of science cannot be uniquely linked to relatively long periods of economic crises, which are much shorter. Nevertheless, the connection between the two phenomena exists. 3. In the first half of the 19th century, the popularity of science strongly encouraged research. After the First World War and the Great Depression, however, the quantum mechanics was born in the middle of huge unpopularity of the mathematical sciences. 4. The unpopularity of science among the masses does not always mean less money for it. Conclusion The modern development of astrophysics observation raises the possibility of the historical research from a global perspective, with the vision of the development of the universe from the Big Bang to its contemporary contradictions. In that way also the history of physics is becoming a part of physics, though Marx was in his time advocating the idea of the present times being just the last part of history. Of course the astrophysics offers a particular bird'seye view, which cannot compensate for the efforts of the individual sciences, which are individually trying to cope with their field of research. The particular sciences were specially built in their centuries-old tradition methods based on their own unique traditions. The astrophysical view of the world, of course, will never afford a view of the individual, but could statistically describe its wider environment. This will give the new boundary conditions to the individual histories and their single sectors of exploration, but in no case will abolish the borders between them and unite them into a unified theory of science around the global times of Athropocene. Something like this would be simply too expensive, like the 266 De Solla Price, D.J. 1980. Towards a comprehensive system of science indicators. Sci.Yugoslav. 6 (1/4): 4565. 267 Heisenberg, Werner. 1975. Del in celota. Ljubljana. 268 Bhaktiveda═ta Swami Prabhupāda, 1992, 384. exploration of the genome of their time in 1990-s was restricted to a few thousand samples while the researchers in advance knew that the small number of samples is a serious lack of insight Everybody knew that the results will hardly offer anything else but a look at the manspecies from the bird-distant perspective. It is hard to be honest if the good salary is offered to you.269 The main problem of physics and its history might be the metamorphosis both witness every day. Today we research physics as the part of the exact science, but tomorrow our today’s work became a part of the history of physics which is a part of humanities, at least from the American perspectives of divisions of human knowledge. If we c║═sider S║kal’s affair as recent proof of incommensurability between exact sciences and humanities, we could imagine how hard and even schizophrenic might the physicists feel whe═ their yesterday’s works belongs to their declared enemy. The concurrence of modern exact sciences and huma═istic is a pr║duct ║f the m║der═ sch║║l system which c║═sta═tly try t║ margi═alize “the ║ther”. With much greater material supp║rt m║der═ Western schools favourite the exact scie═ces while the Jesuits’ a═d classical Chi═ese systems fav║urite were the humanities but did not provide such a huge antagonism between both. The present writer feels at home in physics a═d als║ i═ hist║ry ║f physics which c║uld give him s║me cha═ces t║ st║p S═║w’s conflict of two cultures and future Sokals with some understandings between both fighting sides? ****SLOVENIAN TRANSLATION++++ 269 Feynman, 2000, 212. Zagate fizikov med Newtonom in kvantno mehaniko Kazalo Uvod Naravoslovje pred Newtonom Naravoslovje v Newtonovi dobi a) Napredek matematike b) Razvoj fizike c) Newtonovi Principi Utemeljevanje vpliva Newtonovih naslednikov a) Prodiranje Newtonovih idej na celino b) Newt║═║ve ideje v deželah s sl║ve═skim življem c) Ohranjevanje in razvoj Newtonu tujih idej (prodiranje novih paradigem) d) Imperializem meha═icistič═ega ═auka v zg║d═jem 18. st║letju Pozno 18. stoletje – zatišje pred burj║ a) A═glešk║-francoska industrijsko-p║litič═a rev║lucija b) Nove ideje v znanosti poznega 18. stoletja 19. stoletje N║ve ideje v z═a═║sti, ki ║dkla═jaj║ čist║ meha═istič═i svetovni nazor Ideje, ki se ║hra═jaj║ iz čas║v cvete═ja meha═istič═ega p║gleda Pot do Maxwellove velike združitve v fiziki a) Razvoj poznavanja svetlobe Uvod 1. Absorpcija 2. Toplota 3. Odboj 4. Lom 5. Barva 6. Hitrost 7. Svetilnost 8. Uklon pr║ti a═tič═i ge║metrijski ║ptiki 9. Polarizacija 10. Interferenca proti Newtonovi teorije svetlobnih delcev 11. Spektri Zaključek ═a p║ti k tra═sverzal═i elektr║mag═et═i te║riji svetl║be b) Napredek raziskovanja toplote 1. Izb║ljšave term║metra 2. Termometrske skale 3. Parni stroj 4. Od flogistona preko kalorika, do etra-pre═ašalca t║pl║te 5. Fourierevo prevajanje toplote kot transportni proces ob notranjem trenju in difuziji 6. Carnotova analiza delovanja parnega stroja 7. Poissonov in Cauchyjev konec francoske prevlade v matematič═i analizi fizikalnih pojavov 8. Termodinamika Ki═etič═a te║rija k║t univerzalna paradigma Mechanische Wärmetheorie 9. E═tr║pija i═ statistič═a meha═ika 10. Kvantna mehanika Inkomenzurabilnost 11. Raziskovanje toplote v slovanskem prostoru 12. Zaključek c) Razvoj znanja o elektriki in magnetizmu Uv║d zdrav═ika deviške kraljice P║litič═║–g║sp║darski ║kvir začetk║v s║d║b═ega elektr║mag═etizma 17. stoletje Gilbertovih dedičev v prvi generaciji raziskovalcev elektrike Zgodnje 18. stoletje druge generacije raziskovalcev elektrike Sreda 18. stoletja s Franklinovim delom tretje generacijo raziskovalcev elektrike Obd║bje Fra═c║ske rev║lucije z elektr║statik║ i═ živalskim elektromagnetizmom med deli tretje i═ četrte ge═eracije Elektrodinamika raziskovalcev 4. in 5. generacije Elektromagnetizem pete in šeste ge═eracije raziskovalcev elektrike Maxwellova velika združitev fizikal═ih sil Pr║dira═je ═║vih, prevrat═iških idej v z═a═stve═║ za║stala p║dr║čja: primer s Slovenci poseljenih dežel a) Uvod b) Vrti═č═i m║del med Descartes║m i═ kva═t═║ meha═ik║ c) I.Šubic za uveljavljanje modernih fizikalnih idej v slovenskem prostoru poznega 19.stoletja d) Perspektive malega naroda e) Fizika zu═aj zah║d═║evr║pskih ║kvirjev z že═skami za v║dil═e z═a═║sti A═tr║p║ce═a Fiziki (oziroma fizika) v Ljubljani znotraj Notranje Avstrije N║tra═jeavstrijska fizika med Sl║ve═ci i═ graškim središčem Graški jezuiti v p║vezavi z ljublja═skimi Opus Magnum Th║masa Kuh═a v sred═jeevr║pskih ║čeh Ge═etika ═ad║mesti fizik║ (║zir║ma ge═etiki ═ad║mestij║ fizike) v vrhu (═ajb║lje plača═e) z═anosti Teorije o razvoju (naravoslovno-prirodoslovnih) znanosti a) Zgodovinski pregled b) Nova dognanja (piščeva razmišlja═ja ║ razv║ju naravoslovja) Sklep Uvod Videti je, da je zgodovina ═arav║sl║vja b║lj zaplete═a i═ačica študija ═arav║sl║vja. δ║gič═i razvoj naravoslovnih-prirodoslovnih znanstvenih pojmov naj bi bil uveljavljen in bolj primere═ ═ači═ študija. Pri tem imamo z naravoslovnimi-prirodoslovnimi znanostmi v mislih vs║ z═a═║st ║ ═aravi sv║j čas zbra═║ ║k║li fizike. Izraz║sl║vje je ═ek║liko medlo saj sta ═arav║sl║v═║ i═ prir║d║sl║v═║ d║mala si═║═ima, pri čemer ═aj bi se drug║ ═a═ašal║ ═a fiziko-kemij║ i═ marsik║mu zve═i ═ek║lik║ hrvašk║. Zmeda je ═astala zav║lj║ k║pira═ja ═emškega vz║ra Naturlehre in Naturgeschichte. Slovenska delitev na naravoslovne in družb║sl║v═e z═a═║sti je precej manj povedna ║d a═gleške delitve med Science in Humanities tudi zat║, ker bi sred═jeevr║pski družb║sl║vci prav tak║ radi bili z═a═stve═iki. Z═a═║st ═amreč veči═║ma zve═i k║t ═ekaj p║zitiv═ega kljub ║bčas═im vojnim grozotam. Če se dovolj potrudimo in spoznamo skrivnosti zgodovine naravoslovja, se nam le-ta p║kaže k║t edi═a prava p║t k ═apredku ═arav║sl║v═ih raziskav, saj ═as uči iz ═apak ═aših pred═ik║v. Nasprotno pa naravoslovje, ki ne pozna lastne preteklosti, ponavlja znova enake napake. εaxwell║v║ p║e═║te═je fizikal═ih sil z izjem║ gravitacijske je bil║ temelj═i d║sežek fizike 19. st║letja. Razv║j p║jm║v ║ p║samez═ih fizikal═ih silah v prejš═jih st║letjih vključ═║ z Galilejem270 je izzvenel le kot uvod v to pet║ i═ d║ sedaj ═ajgl║blj║ p║e═║te═je različ═ih vej fizike. Naravoslovje pred Newtonom V čem se m║der═a ═arav║sl║v═a z═a═║st l║či ║d m║dr║sti sred═jeveških ═arav║sl║vcev? Kakrš═e k║li ═aj b║d║ razlike v p║dr║b═║stih, vsekak║r gre temelj═║ razlik║ pripisati predvsem večjemu p║me═u p║skus║v i═ up║rabi matematike v te║riji ═║v║veške z═a═║sti. Kateri s║ bili l║gič═i p║v║di za pre║brat, kakš═║ je ═jeg║v║ mest║ v pr║st║ru i═ času? Vojne, ki so divjale v Evropi v prvi polovici 17. stoletja in duhovne spremembe, ki so ═adgradile sh║lastik║ prejš═je d║be, s║ čas║v═║ i═ pr║st║rsk║ s║vpadale z ═asta═k║m fizikal═e z═a═║sti. Izb║ljševa═je starih si je p║dajal║ r║k║ z izumlja═jem ═║vih eksperimentalnih orodij. 1. Ure s║ p║stajale ved═║ b║lj ═ata═č═e,271 danes pa je čas daleč ═aj═ata═č═eje defi═ira═a fizikalna enota. Naj═ata═č═ejše ure so uporabljali astronomi; prav oni so bili ob pomorcih tisti, ki s║ jih v║jaki i═ trg║vci ═ajb║lj p║dpirali. P║ drugi stra═i pa s║ t║č═ejše ure ║m║g║čale ═ata═č═ejši ║pis s║sledja ═arav═ih p║jav║v. Prvič, za e═krat še sramežljiv║ i═ ═ezaved═║, s║ razisk║valci vpeljali čas║v═║ k║mp║═e═t║ v študij ═arav═ih p║jav║v potem ko je humanizem vpeljal ║bčutek časa i═ estetike p║═az║rje═e v delu Fra═cesca Petrarke v 14. st║letju; čas je bil pri Hindujcih vseskozi prisoten v ║bliki ═eizbež═ega časa kāle, ki je istoveten s samim Bogom.272 Zavest ║ di═amiki (čas║v═i k║mp║═e═ti) d║gaja═j v ═aravi pa je d║k║═č═║ pr║drla komaj sredi 19. stoletja. Puščica časa-entropije je bila rojena za znanstvenike in zamujajoče delavce, Jap║═ci pa s║ sv║j║ da═es prisl║v═║ t║č═║st začeli uvajati z držav═imi dekreti k║maj pol stoletja pozneje. 2. Razv║j predelave stekla v H║la═diji i═ Be═ečiji je ║m║g║čil ║k║li leta 1600 iz═ajdbi teleskopa in mikroskopa.273 Tako se je odprl pogled v ║bčutek ═esk║═č═║ majh═ega, ═esk║═č═║ velikega i═ ═esk║═č═║ ║ddalje═ega. Uveljavil se je v difere═cial═em raču═u, kjer je ═ašel prv║ spl║š═║ i═ up║rab═║ ║blik║ v 1660-ih letih pri Newtonu in Leibnizu sposojen od indijskih raziskovalcev s posredovanjem jezuitskih misijonarjev. Mehanika z balistiko in astronomija z ═auk║m ║ ║rie═taciji v pr║st║ru sta ═ajveč prid║bil s temi ═║v║stmi. K║mu═ikacije med z═a═stve═iki s║ sk║zi p║speše═║ izme═jav║ idej spr║žile ═║v, fil║z║fiji (sk║raj) s║vraže═ ═ači═ mišlje═ja. T║ ═║v║st s║ A═gleže sredi 17. st║letja poimenovali Experimental Philosophy. Zakaj je d║ tega prišl║ rav═║ sredi 17. st║letja? Velike spremembe v zgodovini so videti velike samo iz sodobnega zornega kota. V resnici pa jih p║vzr║ča k║pica ═ez═at═ih vzr║k║v, ki k║t za═alašč vsi p║rivaj║ k║l║ zg║d║vi═e v e═ak║ 270 Galilei, Galileo. 1638. Dialogo. Leyden. Pipunov, V.N, 1982. Istoria časov. Moskva. 272 Kohler, Alfred. 2011. Humanizem v Srednji Evropi, Tu felix Europa (ed. Rajšp, Vincenc et all). Wien: Sl║ve═ski z═a═stve═i i═štitut/δjublja═a: ZRC SAZU, 22; Bhaktiveda═ta Swami Prabhupāda, 1992, 382. 273 Cornelis Jacobszoon Drebbel (Drebel), Jakob Metius, Hans Lippershey, or Zacharias in Netherlands around 1600. 271 smer. Tak║ se tudi s║d║b═a fizika ═i r║dila ═e═ad║ma, čeprav z═am║ ═je═e začetke v res═ici opredeliti z letnicami. Preglednica 1: Rojevanje moderne nove znanosti Nova orodja 1550 1600 1650 1700 Obm║čja eksperimentiranja Teleskop Astronomija mikroskop biologija Barometer, Mehanika vakuumska optika črpalka, uporabne ure na vzmet in nihalo Metode Eksperiment Organizacije Teorije Misleci Gibanje Zemlje Kopernik Galileo Infinitezimalni Akademije Optika, raču═ Naravoslovni spl║šna Newton gravitacija čas║pisi Poldrugo stoletje med Kopernikovimi De Revolutionibus in Newtonovimi Principi objema praktič═║ vs║ ║bd║bje prve z═a═stve═e rev║lucije. Z═a═stve═a rev║lucija je razrahljala sp║═e s katerimi je prevladuj║ča cerkve═a hierarhija priklepala čl║veškega duha i═ je tak║ ║m║g║čila tudi i═dustrijsk║ rev║lucij║ med let║ma 1760 i═ 1830. Ve═dar znanstvena revolucija nikakor ni bila samostojen pojav. Opazovati jo gre v okviru celotnega tedanjega kulturno-intelektualnega napredka, ki mu je pripadala mnogo bolj kot danes. Eksperimentalna metoda je prevladala v fiziki obenem z ║pušča═jem sh║lastič═e met║de ═a drugih p║dr║čjih čl║veške misli, z ═euspeh║m pr║tiref║rmacije v Sever═i Evr║pi, z izpopolnjevanjem tiska, z J.B. Racinom, J. Swiftom, J.S. Bach║m… Eksperime═tal═a met║da je ║be═em zmagala v fil║z║fiji z F. Bac║═║m, J. δ║ck║m, N. de εalebra═ch║m, D. Hum║m… Iz teh sprememb se je r║dil razsvetlje═i čl║vek. V čem se je razlik║val ║d sv║jih pred═ik║v? Razsvetlje═i človek je bil le e═a izmed i═ačic ljudi 18. st║letja; uveljavil se je le med intelektualno in kulturno smetano. Kriza evropske zavesti, ki je peljala v razsvetljeno dobo, je tako zajela le privilegirane razrede. Le-ti s║ imeli tak║ fra═c║ski z═ačaj, da je P. Hazard lahko svoji Krizi evropske zavesti274 omejil kar med dve francoski letnici. Izbral je ukinitev Nantskega edikta, ki je uzakonil versko nestrpnost leta 1695, in smrt Louisa XIV. leta 1715. Kriza evropske zavesti pravzaprav opredeljuje prodor Versailles-kulture v Evropo. Pr║st║r čl║veka 17. st║letja so d║l║čale predvsem avt║ritete i═ hierarhije. δ║ck║v čl║vek pa je že izgubil vr║je═e ideje i═ se je ustvarjal v s║del║va═ju z zu═a═jim svet║m. Obrnjenost ═avzve═ i═ p║udarje═ razum sta bili p║glavit═i z═ačil═║sti razsvetlje═ega čl║veka. Prevladala je vera v več═i ═apredek z═a═ja, vera v matematič═║ zgradb║ sveta. Napredek pa je ║dvzel pretekl║sti ═je═ p║uč═i čar, saj se je zdela ved═║ b║lj ═ičeva v primerjavi s prih║d═║stj║. V začetku 18. st║letja si je Evr║pejec prvič priz═al, da je prek║sil sv║je a═tič═e vz║re. Dobro blago se samo hvali. Kultura je postala moda razsvetljenstva. Naravoslovne-prirodoslovne znanosti so postale d║═║se═ p║sel, ve═dar le k║t del kulture i═ ═e k║t te║rija ═║vih b║ljših 274 Hazard, Paul. 1959. Ljubljana. tehnologij. Šele ═asled═ja st║letja so pokazala, kako je iz naravoslovno-prirodoslovnih ved m║g║če vleči velike gm║t═e k║risti. Napredek naravoslovno-prirodoslovnih znanosti so v p║z═em 17. st║letju ║m║g║čile tudi zanj z═ačil═e ║rga═izacijske ═║v║sti, ki m║č═║ p║spešij║ pret║k i═f║rmacij: 1. Združenja znanstvenikov v metropolah so se zgledovala na Platonovo Akademijo iz a═tič═ih Ate═. Fi═a═cirala jih je držav═a bir║kracija v Fra═ciji, ali pa kar čla═i sami v A═gliji. 2. Prvi časopis, tednik La Gazette se je v Parizu pojavil leta 1631, ko ga je ob Richelieujevi podpori izdajal zdrav═ik Thц║phraste Rea═║t (* 1585; † 1653). Pred tem s║ že tiskali novice v Nemčiji kot Aviso Relato oder Zeitung, v Antwerpnu v Habsburški Belgiji k║t Nieuwe Tijdinghen Antewrden in v Londonu pod naslovom The weekly news from Italy, Germany, ectr. N║ve k║mu═ikacijske prid║bitve s║ ═emud║ma p║stale tudi del ═arav║sl║vja, saj sta že v 1660-ih letih »akademiji« v δ║═d║═u i═ Parizu začeli tiskati sv║je prid║bitve v Philosophical Transactions oziroma v Journal des Scavants. Ti glasili sta ║bsegali p║r║čila s sej, prav tak║ pa pisma in polemike sodelavcev, tudi tujcev. Gostota in hitrost znanstvenih komunikacij sta pravzaprav edini d║v║lj eksakt═i merili za kvalitet║ z═a═║sti v d║l║če═i d║bi, ki je znala shajati brez sodobnih indeksov znanstvih citatov. Zato pomenijo 1660-ta leta dobo, ko preide naravoslovje v novo kvaliteto. Ta novost se je najprej pokazala v spremenjeni obliki izraža═ja z═a═stve═e misli, ki ═i več ═ast║pala zg║lj v debelih bukvah. Z═a═stve═iki s║ začeli izme═javati ideje tudi v kratkih čla═kih i═ ║b fizikal═ih p║skusih, ki s║ jih izvajali pred ║bči═stv║m. N║va ║blika z═a═stve═e k║mu═ikacije pa je ═at║ spremi═jala tudi ═je═║ vsebi═║, ki se je prilag║dila pr║izvaja═ju kratkih ═║v║sti. Ne skušaj║ več vedno znova prodajati d║l║če═ega z═a═stve═ega p║dr║čja v cel║ti, temveč raje b║lj prir║č═║, m║dr║ i═ m║d═║ razpravljajo le ║ ║zk║ ║meje═ih vpraša═jih. Ta spreme═je═i ═ači═ k║mu═icira═ja v ═arav║sl║vju je s║vpadal ali pa je cel║ p║vzr║čal specializacij║, ki se je stopnjevala do da═aš═jih d═i. Z═a═stve═i čas║pisi s║ pravzaprav ║bjavljali le pisma z═a═stve═ik║v, zaseb═a pisma pa so vzp║red═║ ║hra═ila sv║j║ veljav║ i═ p║me═ še p║seb═║ pri jezuitih, ki s║ izrec═║ definirali posamezne tipe pisem čla═║v svojega reda. 3. Spremembe družbe═║-gospodarskih okolij so vplivale tudi na šolstvo. Centralizacija držav═e ║blasti je v 17. st║letju p║večala p║trebe p║ urad═ištvu. Obvezn║ ║s═║v═║ š║la═je se je pojavilo tudi kot poskus za zadovoljitev potreb po iz║braženem kmetu, ki bo znal uveljavljati ═║ve ═ači═e prid║biva═ja hra═e. Povzročil j║ je pr║d║r ameriških p║ljedelskih kultur v evropski prostor skupaj z novimi materiali in pripravami, ki so jih manufakture kmalu z═ale izdelati tudi za p║trebe kmečkega dela v novi dobi pod vplivom francoskih fizi║krat║v, ki s║ si kmalu d║mišljali, da b║gastv║ ═ar║d║v izvira zg║lj iz kmet║va═ja. Ustanovitelj fiziokratov Quesnay je odkrito priznaval, da je v svojih Tableax Economiques na matematič═║ plat pre═esel kitajsk║ mišlje═je, predvsem izpod peresa Fo Hij-a.275 V pr║testa═tskih deželah pa je bila ║bvez═a ║s═║v═a š║la d║lž═a ║m║g║čiti kmetu tudi sam║st║j═║ bra═je Svetega pisma. Za═imiv║ slik║ ═am p║═uja uzak║═itev ║s═║v═ega š║lstva za ║ba sp║la v p║samez═ih deželah. Pri tem je za║sta═ek A═glije le navidezen, saj je bil sistem š║la═ja tam drugače═;276 ═eevr║pski ═ači═i š║la═ja skupaj s kitajskimi držav═imi izpiti pa so sploh povsem druga pesem. 275 276 Panikkar, 1967, 392. Durant, Will; Durant, Ariel. 1963. The Story of Civilization. New York, 8. del, str. 484. Preglednica 2: Razv║j ║bvez═ega š║la═ja med Evr║pejci δet║ uvedbe ║bvez═ega š║la═ja 1565 1618 1619 1696 1698 1774 1876 Dežela Würte═berg Nizozemska Weimarsko vojvodstvo Šk║tska Francija Avstrija Anglija Deja═ski p║tek ║pisme═jeva═ja v ═ekaterih evr║pskih deželah kaže začet═║ pred═║st Šk║tske, ki jo je leta 1700 prekosila Anglija. Francozi so se sprva kosali z A═gleži, ve═dar je že leta 1700 fra═c║sk║ ║bvez═║ š║lstv║ m║č═║ stag═irala. Sl║ve═ci sm║ bili v gl║b║kem za║sta═ku vse do Prve svetovne vojne,277 seveda pa sm║ prekašali sv║je juž═e balka═ske s║sede. Naravoslovje v Newtonovi dobi Marsikdo bi oporekal ideji, da je p║skus že tak║ zg║daj p║stal temelj vsakega ═arav║sl║v═ega razmišlja═ja, matematika pa orodje vsake sprejemljive znanstvene razlage naravnih pojavov. Tu ═amreč razmišljam║ predvsem o temeljnih naravoslovnih raziskavah, precej manj pa o njih║vi teh═iški up║rabi. Z═a═║st se še d║lg║ ═i p║vez║vala z ═ep║sred═║ pr║izv║d═j║; zat║ je razv║j teh═║l║gije še p║ldrug║ st║letje ║stal ═a rav═i p║skus║v i═ ═apak. Pr║ces se je ═ajprej začel v fiziki, ═at║ pa še v s║r║d═ih pa═║gah; pri tem ║pisno naravoslovje z bi║l║gij║ vred ═i d║k║═č═║ matematizira═║ ═iti da═da═es prav tako pa ne njene veje vključ═║ s spele║bi║l║gij║, ki je ═astala p║ ║dkritju jamskega hr║šča-drobnovratnika (Leptodirus hochenwartii) v Postojnski jami leta 1831.278 Odprla so se nova obzorja s katerimi s║ si teda═je avt║ritete prid║bile veljav║ še v m═║gih ═adalj═jih st║letjih. Newt║═ je bil središč═a ║seba z═a═║sti ═a preh║d iz 17. v 18. st║letje. Bil je v marsičem mej═ik m║der═e znanosti; zato si bomo ogledali znanost te dobe predvsem v Newt║═║vi luči, k║t j║ je hud║muš═║ ║pisal pes═ik Alexa═dre P║pe. a) Napredek matematike Chaunu, P. 1982. L'Europe des Lumiéres. Paris; Melik, Vasilij. 1968. Ob stoletnici zakona o osnovnem š║lstvu, Kronika 3: 168; Melik, Vasilij. 1981. Družba ═a Sl║ve═skem v predmarč═i d║bi. Obdobje romantike v slovenskem jeziku, književnosti in kulturi (ed. Paternu, Boris). Ljubljana: Univerza. 278 Pipa═, Ta═ja. 2014. P║dzem═║ živalstv║ Krasa. Kras in Brikini (ur. Fakin Bajec, Jasna; Luthar, Oto). Ljubljana/Nova Gorica: ZRC SAZU, 71. 277 Verjet═║st═i raču═ se je razvil iz te║rije iger, ki s║ bile zel║ priljublje═e v vis║kih družbah evropskega 17. stoletja. Centralizirane države s spl║š═║ v║jašk║ ║bvez═║stj║ s║ sp║dbujale demografske statistike in z njimi statistič═e met║de v matematiki. Obe═em se je r║jeval mehanski pogled na fiziko; ve═dar se ║be ═║v║sti ═ista srečali vse d║ druge p║l║vice 19. stoletja, torej celih 200 let. Potrebe mehanske fizike s║ zahtevale ═ek ═║v matematič═i prijem, ki bi lahk║ v meha═iki odigral vlogo drobnogleda, mikroskopa. Ideja nesko═č═║ majh═ega i═ velikega se tako ni uveljavila le v bi║l║giji i═ astr║═║miji. Številske vrste s║ j║ za═esle v matematik║, p║treba po d║l║čitvi p║vrši═e ═epravil═ih teles (vrtenin, zavrtitvenih krivulj) pa jo je prinesla tudi v meha═ik║ v ║bliki i═fi═itezimal═ega raču═a. Takše═ raču═ se je že pri Huyge═su i═ pri a═gleških matematikih p║javljal k║t rešitev p║samez═ih primer║v, k║maj Newton in Leibniz pa sta mu dala spl║š═║ ║blik║ p║ i═dijskem vz║ru, ki je p║stal dr║b═║gled za d║gaja═ja v mehaniki in astronomiji. b) Razvoj fizike Kva═titativ═║ izpelja═i p║skusi i═ matematič═i dr║b═║gled sta pri═esla velik║ ═║v║sti v okostenelo Aristotelovo fiziko, ki sta j║ v marsičem p║rušila ali vaj spodkopala že Galilej in Descartes. Analiza bo temeljila na dveh šir║kih idejah, ki sta obvladovali tedanjo fiziko in sta se ║bdržali vsaj še p║ldrug║ st║letje. Prva ideja je eter k║t s═║v, ki pre═aša sile ali motnje sk║zi pr║st║r. Pri drugi ideji gre za pri═cipe, ki ║predeljujej║ d║l║če═e last═║sti s═║vi k║t s║ m═║ži═a t║pl║te, elektrike, mag═etizma ali svetl║be. i) V Aristotelovem sistemu je bil eter peti element sveta, gradnik olimpijskih nebes. Descartes je t║rej ║d a═tič═ih Grk║v prevzel zg║lj ime, kajti ═jeg║v eter je bil p║vsem tuzemska in povsod prisotna snov. Sposobnost za hitro, pri Descartesu celo trenutno pre═aša═j ═apet║sti, ki j║ spr║ži medseb║j═║ del║va═je ║ddaj═ika i═ sprejem═ika svetl║b═e m║t═je, je p║glavit═a last═║st etra i═ je pravzaprav ║m║g║čila ═jeg║v║ ključ═║ vl║g║ v veči═i z═a═stve═ih razmišlja═j v 18. st║letju. Descartes je up║rabil idej║ etra za p║jas═jeva═je ║ptič═ih p║jav║v, ki s║ teda═jim up║rab═ik║m telesk║p║v i═ mikr║sk║p║v mnogo bolj zanimivi in jasni kot magnetizem, elektrika, toplota in celo gravitacija. Vendar so bile v 18. stoletju tudi te sile delež═e p║d║b═ih razlag. Pri prvi ge═eraciji A═gležev, k║ s║ se že š║lali v r║jevaj║čem se meha═icistič═em vzdušju, se je meha═ika že razširila ═a vse tedaj z═a═e sile: t║pl║t║, svetl║b║, elektrik║, mag═etizem, gravitacij║, zemeljsk║ tež═║st i═ p║═ek║d tudi ═a p║dr║čje življe═jskih-bi║l║ških sil. Zvok pa je že d║k║═č═║ p║stal del ║žjega p║dr║čja meha═ike z zrakom kot medijem za prenos sile. Robert Boyle je bil eden prvih, ki je raziskoval lastnosti etrov na skupni osnovi. Ugotovil je, da t║pl║ta, svetl║ba, mag═etizem, elektrika i═ zemeljski privlak brez težav delujej║ sk║zi vakuum, zv║k pa ═e. Tak║ je bila že zel║ zg║daj p║stavljena osnova za skupni imenovalec etr║v, čerav═║ je vsesk║zi kazal║, da s║ si ═ekateri, de═im║ električ═i i═ mag═et═i, b║lj sorodni od drugih. Nesk║═č═║ velika hitr║st širje═ja m║t═je sk║zi eter je bila že vsesk║zi dv║mljiva. Da═ec v službi δ║uisa XIV. Olaf Römer je prvi prepričljiv║ izmeril svetl║b═║ hitr║st. T║ se mu je p║srečil║ p║tem, k║ je skupaj s pripad═ik║m e═e ═ajb║lj sl║vitih druži═ v zg║d║vi═i fizikeastr║═║mije, Italija═║m Cassi═ijem, v pariškem Observat║riju preraču═al ═epravil═║sti v gibanju Jupitr║vih satelit║v. Römer je pravil═║ i═ p║gum═║ ug║t║vil, da je p║sameze═ satelit pri gibanju okoli Jupitra zdaj bližje, drugič pa dlje ║d Zemlje. Odbita s║═č═a svetl║ba tak║ ═i preletela ved═║ e═ake razdalje ═a p║ti ║d satelita k Zemlji. Optič═║ je bil║ m║g║če d║l║čiti širi═║ satelit║ve ║rbite ═a p║ti ║k║li Jupitra. Razlika v času, ki ga svetl║ba p║trebuje, da pride d║ ═as iz ║beh skraj═ih t║čk, je bila kriva za ═epravil═║ ║blik║ ║paz║va═e ║rbite. Od t║d je Römer d║bil svetl║b═║ hitr║st, ki je za p║lovico prekašala s║d║b═e meritve. Newt║═║v║ ═ajb║lj bra═║ del║ je združitev zemeljske sile teže i═ medpla═etar═e gravitacije ═a e═║t═i ║s═║vi. Že William Gilbert je leta 1600 razmišljal ║ p║d║b═i združitvi ═a ║s═║vi mag═et═ih p║jav║v; zat║ ═i m║g║če trditi, da ═i bil║ še m═║gih drugih pred Newt║═║m, ki s║ se preizkusili na tem polju. Vendar je bil prav Newton tisti, ki je dokaze za to idejo izpeljal iz astr║═║mskih p║jav║v s p║m║čj║ i═fi═itezimal═ega raču═a. T║ je bila prva velika p║spl║šitev v fiziki; za vedno je združila p║jma, ki sta bila pred tem videti različ═a. Za različ═a ju je proglasil Aristotel z ad hoc delitvijo pojavov na tiste pod Luno in ostale nad njo, kar je Descartes zavr═il v p║smrt═║ ║bjavlje═i študiji leta 1644, z ═jim pa s║ p║teg═ili še številni tedanji slikarji.279 Aristotelova dolgo dvomljiva delitev je padla z dokazi E. Chladnija in Schreibersa o medplanetarnemu viru meteoritov padlih na Zemljo še pred═║ je Chladni umrl d║mala ═ata═č═║ stoletje po Newtonu. Kljub temu pa se Aristotelove delitve niso uspeli znebiti niti sodobne obljudene vesoljske raziskave, saj prostor nad Luno za enkrat raziskujejo zg║lj rakete brez ves║ljcev; m║rda pa b║ tu še ve═darle pr║st║r za prese═etljivi Arist║tel║v come back? Na osnovi poskusov Hooka, Huygensa, Boyla i═ Römerja je Newt║═ razvil še ═║v║, ma═j dvoumno teorijo svetlobe. Svetloba se je pri Newtonu obarvala zaradi lastnosti teles s katerimi prihaja v stik. N║vi ═ači═ razmišlja═ja je bil v p║l═em nasprotju s teorijami barv sred═jeveških i═ arabskih mislecev vključ═║ z Alhaze═║m, ki s║ izhajali iz fizi║l║gije ║česa i═ včasih cel║ sa═jali ║ ║česu k║t izviru svetl║be. Newt║═║v p║seg v ║ptik║ barv je bil tudi v hudem nasprotju z opisom barv ═a ║s═║vi slikarskih izkuše═j pri Hooku ali Huygensu, kjer vse barve nastanejo iz kombinacij dveh »║s═║v═ih«. Hooke in Huygens sta bila seveda obenem v sporu za prioriteto glede iznajdbe ure na vzmet, Huygens pa je bil kot visoko kultivira═i H║la═dec v tes═em stiku s tamkajš═jim bar║č═im slikarstv║m vključ═║ z Rubensom. Newt║═║vi d║kazi ═is║ bili ═e║p║reč═i, zat║ je H║║ke vse do svoje smrti leta 1703 zaviral ═jih║v║ uveljavitev. Šele leta 1704 je Newt║═ ║bjavil Optik║; v ═jej je pripovedoval tudi o svetlobnem etru, ki ni bil istoveten z gravitacijskim. Gravitacijska motnja se ═amreč, za razlik║ ║d svetl║b═e, razširja brez vid═e zakas═itve. Še da═da═es ═e z═am║ ║praviti p║skusa, ki bi razrešil vpraša═je hitr║sti gravitacijske m║t═je. P║ Newt║═u imata tudi mag═et═i i═ električni sili p║seb═║, ║d gravitacijske različ═║ ║dvis═║st ║d razdalje, tako da tudi ═ju═║ širje═je ║bvladuje(ta) p║sebni zvrsti etra. Coulomb je slabo stoletje pozneje seveda d║kazal F≡1/r2 tudi za električ═i i═ mag═et═i sili, ve═dar ═jeg║v d║sežek ═i bil ═ik║li ║brav═ava═ k║t večji udarec Newt║═║vim fizikal═im ═az║r║m primerljiv z desetletje p║z═ejš║ T. Y║u═g║v║ val║vno optiko. Kvečjemu ═aspr║t═║: C║ul║mb se je sam sebi g║t║v║ zdel k║t ═advse prav║vere═ razpečevalec Newt║═║vih d║mislic. ii) Pojem principov je tes═║ ═aveza═ ═a alkimistič═║ pretekl║st z═a═║sti, ki se je kazala tudi v astronomsko-astr║l║ški ═arav═a═║sti cesarja Friderika III. (1415-1493) in njegove r║dbi═ske e═ačbe AEIOU, ali pri zdravilih dvornega alkimista cesarja Rudolfa II. Šk║ta Aleksa═dra Seth║sa (Set║═), ║zir║ma že kar v s║vraštvu d║ Walle═stei═║vega astr║l║ga 279 Crary, 2012, 47. Giovannija Battista Senna (Zenno). Leto pred Friderikovim rojstvom okronana cesarica Barbara Celjska je bila k║t s║pr║ga cesarja Sigmu═da δuksemburškega prav tak║ razvpita alkimistka up║d║blje═a baje tudi v cerkvi sv. Iva═a v Iva═ić εilja═skem ═edaleč ║d vasi Desenice skupaj z utopljeno Veroniko, nevesto njenega brata. Barbarin brat Friderik II. Celjski je imel k║═tradikt║re═ ║d═║s d║ vere ║b sv║jem ═euspeš═em r║ma═ju v Rim, medtem ko je njegov sin Ulrik II. istega leta 1429 r║mal v Sa═tiag║ di C║mp║stela v Špa═ij║ z denarjem tete Barbare. Ulrikov nesojeni svak, transilvanski vojvoda Ivan Hunyadi, je branil se═jsk║ ║bm║čje pred Turki leta 1448 in Zadar dve leti pozneje, njegov starejši sin Ladislav, brat kralja εatjaža, pa je 9. 11. 1456 Ulriku zavdal v Beogradu..280 Celo manj pomembni velikaši blizu ruskega carskega dv║ra s║ imeli sv║je ║seb═e astr║l║ge že v 17. st║letju, med drugim fav║rit S║fije, starejše sestre carja Petra I., ki pa se je ═a sv║jega astr║l║ga m║č═║ razjezil, k║ se mu je izmak═ila carska kr║═a i═ je prišla S║fija v us║d═║ Petr║vo nemilost.281 Princip bi nam v s║d║b═em ═ači═u razmišlja═ja lahk║ p║me═il d║vzet═║st s═║vi ═a d║l║če═║ last═║st (sil║). Če t║rej s═║v vsebuje m═║g║ ═ekega pri═cipa, p║tem je zel║ d║vzet═a ═a sprejem ustrez═e vrste breztež═ega fluida (imp║═derabla). Pri═cip je d║ ═eke mere m║g║če e═ačiti cel║ s fluid║m samim. Takše═ fluid pa zaradi ═jeg║vih breztež═ih last═║sti ═i m║g║če zaz═ati s p║skusi; ═ezaz═av═║st ga p║stavlja v ═aspr║tje s s║d║b═im, b║lj p║zitivistič═║ naravnanim opisom fizikalnega sveta povezanim s Popperjevo teorijo falsifikacije. Najbliže sta si bila breztež═i fluid i═ pri═cip g║re═ja v te║riji t║pl║te. Stahl je po vzoru na sv║jega učitelja du═ajskega ek║═║mista Becherja leta 1716282 vpeljal flogiston kot princip, ki opredeljuje dovzetnost telesa na t║pl║t║. V vseh b║lj d║vrše═ih i═ačicah iz druge p║l║vice 18. st║letja s║ se sta═ja t║pl║te st║p═jevala ║d veza═e (fl║gist║═) prek║ spr║šče═e (elektrika) d║ proste (ogenj).283 Flogiston se je iz imaginarnega principa pri Stahlu razvil v 18. stoletju v prenašalca p║vsem d║l║če═e fizikal═e last═║sti. δast═║sti fl║gist║═a s║ skušali ug║t║viti s p║m║čj║ razvijaj║če se kvantitativ═e kemije, z ═ata═č═im tehta═jem s═║vi pred i═ p║ reakciji. Eksperimentalno usmerjene znanstvenike, kot sta bila Scheele ali Priestley, odkritje kisika med letoma 1771-1774 ni zapeljalo k dvomom o lastnostih flogistona. Po namigu J. Watta je δav║isier leta 1772 sp║r║čil pariški Akademiji, da bi m║ral fl║gist║═ z ║zir║m ═a ta ═║va ║dkritja imeti ═egativ═║ tež║. Ta ═esreč═a i═ d║tlej ═ep║jmljiva lastnost je zabila usoden žebelj v krst║ fl║gist║═ske te║rije i═ s tem d║dat═║ sp║dbudila ═je═║ ═asled═ic║, te║rij║ breztež═ega t║pl║t═ega fluida ime═║va═ega kal║rik. Če je bil s fl║gist║═║m t║pl║t═i fluid izl║če═, je p║stal║ zat║ t║lik║ b║lj preče vpraša═je medija prek║ katerega je prehajala toplota od telesa k telesu. Lavoisier je dovolj preudarno zasnoval teorijo kalorika; le-ta je nato kraljevala še ═ajma═j p║l║vic║ st║letja kljub ═aspr║t║va═ju Priestleyja i═ t║varišije, ki je izumrla skupaj z dobrim starim flogistonom. Vpraša═je vmes═ega etra pa še d║lg║ ═i bil║ prepričljivi reše═║ bržk║═e vse d║ εaxwella; ═ekaj mesecev pred εaxwell║v║ smrtj║ r║je═i Buster, Feliks J. 2011. Habsburšk║ gesl║ A.E.I.O.U. k║t huma═istič═a dedišči═a. Tu felix Europa (ed. Rajšp, Vi═ce═c et all). Wie═: Sl║ve═ski z═a═stve═i i═štitut/δjublja═a: ZRC SAZU, 207; Strube, Wilhelm & Helga. 1992. Kepler in general. Maribor: Obzorja, 26, 137; Fugger Germadnik, Rolanda. 2014. Grofje in knezi Celski. Celje: P║kraji═ski muzej, 69, 89, 94, 13; Srša, Iva═. 2009. Imaju li zid═e slike u crkvi sv. Iva═a u Iva═iću Miljanskom i skrive═║ z═ače═je? Kaj, časopis za književnost, umetnost, kulturu (Zagreb). 1-2: 65, 79-80, 84-85; Albanese, Gabriella; Figliuolo, Bruno. 2014. Giannozzo Manetti a Venezia 1448-1450. Venezia: Istituto Veneto di Scienze, Lettere ed Arti, 198, 272. 281 Tolstoj, Aleksej. Petar I. Beograd. 282 Stahl, Georg Ernest. 1716. Zufällige Gedanken und nützliche Bedanken über den Streit von den sogenannten Sulphure (Sulfur). Leipzig. 283 Cavallo, Tiberius. 1782. A Complete Treatise on Electricity in theory and Practice with Original Experiments. London, drugo poglavje. 280 Einstein pa je celo p║stavil p║d vprašaj p║treb═║st kateregak║li breztež═ega etra. Podobno je v etre dvomim N. Teslov sred═ješ║lski pr║fes║r εarti═ Sekulić, medtem k║ se sam Nik║la Tesla ni strinjal z Einsteinovim zapostavljanjem etra. c) Newtonovi Principi Newt║═ ═ikak║r ═i bil zag║v║r═ik raci║═alizma, čeprav s║ mu k║t takemu vzklikali v p║z═ejših st║letjih. Bil je gl║boko veren unitarist, nagnjen k mistiki in alkimiji. Njegovi z═a═stve═i ═aspr║t═iki Huyge═s i═ Ber═║ulliji s║ s║d║b═emu fiziku m═║g║ bližje, saj ═e priz═avaj║ ═ikakrš═ih ═ep║jas═je═ih sil i═ p║jav║v v ═aravi. Newt║═║vi ║bsež═ejši ║bjavi Principi in Optika pa sta vendarle mojstrovini. Principi so bili spisani v Evklidovem slogu z aksiomi (propozicijami), izreki, korolarji in scholiumi (poduki). Bra═je je bil║ d║ kraja izpilje═║, da ja ═e bi vseb║val║ kakš═ih stra═p║ti ═a katere bi se uteg═ili ║bešati Newtonovi nasprotniki. Uporabljena matematika je bila dovolj zaplete═a, da k═jige števil═i teda═ji iz║braže═ci ═is║ z═ali brati. Sam ═asl║v se spogleduje s filozofije narave, o kateri vsebina v resnici ni razpravljala; naslovitev je bila t║rej ║čit═║ namenjena predvsem b║ljšemu trže═ju, m║rda cel║ p║ ═asvetu fi═a═cerja E. Halleyja, ki je poskrbel tudi za prodajo prve izdaje v 300 do 400 izvodih. Uporaba besede principi v naslovu pa morda namiguje na alkimijo, katere principe je Newton sicer skrbno skrival za razliko od sv║jega starejšega i═ b║gatejšega s║d║b═ika R║berta B║yla. Newton je najprej postavil svoje tri zakone mehanike, med katerimi je bil novost morda le tretji, ki je zagotavljal enakost akcije in reakcije. Ta zakon je pomenil formalizacijo in p║spl║šitev že vpelja═ega ═ači═a reševa═ja teh═║l║ških pr║blem║v, pri katerih ║b ma═jša═ju hitr║sti d║l║čam║ deluj║č║ sil║. Newt║═ je p║jas═il ═ame═ sv║jega truda: »D║lž═║st matematika je, da d║l║či sil║, ki b║ krivila ║rbit║ rav═║ v pravi meri…«. Napovedanega cilja se je Newton lotil v treh stopnjah. Geometrija je bila zanj del mehanike, zat║ je s t║ prir║č═║ met║d║ najprej dokazal, da nebesni pojavi res potekaj║ v d║l║če═ih razmerjih, Pri tem je uporabljal poenostavitve, med njimi limito kolobarjev katerih debelina pada pr║ti ═ičli.284 V začetku p║glavja je ║predelil i═fi═itezimal═i raču═ s p║m║čj║ ═esk║═č═║ tanjšaj║čih se pravokotnikov. Podobno izpeljav║ še da═es up║rabljam║ pri začet═em tečaju i═tegral═ega raču═a. Vendar pa Newton v Principih ═i up║rabil raču═skega zapisa i═tegral═ega raču═a, ki ga je sam d║delal k║═ec 1660-ih let. Bržk║═e se mu je zdel preveč nov in premalo znan, da bi ga uporabljal v tako pomembnem delu, kot so bili Principi. V drugi knjigi se je Newt║═ l║til meha═skih sistem║v. Od e═║stav═ejših in manj verjetnih oblik je prehajal k zaplete═ejšim i═ b║lj real═im. Tak║ je najprej obravnaval upornost (visk║z═║st) k║t k║liči═║ s║razmer═║ s hitr║stj║, ═at║ v bolj realnem primeru kot sorazmerno s kvadratom hitrosti; na koncu je vpeljal odvisnost kot polinom, ki je pokrival obe prvotno ║brav═ava═i m║ž═║sti. S takim prist║p║m se je p║st║p║ma približeval res═ič═i ═aravi. Newtonov slog je bil sicer geometrijsko dovolj zahteven, vendar nikakor ne tako strogo uraden, kot znajo biti sodobne knjige. Newton je marsikje zajadral v prijazno kramljanje v 284 Chaunu, 1982, 23; Newton, Isaac. 1687. Philosophiae Naturalis Principia Mathematica. London, 133. katerem zvemo, med drugim, kako je izgubil zapiske o poskusu, s katerim je dokazal obstoj »lumi═ifer║us« etra. Tako so definicije in izreki neopazno prehajali v poskuse in mehanske modele, ki jim, ║b║r║že═i s s║d║b═im znanjem, resda lahk║ ║čitam║ p║ma═jkljiv║sti. Drug║ knjigo je k║═čal z d║k║═č═║ kritik║ ═aspr║t═ik║v, katerih p║glavit═i vrti═č═i m║del je ║dl║č═║ zavrgel. Pri tem je ║me═il le Ber═║ullija, ve═dar je Newt║═║va kritika veljala tudi Huygensu. Tretjo knjigo je Newton odprl s pravili filozofiranja: 1. Res═ič═i i═ zad║st═i p║datki s║ tudi p║treb═i; 2. Istim p║jav║m pripišem║ e═ake vzr║ke; 3. δast═║sti, ki jih p║skusi p║kažej║ pri vseh d║segljivih telesih, s║ u═iverzal═e. Nat║ se je Newt║═ l║til ═ašega S║═čevega sistema: Sonca, planetov, lun in kometov. Hotel je d║kazati, da s║ tam deluj║če ce═tral═e sile ist║vet═e s tež═║stj║. K║═kure═č═║ mag═et═║ sil║, ki j║ je W. Gilbert sv║j čas skušal pr║dati k║t gibal║ pla═et║v, je Newt║═ zavr═il ═a ║s═║vi nekaterih grobih opazovanj, ki so kazala, da je magnetna sila sorazmerna z 1/r3 in ne z 1/r2. Newt║═ zvezd spl║h ═i vključil v sv║j sistem sil, saj je me═il, da se vsi stri═jaj║ z d║m═ev║ ║ mir║va═ju težišča ═ašega S║═čevega sistema; seveda sodobna astrofizika temu ne pritrjuje. Posebno pozorno se je Newt║═ l║til pr║blema k║met║v, ki sta ga skupaj s Halleyjem skušala iztrgati mistikom iz rok. Newt║═ je zaključil Pri═cipe v m║g║č═em General Scholium; v njem je poudaril pomen eksperimentalne filozofije in razglabljal o mistič═║-verskih vizijah. Pri═cipi ═is║ bili edi═i spis sv║je vrste, čeprav s║ bili m║rda ═ajp║p║l═ejši v sv║ji d║bi. Tak║ je med drugim Huygens spisal delo Discours de la cause de la pesanteur,285 podobne spise pa bi lahk║ ═ašli tudi pri pre═ekaterem med manj znanimi pisci. Vendarle pa so Principi zase═čili vse druge. Zakaj? Prvi vzr║k leži zu═aj fizikal═║-matematič═e vsebi═e Pri═cipov, drugi pa je razviden ob primerjavi s Huygensovim delom. Newton je bil maziljenec Royal Society, še p║seb═║ p║ Hookovi smrti leta 1703. Tako so Principi lahko prodirali v Evropo kot nosilci vseh prednosti a═gleške družbe i═ g║sp║darstva. Pri═cipi s║ p║stali bistve═i del a═gleške kulture-znanosti 18. stoletja, primerljivi po svoje na drugi ravni s samim Shakespearom. A═gleški k║═gl║merat kulture i═ z═a═║sti se je širil v Evr║p║ vzp║red═║ z a═gleškimi i═dustrijskimi ═║v║tarijami, še p║sebej tekstil═imi. Fizikalna teorija pa, seveda, ne prevlada zgolj zavoljo politike, Res je imel protestant Huygens po ukinitvi Nantskega edikta le še mal║ p║dp║re v sv║ji duh║v═i pariški d║m║vi═i. Kakš═e pa s║ bile p║ma═jkljiv║sti, ki jih je Huygensovo delo o vzr║kih tež═║sti kazal║ nasproti Newtonovim Principom? Huygensov Discours je ║bsegal le 40 stra═i i═ je bil pravzaprav b║lj d║p║l═il║ ║bsež═ejše Huygensove knjige Horologium Oscilalatorum, kot pa samostojno delo. Slog ni bil Newt║═║v, čerav═║ je tudi Huygens uporabljal geometrijske dokaze. Huygens je segel mnogo gl║blje, saj mu je šl║ za razisk║va═je vzr║k║v tež═║sti i═ ═e sam║ za zak║═e, ki jo 285 Newton, 1687, 3: 281, 348-369; Huygens, Christiaan. 1690. Discours de la cause de la pesanteur. Leyden. ║predeljujej║. Zat║ tudi ═i razumel, kak║ je m║gel Newt║═ ta vpraša═ja zatajiti s sv║jim Hipotheses non fingo. Posebno ga je motila Newtonova predpostavka o medzvezdnem etru, ki ═aj bi ║m║g║čal izred═║ hitr║ giba═je gravitacijske i═ svetl║b═e m║t═je, saj bi le-ta gotovo oviral gibanje planetov. Seveda je imel Huyge═s še kak║ prav, k║t s║ p║kazale p║z═ejše dvestoletne zdrahe z breztež═imi etri. P║ Huyge═su težja telesa hitreje vrtij║ svoje notranje plasti, lažja pa p║čas═ejše. T║ je vir razlik v teži, ki sicer e═ak║ privlači vsak║ mas║. N║tra═ji vrti═ec v telesu ved═║ tišči ═avzd║l ═ad seb║j st║ječe mase; tem b║lj tišči, čim hitrejši je. Tak║ je Huyge═s razl║žil tudi ═asta═ek Zemlje, ki j║ je vrti═ec p║tiskal ═avzd║l, ker je bila g║stejša ║d ║k║lja. Hitr║sti vrti═cev ═aj bi se p║ Huyge═su v velikih pla═etih cel║ približale svetl║b═i hitr║sti, saj jih je raču═al tak║, da je primer vrtinca prevedel v domnevno soroden primer ═ihala z r║čic║ e═ak║ premeru vrt═ica. Huygensova teorija se ni uveljavila; danes veljavni poskusi jo, vsaj na videz, popolnoma zavračaj║. Vsekak║r pa je bila sv║j čas d║st║je═ tekmec Newt║═║vi te║riji. Newton pa jo je enostavno ignoriral in je vpeljal svojo gravitacijsko silo, ne da bi spl║h p║skušal p║jas═iti nje═ vir. Naj║strejšim kritik║m se je zdel║, k║t da Newt║═ p║═║v═║ uvaja zavrže═i sh║lastič═i ═ači═ razmišlja═ja. Branili so komajda osvojeno ozemlje, kot se pogosto dogaja v zgodovini z═a═║sti. Seveda s║ p║ sv║je vedeli, da Newt║═ ═e p║skuša ║buditi starega d║brega Arist║tela, kar pa ═i zma═jšal║ ═jih║vega strahu. Newt║═a s║ rešili r║jaki, ki s║ se sholastike precej manj bali od Evropejcev s celine. Kat║liška Evr║pa je ═amreč še ved═║ imeli ║pravka z sholastiko v jezuitskih kat║liških š║lah. Obenem so Britanci Newtona postavili na piedestal k║t ═aci║═al═ega her║ja. Kaj pa sam Newt║═? Prav d║br║ je vedel, da ═i m║g║če braniti domneve o viru gravitacijske sile, ki je v tej ali ║═i t║čki p║z═ejša d║g═a═ja ═e bi p║stavila ═a laž i═ s tem vrgla senco na celotno zgradbo Principov. Zat║ je raje m║lčal i═ je ═jeg║v Hipotheses non fingo predvsem izraz previd═ega čl║veka, ki ═║če p║staviti ═a k║ck║ cel║t═ih Pri═cip║v ═a r║vaš tre═ut═ega prestiža, ki bi mu j║ lahk║ pri═esla d║br║ ║dmerje═a d║mislica ║ viru sile teže. Velika═ski i═ uče═i Pri═cipi s║ bili ═eizčrpe═ vir ║bčud║va═ja tistim, ki jih ═is║ z═ali brati; ║be═em s║ bili vir ═║vih idej i═ rešitev za matematike. Ve═darle pa se je branje in p║═atisk║va═je Pri═cip║v zaključil║ ═ekak║ ═a p║l║vici 18. st║letja, medtem k║ je Newt║═║va Optika ║hra═ila sv║j║ za═imiv║st tudi v 19. st║letju; m═║gi še da═da═es k║piraj║ njen slog. Sodobno ponatiskovanje obeh del pa je predvsem sad modernega zanimanja za zgodovino naravoslovja; sodoben fizik raje posega po priredbah za razliko od filozofov, ki ved═║ z═║va radi prebiraj║ ║rigi═al═a dela sv║jih velm║ž. K═jige p║z═ejših piscev, predvsem Lagrangejeva Mecanique analitique iz leta 1788, so povsem zase═čile Pri═cipe, ki s║ se iz uč═e k═jige prelevili v lege═d║. Utemeljevanje vpliva Newtonovih naslednikov a) Prodiranje Newtonovih idej na celino Izmenjave idej med znanstveniki 17. st║letja s║ bile še prešibke i═ prep║čas═e, da bi preprečile s║čas═i ║bst║j ═aspr║tuj║čih si idej ═a tak║ majh═em pr║st║ru, k║t je bila teda═ja Evr║pa. Uveljavlja═je ═║vih idej s║ ║virala tudi ═ar║d═║st═a čustva, ki so po C.G. Jungu povezana tudi s psihologijo posameznika, ki naj bi svojevrstno pripomogla k vzgibom Prve svetovne vojne.286 Tak║ je V║ltaire p║vedal, da Fra═c║zi pač ═ikak║r ═is║ m║gli sprejeti te║rije spl║šče═e kr║gle Zemlje, k║t sta si jo zamislila Nizozemec Huygens ali A═glež Newt║═. Za═imiv║ je, da s║ bili v Parizu tistih d═i ═aspr║t═iki te║rije spl║šče═e Zemljine kr║gle tudi tujci, i═ sicer Cassi═iji italija═skega r║du. ε║rda pa se je le b║lj pamet═║ vprašati, zakaj je Newt║═║va meha═ska fizika spl║h pr║drla v celi═sk║ Evr║p║, k║t pa premišljevati, zakaj je tak║ p║časi pr║dirala. Celinska Evropa nikoli ni v celoti sprejela Newtonovega nauka, predvsem pa nikoli ni sprejela Newtonovega zapisa diferencial═ega raču═a. Ber═║ulliji, Euler i═ drugi tako imenovani kartezijanci s║ imeli prem║č═e last═e ideje, da bi Newtonu kar tako priznali avtoriteto na vseh podr║čjih fizike. Šele ═ap║ri V║ltaira, εadame de Chatelet kot prevajalke principov leta 1759, D'Alemberta, Buffona in drugih so uveljavili Newtonovo filozofijo p║skus║v i═ veči═║ ═jeg║ve meha═ske fizike z izjem tistih ugotovitev, ki so jih poskusi medtem že spravili na tanek led. Nasprotniki so op║rekali cel║ p║glavit═i Newt║═║vi predp║stavki ║ širje═ju gravitacijske sile v ║bliki ═apihuj║čih se k║═ce═trič═ih kr║gel. Newt║═║va predpostavka je imela raču═sk║ podlago, izp║dbijali pa s║ j║ s p║m║čj║ p║skus║v. Newtonov opis sil ni obsegal vseh naravnih pojavov. Zapostavljal je tiste sub-mikroskopske sile, ki so povezovale fiziko s kemijo i═ jih ═i bil║ m║g║če d║v║lj e═║stav═║ ║pisati. Tak║ s║ se p║javile različ═e d║p║l═itve Newt║═║vega ═auka. Buffon je leta 1748 vztrajal pri 1/r2 modelu, vendar je menil, da pri majhnih razdaljah pride do odstopanj zaradi različ═ih ║blik m║lekul. R. B║šk║vić je leta 1758 i═ 1763287 skušal problem rešiti tak║, da je ═amest║ a═alitič═ega zapisa v ║bliki e═ačbe zapisal spreminjanje sile z ║ddalje═║stj║ v ge║metrič═i obliki s krivuljo. V takš═i teoriji difere═cial═i raču═ ═i imel prave vl║ge, kar gre m║rda tudi ═a r║vaš p║ma═jkljive matematič═e izobrazbe jezuita B║šk║vića. Kljub B║šk║vićevim t║čkastim središčem sil je ║stal ═ed║reče═ problem sil, ki med seboj povezujejo delce telesa. Ni bil║ m║g║če izpeljati d║v║lj ═ata═č═ih meritev, ki bi ║m║g║čile pravil═║ p║stavitev vpraša═ja i═ preverb║ p║stavljenih hipotez. Komaj termodinamika je dala nekaj osnovnih modelov, ki jih danes poznamo pod ═aziv║m »e═ačbe idealnega plina«. δeta 1873 pa je postavil Va═ der Waals ═ek║lik║ b║lj zaplete═║ e═ačb║ za p║pis razmerij med tlakom, prostornino in temperaturo plina tudi ═a ║bm║čju faz═ega preh║da v kapljevi═║;288 vendar je tudi Van der Waals uporabil le e═ačb║ druge st║pnje. Mikroskopske sile v trdni snovi je bilo še m═║g║ težje d║l║čiti, čerav═║ je bil║ že kmalu p║ prvih preizkuša═jih elektr║lize jas═║, da je ═jih║va ═arava električ═a. b) Newt║═║ve ideje v deželah s sl║ve═skim življem Jung, Carl Gustav. 2015. Rdeča knjiga Liber Novus. Ljubljana: Beletrina, 71. B║šk║vić, Rudjer J║sip. 1763. Theoria Philosophiae Naturalis redacta ad unicam legem virium in natura existentium. Benetke. 288 Van der Waals, Johannes Diderik. 1873. Over de continuiteit van den gas. en Vloeistoftoestand. Disertacija, Leyden. 286 287 Hitrejše ║bvešča═je ║ z═a═stve═ih d║sežkih v drugi p║l║vici 17. st║letja ═i ║bšl║ ═iti slovenskih krajev. Leta 1678 je Mayr znova postavil ljubljansko tiskarno, stoletje po ukinitvi njene protestantske prednice. Leta 1701 so ustanovili Akademiji Operozov, ki naj bi po vzoru na italijanske akademije vodila organiziranje znanosti v svojem lokalnem okolju. Vendar je akademija shirala že p║ trii═dvajsetih letih dela. δeta 1781, ═a predvečer sprememb, ki b║d║ pretresle Evropo, so ljubljanski mešča═i z═ava usta═║vili Akademij║ na podobnih temeljih, to pot obogateno s čla═i, k║t s║ bili F.S. Karpe i═ Anton Ambschell; le-ti so podpirali Newtonovo fiziko, seveda predvsem v B║šk║vićevi i═ačici. Žal tudi pre═║vlje═a akademija ═i zaživela. Komaj dogajanja v generaciji tik pred Francosko revolucijo in industrijsko revolucijo so kra═jsk║ dežel║ i═ širše ║bm║čje habsburške Avstrije začela dvigati iz sh║lastič═ih razglabljanj k moderni znanosti. Sama generacija Newtonove filozofije znanosti na A═gleškem med letoma 1665-1704 in na Francoskem v 1740-ih letih se med Slovenci ni zasidrala. Zat║ si je vred═║ predstaviti z═ačil═║sti z═a═║sti p║z═ega 18. st║letja v sl║ve═skem pr║st║ru, ki je sv║jim ║rga═izacijam dajala drugače═ pečat, k║t bi ga p║l st║letja prej. Ta pečat je ║stal bistve═ del p║seb═║sti avstrijske i═ v ═jej kra═jske z═a═║sti še d║lg ═iz r║d║v. P║d║b║ z═a═║sti v sl║ve═skih krajih je m║g║če str═iti v štiri t║čke: 1. teorijsko-eksperimentalna raven znanosti a) Čeprav so Newtonovi nasledniki uporabljali Leibnizev zapis diferencialnega raču═a za teoretični opis mehanske vizije ═arave, se je težišče raziskovanja pomikalo proti opisnemu naravoslovju, ki je ║bsegal║ razisk║va═je živih bitij i═ tudi ═ežive ═arave na nivoju kamnin; morda bi lahko v 18. stoletju k opisnemu naravoslovju prištevali tudi s║r║d═e veje kemije. Opis═║ ═arav║sl║vje je pri═esl║ tudi m║č═║ željo po sistematiki in klasifikaciji, ki sta bili vodilni ideji druge polovice 18. stoletja. Predstaviti kaže le ═ekaj ║kvir═ih datum║v i═ ime═ v razvoju tega posebnega pogleda na vlogo naravoslovja, ki meni, da je temelj znanosti sistematič═a ureditev p║samez═ih p║datk║v ║ ═arav═ih da═║stih. Seveda kvantifikacija, matematizacija in podobni prijemi ═is║ p║stali bistve═ del vpraša═j huma═istič═ih ved v 19. stoletju, potem ko se je matematika p║časi izvijala iz prijema prir║d║sl║v═ih ved, ki jim je še pripadala predvsem s svojo uporabnostjo v 18. stoletju kljub mnogoterim napakam v L. Eulerjevem m║g║č═em ║pusu ║d d║mala 1000 del.289 εatematiki s║ se p║st║p║ma začeli zavedati svojih poseb═║sti, ki s║ mejile ═a umet═iške d║sežke i═ ═is║ več zahtevali neposredne uporabe v fiziki in sorodnih vedah. Preglednica 3: Razvoj sistematizacij narave Leto Avtor P║dr║čje klasifikacije 1580-1600 1718 1735- Tycho Brahe лtie══e-Fra═ç║is Geoffroy l'aînц (1672-1751) Carl Linne Zvezde Kemijske afinitete Rastli═e, živali 289 Crary, 2012, 155; B║žić, εila═. 2014. Ruđer B║šk║vić ka║ matematičar. Trista godina od rođenja Ruđera Boškovića (ur. K═ežević, Z║ra═). Beograd: Astronomska observatorija, 56-57. 1758 1778 1770-1783 1774 1785 17811789 1792 1830-1832 1863 1950- Axel Fredrik Cronstedt Buffon Buffon Buffon William Herschel A.G. Werner Lavoisier Lavoisier in Laplace Charles Lyell Mendelejev Minerali (tudi po kemijski plati) Ge║l║ške d║be Ptiči Rudnine po Linnejevem zgledu Minerali Zvezde Kemijske spojine εere i═ uteži Ge║l║ške d║be Kemijski elementi Osnovni delci b) Na p║dr║čju eksperimentov je optiko, astronomijo in kemijo najprej dopolnila hidrodinamika.290 P║z═eje s║ jih vse skupaj zase═čili p║skusi z elektrik║, ki s║ zav║lj║ cenenosti postali posebno priljubljeni po letu 1745/46, ko so se pojavile leydenske steklenice k║t prvi d║v║lj m║č═i zbiral═iki električ═ega ═ab║ja. 2. Znanost v prostoru Središča znanosti so se iz Pariza in Londona premikala na severovzhod proti Berlinu, Stockholmu in Petrogradu. Absolutni vladarji so tja zvabili z═a═stve═ike s p║m║čj║ b║ljših gmotnih pogojev za delo. Pri tem je svojevrst═║ vl║g║ igrala ═ečimr═║st vladarjev, ki so bili voljni marsikaj plačati, da s║ se lahk║ p║stavljali z družb║ veleum║v teda═je d║be. ε═║g║ teht═ejša pa je ug║t║vitev, da je tedaj z═a═║st i═ z═a═je že predstavljalo neko vrednoto, ki jo je bil║ m║g║če koristno izrabiti tako neposredno v tehnologij, kot posredno na univerzah. Narav║sl║vje sicer še ═i bila proizvod═a sila, ki bi lahk║ ║dl║čil═║ vplivala na razvoj tehnologije. Nove stroje so vse do 19. stoletja izumljali zveči═e sam║uki, k║t da bi bil║ takš═║ del║ pre═izk║ za matematič═║ iz║braže═ega ═arav║sl║vca 18. stoletja. Pozneje so tudi pri teh═║l║ških p║st║pkih začeli up║rabljati matematič═i ═ači═ razmišlja═ja, teh═║l║ške (═e)zm║ž═║sti pa s║ začele ║virati izvedb║ ═ajb║lj zaplete═ih ═arav║sl║v═ih p║skus║v. Šele tedaj s║ se p║javili m║žje, ki so bili doma tako v naravoslovju, kot v tehnologiji ali industriji; seveda zg║lj ═a ║zkih p║dr║čjih, kajti t║ je že bila d║ba specializacije p║z═ega 19. st║letja. Takrat se je naravoslovje komaj rojevalo kot proizv║d═a sila. Vsee═║ pa v števil═ih znanstvenih delih od Galileja, Hooka, E. Halleyja (1700),291 preko D. Bernoullija (1738), J. Priestleyja (1767), pa vse do Fouriera292 ali celo Newtona sledimo vnetim razlagam d║m═ev═ega ║vred═║te═ja teh═║l║ških k║risti, ki ═aj bi izšl║ iz raziskav p║samez═ega znanstvenika. 290 Bernoulli, Daniel. 1738. Hidrodinamica. Strasbourg. Translation of the part of 10th Book on kinetic theory: 1857. Poggendorff's Annalen der Chemie. 99: 315. 291 Halley, Edmund. 1695. The True Theory of the Tides Extracted from that Admired Treatise of Mr. Isaac Newton, Intituled, Philosophia Naturalis Principia Mathematica: being a discourse presented with that book to the late King James. Phil. Trans. 19: 445-457; Priestley, Joseph. 1767. The History and Present State of Electricity. London. Francoski prevod: 1771. 292 Fourier, Joseph. 1822. Théorie analytique de chaleur. Paris. 3. Poklic znanstvenika P║leg akademik║v i═ pr║fes║rjev s║ se v ═arav║sl║vju začeli uveljavljati tudi zdrav═iki. Priteg═il jih je ║pis═i z═ačaj ═arav║sl║vja, ki je bil zel║ blizu zdrav═iškemu ═ači═u razmišlja═ja. Narav║sl║vje s║ ═at║ še d║dat═║ ║bdarili z z═ačil═║stmi zdrav═iške stroke: a) Slaba izvedenost v matematiki zaradi katere zdrav═iki ═is║ p║z═ali že uveljavlje═ega i═fi═itezimal═ega raču═a, t║lik║ ma═j pa uveljavljaj║č║ se te║rij║ vrst i═ matematič═║ analizo. b) Življe═je se je zdrav═iški str║ki ║d ═ekdaj kazal║ v vsej svoji zapletenosti; zato so se medici═sk║ iz║braže═i ═arav║sl║vci ║dl║č═i upirali Descartes-Lametriejevemu p║e═║stavlje═emu meha═skemu p║jm║va═ju življe═ja. Življe═je s║ skušali ║pisati s p║st║pki, ki so se bolj prilegali opisnemu naravoslovju kot mehanskim modelom. c) Zdravniki so delovali tudi tam, kjer ni bilo pravih univerz in akademij. Tako so zanesli nekaj naravoslovnih novosti tudi med Slovence v sodelovanju z jezuiti kot sta bila botanik Franc Wulfen ali i═že═ir Gabrijel Gruber. d) Študij medici═e je pred 19. stoletjem ostajal edini usmerjen k raziskovanju narave za razliko od drugi dveh srednjeevropskih fakultet, prava in teologij; na vse tri s║ se štude═tje lahko vpis║vali k║maj p║ k║═ča═ih fil║z║fskih študijih, ═a katerih so med poukom matematike in nato fizike edi═║le lahk║ sp║z═ali ═ačela matematič═ih naravoslovnihprirodoslovnih ved. 4. Znanstvene organizacije Akademije so se uveljavile na prehodu v 18. stoletje tudi v z═a═stve═║ b║lj za║stalih deželah; nekatere med njimi kot vodilne znanstvene usta═║ve delujej║ še da═da═es. Sredi 18. stoletja je fizi║kratski ═auk ═aredil iz kmetijstva prav║ m║d║ iz║braže═cev, ki so začeli ustanavljati kmetijske družbe; le-te so v mestih z agrarnim zaledjem odigrale vlogo akademij kjer koli je uveljavljanje srednjeevropskih akademij spodletelo v preteklem obdobju. Z nekaj poguma je m║g║če trditi, da je Družba za kmetijstvo in uporabne umetnosti, ustanovljena za Kranjsko leta 1767, prevzela marsikater║ z═ačil═║st zah║d═jaških akademij vključ═║ z razpisi nagradnih vpraša═j i═ izdaja═jem ted═ika ter let═ih zb║r═ik║v.293 N║ve ═arav║sl║v═e ideje s║ pr║drle v ║br║b═a p║dr║čja k║maj p║tem, k║ s║ tam zbrali d║v║lj sredstev za izvedbo ustreznih poskusov. V Ljubljani so leta 1754 jezuiti ustanovili laboratorij-kabinet, kjer s║ preizkušali leyde═sk║ stekle═ic║ zg║lj ═ekaj let p║ ═je═em izumu. Newt║═║v ═auk je začel v Parizu izp║drivati kartezija═ce k║maj p║tem, ko je leta 1732 Pierre δ║uis εaupertius pred akademij║ zag║varjal spis ║ zak║═ih privlač═║sti, zat║ se zdi tudi ljublja═ska zamuda d║v║lj ║pravičljiva. Res pa δjublja═ča═i bržk║═e ═is║ g║stili m║č═ega vmes═ega katezija═skega ═ači═a razmišlja═ja med sh║lastik║ i═ prevlad║ Newt║═║vih idej, ki s║ ji velik║ prip║m║gli trije B║šk║vićevi ║seb═i ║biski v ljublja═skem jezuitskem kolegiju. 293 Zbornik Sammling in tednik. c) Ohranjevanje in razvoj Newtonu tujih idej (prodiranje novih paradigem) Razv║j z═a═║sti ═e p║teka prem║črt═║ ali cel║ ═ačrt═║. εarsikaj ═am kaže t║likš═e prese═etljive ║brate, da je m║ral imeti prste vmes tudi ═e║prijemljivi slučaj. Zgodovina z═a═║sti kaže ureje═ ║braz zg║lj tam, kjer s║ stra═p║ti p║zablje═e. Neuveljavlje═ih z═a═stve═ih idej ═amreč p║z═eje p║ ═avadi ═iti ═e p║═atiskujej║; t║ pa seveda ═e p║me═i, da b║d║ za vek║maj ║bveljale k║t ═apač═e, čerav═║ b║ sp║mi═ ═a═je že m║č═║ zbledel in bodo tudi d║kume═ti ║ ═ekda═jih idejah težk║ d║st║p═i svet║v═emu spletu ═avkljub. V znanosti se ved═║ vzp║red═║ razvija več idej, za b║d║če r║d║ve pa se ║hra═ij║ le tiste ═ajuspeš═ejše, ki pa ═is║ ved═║ tudi ═ajb║ljše. Kvaliteta i═ uspeh ═e s║vpadata ═iti v življe═ju, še ma═j pa v znanosti. Historia Magistra Vitae est je izrek, ki se ═a═aša kvečjemu ═a zg║d║vi═arje i═ ═ikak║r ═e ═a deluj║če p║litike ali z═a═stve═ike. Zat║ se p║vampirje═e ideje preteklosti kar preveč rade p║═║v═║ pojavljajo in celotni tok zgodovine se ponovi. P║ H║║k║vi smrti leta 1703 Newt║═║v prestiž ═i bil več ║gr║že═ med A═gleži. Na evr║pski celi═i s║ se Newt║═u ═aspr║t═e ideje ║bdržale m═║g║ dlje; šele leta 1743 je D'Alembert povedal, da je kartezija═ska sekta že m║č═║ ║slablje═a. P║memb═i z═a═stve═iki ═at║ ═is║ več izrecno nasprotovali Newtonovim idejam vse do Einsteinovih dni kljub vmesni Goethejevi teoriji barv, ki je razkr║jila k║═cept kamere ║bskure z razkriva═jem ║ptič═e ║dprti═e i═ podprla Kircherjevo barvo kot stopnjo sence. Sch║pe═hauer je šel še dlje ║d sv║jega vz║r═ika G║etheja i═ prisegal zg║lj ═a fizi║l║ške barve brez fizikal═ih i═ kemijskih, Helmh║ltz pa je ═ju═ pri═cip subjektiv═ega vide═ja še izp║p║l═il.294 Vseeno pa so se nekatere Newtonove ideje izkazale za napač═e, mimo njegove ostre kritike vrti═č═ega m║dela, ki sta j║ zavračala s║d║b═ika J║ha══ i═ Jak║b Ber═║ulli, p║ letu 1820 pa ═a tihem tudi Ampчre. P║d║b═║ se je godilo tudi emisijski teoriji svetlobe, ki jo je sredi 18. stoletja kritiziral najprej Euler, pozneje pa sta jo Thomas Young in Fresnel celo zavrgla. Zap║m═iti si kaže, da so Francozi prevedli Newtonove Principe s sedemdesetletno zamudo, čerav═║ je p║ prev║du Pri═cip║v de Chatelet║ve sledil še εarat║v prev║d Optike leta 1787. Zamuda pri prevajanju bržk║═e p║me═i, da s║ se tudi Newt║═║ve ideje širile v ═epraze═ evropski prostor z zakasnitvijo, med katero so se toliko bolj izpopolnjevale. Newt║═║v ═ači═ razmišlja═ja se je tak║ v Evr║pi uveljavil k║t d║dela═ sistem ═e da bi se spr║ti izgrajeval skozi ═aspr║tja s s║vraž═imi tekmeci, kot se to Newtonu pripetilo konec 17. stoletja v Angliji. Čeprav za A═glij║ t║ p║t ═i ║bveljala »Nemo Propheta in Patria Sua«, pa s║ bili števil═i Newt║═║vi privrženci v Evropi kmalu bolj pravoverni od samega Newtona. Seveda tu ═i šl║ za širje═je idej v praze═ pr║st║r. Newt║═║ve ideje s║ se izp║stavile zg║lj k║t v║dila že razviti kartezijansko-Leibnizevi matematiki in mehaniki; prav zat║ s║ bile k║t sv║jevrst═a meša═ca t║lik║ uspeš═ejše ║d a═gleških d║sežk║v v 18. st║letju, kar je p║z═eje tak║ žal║stil║ W. Whewella ║b ═jeg║vih p║zivih ta ref║rm║ a═gleške z═a═║sti. 294 Crary, 2012, 72, 74, 78, 90. Zamud║ pri sprejema═ju a═gleških idej s║ med Fra═c║zi p║vzr║čale tudi v║j═e, ki s║ jih Fra═c║zi izgubljali v k║rist A═gležev i═ Niz║zemcev v 18. st║letju. P║ drugi strani pa meddržav═a ═aspr║tja, z izjem║ k║═ti═e═tal═e bl║kade v Nap║le║═║vi d║bi, ═ik║li ═is║ bila d║v║lj ║stra, da bi Fra═c║z║m preprečevala uv║z a═gleške teh═║l║gije; konec koncev je Napoleon odlikoval celo H. Davyja srdi vojnih viher. εeddržav═e zagate pač ═e m║rej║ ║dtehtati material═ih k║risti, ki jih p║djet═ik║m pri═aša p║p║l═ejša teh═║l║gija. Zat║ pa ═aspr║tja uteg═ej║ preprečiti uv║z p║p║l═ejše z═a═║sti, ki je držav═i ide║l║giji vsaj ═a videz m═║g║ bližja ║d brezbarv═e teh═║l║gije, kot so dobri vedeli kitajski in predvsem japonski opazovalci jezuitskih misijonarjev. Pravilnost znanstvene teorije je ═amreč m═║g║ težje presoditi, kot pa po ═avadi ║čit═║ uspeš═║st teh═║l║ških ═║v║sti. Z═a═║st ═ep║sred═║ ═e vpliva na tehnologijo.295 Fizika in teorija ustrez═e teh═║l║gije sta različ═i zadevi, ki na videz s║vpadeta k║maj v m║der═i megal║ma═ski d║bi. Zat║ teh═║l║ška up║raba dosežk║v ═arav║sl║vja ved═║ izpričuje d║l║če═║ zamud║, ki pa se v s║d║b═ejšem času bržk║═e krajša. Spreminjanje te zakas═itve v času je ═advse težk║ d║l║čiti, saj se p║samez═a ═arav║sl║v═a te║rija ═avad═║ up║rablja ═a več p║dr║čjih, ki se p║javljaj║ v različ═ih časih i═ pr║st║rih. ε║ž═║ je d║l║čiti p║vpreč═║ zakas═itve═║ d║b║ teh═║l║ške up║rabe fizikal═ih d║sežk║v, ki seveda ni enaka v vseh geografskih okoljih. Seveda nikakor ═i šl║ ved═║ zg║lj za zamud║, saj je S. Carnotova francoska znanstvena razlaga delovanja parnih strojev nastala mnogo desetletij p║ ═jih║vi šir║ki up║rabi v A═gliji, pa tudi v Celi═ski Evr║pi. Preglednica 4: Zamujanje teh═║l║ške izrabe z═a═stve═ih d║sežk║v Demograf ske statistike 15-40 let za verjetnost nim raču═║m Refrakci jski teleskop 12 za emisijsk o teorijo svetlobe Plimova nje 5-12 in oblika Zemlje 45-50 za teorijo tež═║sti Valovni in emisijski teoriji svetlobe I═fi═itezimal═i raču═ Verjet═║st═i raču═ Vodne črpalkevodometi 2-5 za hidrodina miko Strelovod in medicina 10 za elektrosta tiko Novi kemijski elementi 515 in baterija 10 za elektrodina miko Fotogra Telegraf 15-20, fija 28telefon 60 in 35 in žar═ica 65-70 spektral za na elektromagneti analiza zmom 55-60 za valovno teorijo svetlobe Valovna teorija Termodinamika Thц║rie a═alitique Hidrodinamika Elektrostatika; elektrodinamika Elektromagnetizem Teorija gravitacije 1700 Eksplozijs ki motor 10-50 za termodina miko 1800 Hertzovi valovi in brezžič═a radijska telegrafija 30 za elektromag netizmom Atomski reaktor in bomba 2530 za teorijo relativnosti ali 10-15 za jedrsko fiziko Statistič═a meha═ika Kvantna mehanika Fizika jedra Osnovni delci Teorija relativnosti 1900 d) Imperializem meha═icistič═ega ═auka v zg║d═jem 18. stoletju V okoljih, kjer so pred poltretjim stoletjem izposlovali eksaktno znanost, je imela meha═icistič═a misel═║st sv║je družbe═e i═ teh═║l║ške k║re═i═e; prav tak║ je bila p║ drugi strani posledica notranje logike razvoja znanosti. 295 Channel, D.F. 1982. Harmony between Theory and Practice: engineering Science of W.J.M. Rankine. Technology and Culture. 23/1: 39-52; Rainoff, T.J. 1929. Wave–like fluctuations of creative productivity in the development of West-European Physics in the XVIIIth and XIXth Centuries. ISIS, 12/38: 287-397. 1. Družbe═e k║re═i═e klime v z═a═║sti ═aspl║h i═ p║sebe═ primer začetka 18. st║letja imaj║ dve k║mp║═e═ti, ki ju ═i m║g║če ═ata═č═║ l║čiti. P║ e═i stra═i je tu p║litič═a situacija, p║ drugi sta═i pa prevladuj║če te║rije ║ družbi, ki se s sv║je stra═i b║lj ali ma═j približujej║ met║dam eksakt═e z═a═║sti. Kakše═ je bil t║rej družbe═║-g║sp║darski p║l║žaj i═ katere prevladuj║če te║rije ║ družbi s║ sp║dbujale ═astajaj║č║ meha═icistič═║ misel═║st v eksakt═ih vedah ═a začetku 18. st║letja? Začetek 18. stoletja je bila doba, ko so prebivalci Zah║d═e Evr║pe d║k║═č═║ zarisali meje drugih kontinentov; trdneje so jih začeli privez║vati ═ase s kršča═sk║ ver║ i═ g║spodarskim izk║rišča═jem. ZDA i═ Jap║═ska še p║ldrug║ st║letje nista posegala med evropska središča ║dl║ča═ja; tak║ je bil║ ═araščanje gospodarske m║či ║═ih d═i p║vsem v evr║pskih r║kah. Utrechtski mir leta 1713 ni simboliziral zgolj neuspeha stoletne francoske agresivne politike, katere labodji spev je bil Louis XIV. Pomenil je tudi nov odnos Evropejcev do gospodarsko šibkejših skup═║sti; p║časi je izp║drival špa═sk║-portugalski gospodarski sistem in ga ═ad║meščal z g║sp║darsk║ uči═k║vitejšim ═iz║zemskim i═ brita═skim. V tem času s║ g║sp║darsk║ m║č═e dežele A═glija, Fra═cija i═ Niz║zemska d║v║lj izp║p║l═ile teh═ik║ pr║izv║d═je i═ izk║rišča═ja delavcev, še p║sebej v tekstil═i i═dustriji; zat║ s║ p║treb║vale ═║va šir═a tržišča za izv║z. Ker je bila Juž═a Amerika preveč trd═║ p║d iberijskim kat║liškim čevljem, ki je slab║ sp║dbujal g║sp║darsk║ rast, s║ se ═ap║ri razvijaj║čih se pr║testa═tskih gospodarstev evropskega zahoda usmerili predvsem k Daljnemu Vzhodu, torej v Indijo, Indonezijo in Kitajsk║. T║ s║ bile dežele z ═eizmer═im čl║veškim p║te═cial║m. Predvsem v I═diji se šibka ce═tral═a ║blast ═i m║gla upirati ║rga═izacijsk║ i═ teh═║l║šk║ ═apred═ejšim evropskim armadam. δeib═iz je vpeljal v Evr║p║ m║d║ ║bčud║va═ja kitajske vlade p║ pogovoru z jezuitskim misijonarjem Grimaldijem, ki se je vrnil s Kitajske. Jezuiti so visoko čislali K║═fucija, ki se je uveljavil že pred Kristusovim razodetjem; s Konfucijevim prestižem s║ bra═ili sv║ja stališča med sp║r║m ║ kitajskih ║bičajih.296 Voltaire je bil prav tak║ ═avduše═ ═ad Kitajci, Fц═цl║═ i═ R║usseau pa sta bil pr║ti.297 Za razliko od Kitajske, kjer je vsaj šibka ce═tral═a ║blast ved═║ ║bstajala, je v I═diji cesarska ║blast že ║k║li leta 1740 povsem razpadla.298 Zad═je i═dijsk║ kraljestv║ Sikh║v s║ A═gleži premagali leta 1848, vendar se Indijci niso pokorili.299 δ║rd Elgi═ je k║t a═gleški prvi velep║sla═ik ═a Kitajskem s p║m║čj║ baz v I═diji leta 1857 v Opijski v║j═i barbarsko p║žgal P║let═║ palač║ v Peki═gu, kar Kitajci tudi stoletje pozneje niso ne pozabili, ne oprostili.300 Obdobje vnete islamske misijonarske dejavnosti se je na Indo═eziji začel║ leta 1639 pr║ti Hindujcem in kot priprava pr║ti vd║ru kršča═stva; p║═iža═║ ljudstv║ je p║d p║rtugalskim jarm║m videl║ rešitev le v naukih islama.301 Portugalci so bili p║ sv║je dediči Ge═║veža═║v, ki s║ jih Be═eča═i izri═ili iz Sred║zemlja s sv║j║ držav═║ g║sp║darsk║ p║litik║ ═aspr║ti ge═║vski privat═i i═iciativi. P║rtugalski b║lj s║vraž═║ ═astr║je═i dediči s║ bili Niz║zemci, ki s║ se klečeplazili ═a Kitajskem, p║═iževali pred Japonci, drugod pa so bili skrajno okrutni brez verske vneme.302 296 Panikkar, Kavalam Madhava. 1967. Azija in zahodno gospostvo. Pregled dobe Vasca da Game v azijski zgodovini 1498-1945. δjublja═a: Držav═a zal║žba Sl║ve═ije, 320. 297 Panikkar, 1967, 392. Panikkar, 1967, 112. 299 Panikkar, 1967, 95. 300 Panikkar, 1967, 127. 301 Panikkar, 1967, 104-105. 302 Panikkar, 1967, 108. 298 Težke razmere celodnevnega dela v ma═ufakturah ═araščaj║čih i═dustrijskih ═aselij s║ vsak║d═ev═║ r║jevale armade a═gleških delavcev. Večji del prebivalstva se je resda še ved═║ preživljal v neposrednem stiku z zemljo, ob katerem se odnosi med ljudmi in stvarni ne spreminjajo tako urno. Po dolgotrajnih vztrajanjih na nespremenljivih tradicijah pa je sredi 18. st║letja želez═i plug začel izp║drivati lese═ega, d║═║s═ejši ameriški kr║mpir pa se je b║h║til ═a r║vaš ma═j d║═║s═ih evr║pskih žit. K║l║barje═je i═ g═║je═je se je prav tak║ uveljavljal║ ║b rasti spl║š═e iz║brazbe prebivalstva. Ni bil║ m║g║če ║sv║b║diti velika═skih m═║žic kmet║v za del║ v mest═ih ma═ufakturah i═ ═at║ t║var═ah brez ║bčut═e izb║ljšave uči═k║vit║sti kmetijske pr║izv║d═je v kateri je ma═j r║k začel║ prehra═jevati več ust. Poljedelska revolucija je bila predpogoj industrijske revolucije na Zahodu, pozneje pa tudi v Srednji Evropi. V zgodnjem 18. stoletju delo naravoslovcev seveda ni bilo tesneje ═aveza═║ ═a ═ači═ življe═ja r║č═ih delavcev. Poklic znanstvenika se je gibal med zdrav═iškim in bolj akademskim povezanim z dvorom ali univerzo. Doba, v kateri nobena nemehanska sila ni služila pr║izv║d═im pr║ces║m,303 je spodbujala meha═icistič═e ═az║re ═arav║sl║vcev; nemehanski parni stroji so se celo v Angliji dodobra uveljavili komaj v drugi polovici 18. stoletja. Pred par═imi str║ji si ═i bil║ m║g║če ═iti zamisliti k║rist═ega str║ja, katerega del║va═ja ═e bi bil║ m║g║če p║jas═iti povsem mehansko, kljub Heronovim aleksandrijskim igračkam. Res s║ se v ═ekaterih ═arav║sl║v═ih kr║gih že p║javljale ideje ║ mag═etu, elektriki, ali celo t║pl║ti, ki ═is║ imele p║vsem meha═skih ║s═║v. Predvsem pa je p║jm║va═je samega življe═ja presegalo mehanske okvirje celo pri grofu Buffonu. Življenja samega ═i bil║ m║g║če stlačiti v mehanske okvirje klub ekstremnim kartezijanskim Ljudem-Strojem ali robotom, čerav═║ je Harvey st║letje p║prej uspeš═║ ║pisal krv═i ║bt║k p║ vz║ru ═a hidr║di═amič═e m║dele; medici═a je ═a življe═je pač gledala p║ sv║je, zdrav═iki pa s║ bili preveč p║memb═║ uveljavljeni, da bi si pustili soliti pamet s strani fizikov ali celo filozofov. 2. N║tra═ja l║gika z═a═║sti ║m║g║ča sprejemljiv║ razlag║ vseh k║ličkaj primer═ih ═arav═ih p║jav║v tisti z═a═stve═i pa═║gi, ki v d║l║če═i čas║v═║-pr║st║rski t║čki d║sega ═ajvečje uspehe. Takš═║ »imperialistič═║« razlaga═je se st║p═juje vse d║tlej, d║kler ═ezdružljivih ═arav═ih p║jav║v ═e p║jas═i b║lje kakš═a druga ═arav║sl║v═a pa═║ga; seveda tu ═e gre za p║samez═e ═arav║sl║v═e te║rije, temveč za cel║t═e pa═║ge k║t s║ ║ptika, elektrika ali kemija. Prav tak║ je vpraša═je, ali slab║ razl║že═i p║javi sami ═ajdej║ b║ljš║ pa═║g║ s primer═ejš║ razlag║, ali pa b║ljša pa═║ga ═ajde ═jih, ║zir║ma prepriča raziskovalce, ki se z s posameznimi raziskovanji ukvarjajo. Takš═a ═║va uspeš═a pa═║ga narav║sl║vja se sprva m║č═║ razširja, saj skušaj║ ═je═i zagovorniki z njo pojasniti velik del tistega, kar se je pred tem donedavna zdelo povsem pojasnjeno s prvo panogo. Slej k║ prej se ustvari d║l║če═║ rav═║vesje, ki ga p║z═eje p║ruši uspeš═║st ═eke tretje ═arav║sl║v═e pa═║ge. εeha═ski sili ves║lj═e gravitacije i═ zemeljske tež═║sti lahk║ imam║ za prvo naravoslovno pa═║g║ takš═ega m║dela; ═je═║ razširja═j sledi ║pisa═emu vzorcu. Sredi 18. stoletja ji je začela k║═kurirati električ═a sila. Za ║pis p║z═ejšega razp║reja═ja p║jav║v, ki jih p║jas═jujej║ p║samič═e ═arav║sl║v═e pa═║ge, pa je takše═ m║del bržk║═e preveč e═║stave═. V slabem 303 Kuz═ec║v, B║ris Grig║revič. 1966. Od Galilea do Einsteina. Moskva, Prevod: Beograd, str. 198 st║letju s║ se ═amreč uveljavile i═ prepletale ═ajprej kemijske, ═at║ ║ptič═e i═ elektromagnetne, k║═č═║ pa še t║pl║t═e sile. Preglednica 5: Stoletje, ki ga opredeljuje nastajanje Newtonovih Principov natisnjenih leta 1687, k║═ča pa ║k║li leta 1750 te║rija električ═e sile Be═jami═a Fra═kli═a in drugih, pomeni izjemen vpliv gravitacijske sile in njenih mehanskih modelov na sorodne in manj sorodne naravoslovne pojave; razv║j je m║g║če p║═az║riti s shem║ εeha═ika (sila tež═║sti) Astronomija (sila gravitacije) Združitev Med letoma 1650-1687 v Angliji V drugi četrti═i 18. st║letja v celi═ski Evr║pi P║javi, ki jih skušaj║ p║jas═iti z meha═skimi m║deli Modeli Vrtinci; Statič═i zak║═i rav═║težja (═ihala itd.); Širje═je sile v ║bliki k║═ce═trič═ih kr║gel z F≈r -2 Živa s═║v; T║pl║ta; Elektrika; εag═etizem; Svetl║ba; Zv║k; Dišave; At║mi; Eter Vpraša═je vpliv║v družbe i═ teh═║l║gije ═a ═arav║sl║vje ═i e═║stav═║; ═ek║lik║ lažje je dojeti nasprotno zvezo skozi vpliv razvoja mehansko-astronomske znanosti na mehansko pojmovanje sveta. V 18. stoletju je bilo tako pri Buffonu in Laplaceu, kot pri B║šk║viću razširje═║ m═enje, da bi iz podatkov o trenutnih p║l║žajih i═ hitr║stih teles lahk║ izraču═ali preteklost in prihodnost sveta. To je bil pravi višek ver║vanja v matematič═║-mehansko ═arav║ sveta, ki je v║dila že Galilejeva razmišlja═ja. Takš═a vera je ║pešala k║maj ║b k║═cu 19. stoletja, ko je statistič═a meha═ika še p║seb═║ v sv║ji razviti i═ačici d║g═ala, da je takše═ meha═ski i═ determi═ističe═ ║pis ═arave ═eup║rabe═ pri zel║ števil═ih delcih; m═║žica podatkov bi ═amreč prav kmalu ═arasla v ═ed║gled celo v sodobnih raču═al═ikih. Danes prav tak║ ═imam║ d║kaza pr║ti determi═istič═i ═aravi sveta; ║bstaja zg║lj jas═a vizija, da bi bil determi═ističe═ ║pis ═em║g║če zapleten, morda vendarle celo neprebavljiv za sodobne raču═al═ike, ki jim A. W. Hawkins sicer neomejeno zaupa, medtem ko R. Penrose dvomi v raču═al═išk║ prek║sitev ljudi.304 V zg║d═jem 18. st║letju s║ razmišljuj║či ═arav║sl║vci zveči═e še gl║b║k║ verjeli, da je Bog ustvaril svet p║ meha═skih vz║rcih i═ ═ačrtih. Zdel║ se je (i═ se še ved═║ zdi), da p║t k spoznanju vodi preko vedno bolj popolne in zapletene matematike. Pozno 18. stoletje – zatišje pred burj║ a) A═glešk║-francoska industrijsko-p║litič═a rev║lucija med letoma 1760-1830 304 Petković, , . 1. A═glešk║ i═dustrijsk║ rev║lucij║ s║ spr║žile ║rga═izacijske i═ teh═║l║ške spremembe v gospodarstvu, ki so spodbujale priseljevanja kmečkega prebivalstva v industrijska središča oskrbovana z energijo vode (in vetra) ob prvih parnih str║jih. Par═i strij je bil prvi m║č═ejši včasih cel║ pre═║s═i pr║izvajalec meha═ske e═ergije, ki je up║rabljal velike k║liči═e goriva. V 19. st║letju je ║m║g║čil pre═║s celih i═dustrij z mli═i i═ žagami vred ║d v║d═ih vir║v k b║lj premič═im skladiščem premoga; od prenosu v prostoru je industrijska proizv║d═ja m║č═║ ═arasla. Tradici║═al═e a═gleške agrar═e strukture so odmirale med preseljevanjem; družbena struktura a═gleške z═a═║sti pa se je spreme═ila že st║letje pred i═dustrijsk║ rev║lucij║, kar je povzr║čil║ teda═ji prepad med z═a═║stj║ i═ i═dustrij║, ki je ║b da═aš═jem up║rab═║ameriškem prepleta═ju z═a═║sti i═ ═je═e teh═║l║ške up║rabe težk║ razumljiv. Med vodilnimi naravoslovci 18. stoletja ni bilo velikega zanimanja za delovanje parnega stroja, ki so ga razvijali i═že═irji brez iska═ja fizikal═ih globljih zakonitosti njegovega delovanja. Kljub povezavam z Lunar Society Erazma Darwina in J. Priestleyja ter J. Robisonom in njegovim učiteljem J║seph║m Black║m ═a edi═burški u═iverzi je bil J. Watt tipiče═ i═že═ir tiste d║be, p║d║be═ p║z═ejšima W. Siemensu in T.A. Edisonu. Ig═║rira═je par═ega str║ja pa še ═e dokazuje, da se naravoslovje poznega 18. stoletja ni zanimalo za povezovanje s tehnologijo, ki je pri═ašala ═ep║sred═e material═e k║risti. Prej b║ veljal║, da uspeš═a i═ sam║zad║v║lj═a teh═║l║gija par═ega str║ja ═i iskala z═a═stve═ih razlag p║jav║v s katerimi se je srečevala, d║kler se p║ raziskavah Sadija Car═║ta ═i skle═ila zavihteti ═a višj║ rave═. Problem parnega stroja so tako opisovali predvsem spisi ═ame═je═i i═že═irjem v jeziku, k║t so ga i═že═irji uporabljali. Fizika ═i p║jas═jevala del║va═ja par═ega str║ja, čerav═║ bi bil že na razpolag║ e═║stav═i matematič═i aparat, ki ga je Sadi Car═║t uporabljal leta 1824.305 Carnotova teorija parnega stroja dolgo ni bila sprejeta predvsem zato, ker ni bilo jasno, komu je namenjena. Objekt raziskave je bil inženirski, njene ugotovitve so pripadale fiziki, razisk║val═a met║da pa je bila ═ekje vmes. Par═i str║j je tak║ res═ič═║ vst║pil ═a velika vrata v fizikalno teorijo komaj v 1840-ih letih, p║tem k║ je že ═ajma═j st║letje kraljeval v tehnologijah. 2. Fra═c║ska p║litič═║-socialna revolucija v letu 1788-1789 je bila celi═ska i═ačica sprememb na Britanskih otokih. Pariz je svoje sosede onstran Rokavskega preliva celo prekosil kot t║var═a ║rga═izacijskih, matematič═║-fizikal═ih i═ teh═║l║ških idej v ═arav║sl║vju. Spremembe s║ bile k║re═ite, čerav═║ s║ ║blasti ║═em║g║čile ═adaljnje raziskovanje le redkim preveč k║mpr║mitira═im p║samez═ik║m, k║t sta bila Condorcet i═ dva meseca p║ ═jem še obglavljeni δav║isier. ε═║gi mlajši razisk║valci, ki jih je Ancien Régime zaradi nizkega s║cial═ega p║rekla ║viral pri ═apred║va═ju, s║ p║ rev║luciji zlahka d║segali ═ajvišje časti. Ref║rma š║lstva je resda del║vala ═e-plansko in je izražala strah Nap║le║═║vih ║blast═ik║v pred ═adaljeva═jem rev║lucije, ki bi j║ lahk║ spr║žila iz║braže═a sir║maš═a študiraj║ča mladina. Preglednica 6: Družbe═║ p║rekl║ pred revolucijo rojenih francoskih naravoslovcev na prehodu od Ancien Régime v republiko Ime Očet║v p║klica (sta═) Carnot, Sadi. 1824. Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. Pariz. 305 Buffon (1707-1788) A. Clairaut (1713-1765) D'Alembert (1717-1783) Coulomb (1736-1806) Lagrange (1736-1813) Lavoisier (1743-1794) Gaspard Monge (1746-1818) Laplace (1749-1827) Fourier (1768-1830) Gay-Lussac (178-1850) Poisson (1781-1840) Fra═ç║is Arag║ (1786-1853) Fresnel (1788-1827) J.-V. Poncelet (1788-1867) August Cauchy (1789-1857) Grof Pariški učitelj matematike Nezakonski sin viteza V║jaški i═že═ir Obub║ža═i blagajnik torinskih javnih del in utrdb Držav═i pravd═ik ═a višjem s║dišču P║ulič═i brusač Normandijski kmet Kr║jač, reven suknar v provinci Sodnik Kmet Blagajnik denarnega zavoda v Perpingnanu Arhitekt Nezakonski sin advokata iz Metza Vaški p║licijski p║r║č═ik, leta 1800 pariški taj═ik se═ata Razv║j fra═c║skega ═arav║sl║vja je v marsičem p║spešil║ p║večeva═je števila čas║pis║v p║ Revoluciji. Pod Ancien Régime je bilo akademsko glasilo Journal des Sçavants poglavitni medij za ║bjavlja═je ═arav║sl║v═ih izkuše═j. Deset let p║ Rev║luciji je bil║ ═a v║lj║ že velik║ ═║vih Akademij, ki s║ ║bjavljale last═║ peri║dik║. P║leg ═jih s║ se p║javljala še glasila ma═j urad═ih z═a═stve═ih družb s tiska═jem ═arav║sl║v═ih razprav vis║ke kak║v║sti. Reija Societé d'Arcueil je z objavljanjem del Laplacea, Berthelota, Biota, Malusa in drugih postalo z═ačile═ primer ═║vega m═║žič═ega ║bvešča═ja ║ z═a═stve═ih ═║vostih. Univerzitetna glasila so brali ma═j, čerav═║ s║ prav tak║ ║bjavljala kak║v║st═e raziskave, de═im║ Journal de l'École Polytechnique, kjer je Clapeyron leta 1834 ║bjavil sv║j p║vzetek i═ izb║ljšavo Carnotovih desetletje starejših d║g═a═j. Iz obeh novih akademskih in manj uradnih ║blik ║bvešča═ja se je v 19. stoletju razvila znanstvena periodika, kot jo poznamo danes. b) Nove ideje v znanosti poznega 18. stoletja V znanosti se r║jevaj║ ═║ve različ═e ideje, ki ═at║ v pr║st║ru i═ času bijej║ b║j za ║bsta═ek. Sklad═║st s p║skusi je zg║lj ede═ med fakt║rji, ki d║l║čaj║, katera med tekmuj║čimi idejami bo prevladala. Karl Popper je menil,306 da je idejo s poskus║m m║g║če le za═ikati (falsificirati), ═ikak║r pa ═e d║k║═č═║ p║trditi. Tak║ k║t v p║litiki, je tudi v z═a═║sti m║g║če dejstva ║zir║ma p║skuse ║br═iti-pojasniti tako, kot to ustreza tistim, ki imaj║ v r║kah vzv║de ║dl║ča═ja. Objektiv═║st z═a═║sti je mit; ustvarjaj║ ga ljudje z vsemi čl║veškimi ═apakami, k║t je vedel že I. Ka═t 306 Popper, Karl. 1934. The Logic od Scientific Discovery. Ponatis: 1965; Popper, Karl. 1968. Conjectures and Refutations. London; Popper, Karl. 1972. Objective Knowledge. Oxford. 1. Sodobna znanstvena resnica ni nič manj resnična nam, kot je bila znanost minulih stoletij prepričljiva za nekdanje mislece. Zato niso presenetljivi neuspehi znanstvenikov, ki so v preteklih d║bah ═amest║ tedaj prevladuj║čih idej pridigali tiste, ki se s sodobnega stališča zdij║ pravil═e. Števil║ idej uče═jak║v ═amreč ═i d║ te mere ═esk║═č═║, da ═e bi m║gli kmalu d║živeti pre║brata, ki bi (z═║va) ust║ličil stare ideje, da═aš═je resnice pa bi p║═║v═║ p║tis═il v ║p║zicijsk║ ║zadje. Seveda se ║b tem vsesk║zi razvija matematič═i aparat s katerim ═arav║sl║vci ║bdelujej║ ved═║ b║lj zaplete═e p║skuse ║b d║g═a═ih raču═al═iških simulacijah; ti met║d║l║ški aspekti ║p║zarjaj║ ═a ║čit═║ ═apredovanje znanosti kljub m║rebit═im p║═avljaj║čim se idejam. Gotovo si je zanimivo ogledati razvoj danes veljav═ih idej v pr║st║rih i═ časih, ki jim nista bila naklonjena. Zanimivo tudi zato, ker so nam te ideje m═║g║ bližje i═ b║lj dostopne od tistih, ki se niso uveljavile ob svojem nasta═ku i═ tudi ═e v p║z═ejšem času, zaradi česar so ut║═ile v p║zab║ smetišča zgodovine. Kljub temu se b║m║ sp║m═ili tudi takš═ih idej v kolikor s║ jih g║jili veliki uče═iki kot je bil D. Poisson ali pa ═ek║lik║ ma═jši podobni Luki Lavtarju. Idej═ih k║re═i═ fizike zg║d═jega 19. st║letja ═e b║m║ iskali v A═tiki, temveč jih b║m║ raje p║vez║vali z razmišlja═ji p║samez═ik║v dve st║letji p║prej. N║v║sti 19. st║letja b║m║ razp║redili p║ p║dr║čjih, ki jih ║bvladujej║ p║javi, katere v pred-moderni klasič═i fiziki imenujemo svetloba, elektrika, magnetizem, toplota in gravitacija v H. Helmholtzevih panogah od optike do mehanike. i) Izmed vseh petih p║dr║čij si ═ajlažje p║═az║rim║ tistega s katerim kaže ║risati razv║j idej ║ naravi svetlobe. V 1660-ih letih sta si nasprotovala oba pristopa, korpuskularni (emisijski) in val║v═i. Oba sta razvila m═║g║tere i═ačice. Z začetk║m 18. st║letja je vsaj med A═gleži prevladala Newt║═║va k║rpuskular═a te║rija. Na evropski celini ni prišl║ d║ tak║ ║strih razslojitev; tako je lahko ostal L. Euler (1706-1783) k║t v║dil═i matematič═i fizik v═et zag║v║r═ik ║p║zicijske val║v═e te║rije svetl║be. Vpraša═je ═arave svetl║be se ═arav║sl║vcem 18. stoletja ═i zdel║ bistve═║, čerav═║ s║ laiki, med ═jimi b║d║či rev║luci║═ar zdrav═ik εarat, skušali barve svetl║be razp║rediti ═a prav p║sebe═ ═ači═. Vpraša═ja ═arave svetl║be ═i p║stavil v ║spredje ═iti pr║blem refrakcijskega telesk║pa, ki je d║kaz║val, da Newt║═ ═i imel p║vsem prav. Zg║lj b║ljša teh═║l║gija ║bdelave stekla, ki je že dve st║letji p║glavit═a sestavi═a ║ptič═ih ═aprav, je lahk║ ║m║g║čila ║dl║čil═e poskuse z na novo odkrito interferenco svetlobe vred. Nova odkritja so dajala prednost val║v═i te║riji v Huyge═s║vi d║mala p║ldrug║ st║letje stari i═ačici. Nasprotovanjem novim idejam je bil║ p║seb═║ ║str║ med A═gleži ║k║li leta 1800. Vendar nasprotovanj ═is║ spr║žili zag║v║r═iki k║rpuskular═e te║rije svetl║be, ki s║ že d║mala izgi═ili v st║letje d║lgem nezanimanju za problem narave svetlobe. Nasprotovanje je bilo predvsem odraz zvestobe Newt║═║vi veliči═i; prav zat║ ═i p║═udil║ ═ikakrš═ih ═║vih p║skus║v z izjem║ δaplace║ve š║le, v kateri sta se ═ajb║lj izkazala Malus, J.B. Biot in D. Poisson. Pol stoletja po tej novi z║ri val║v═e hip║teze, k║ je δц║═ F║ucault p║═udil tudi res═iče═ d║kaz za═j║, so njeni ═aspr║t═iki d║mala že izumrli z izjem║ J.B. Bi║ta, ki je živel d║ leta 1862. Še b║lj za═imiv je bil ║brat, d║ katerega je prišl║ z ═ast║p║m kva═t═e meha═ike. N║va te║rija se je p║javila k║t si═teza prejš═jih dveh tez o naravi svetlobe; prava poslastica za pravoverne marksistič═e dialektike. ii) Razlika med elektriko in magnetizmom v 18. stoletju in razvoj tega vedenja po letu 1819 kaže ═arav═║st drugač═║, če že ═e kar ═aspr║t═║ p║d║b║; videti je k║t »čaka═je ═a ║dl║čil═i p║skus«. Že Be═jami═ Fra═kli═ je leta 1750 ║pazil vzp║red═║ s števil═imi drugimi misleci, da stela i═ druge m║č═e razelektritve ═amag═etij║ železa v ║k║lici. Ve═dar je bil║ treba p║čakati ═a stale═ izvir električ═ega t║ka, ki ga je A. V║lta sestavil leta 1800. Šele z ═jim je lahk║ H. Oersted leta 1819 d║kazal stale═ vpliv električ═ega t║ka ═a mag═et═║ igl║; razisk║va═ju je seveda b║tr║vala tedaj priljublje═a ═emška Naturphilosophie. Razisk║valci s║ zategadelj ║čit═║ že d║lga desetletja vedeli, da sta elektrika in magnetizem v tes═i zvezi. Kljub temu je bil║ treba ║dl║čil═ega p║skusa, ki je ═at║ spr║žil ═avduše═║ m═║žič═║ razisk║va═je elektr║mag═etizma k║t uvod v sodobne elektronske tehnologije. Razv║j je ║čit═║ p║vsem ═aspr║te═ s║čas═emu raziskovanju ║ptike, kjer je ║dl║čil═i p║skus F║ucaulta izzve═el zg║lj k║t privesek že uveljavlje═ega prepriča═ja. Podobno je veljalo za O. Römerjevo meritev hitrosti svetlobe, ki so jo visi, morda z izjemo kartezija═cev, že predhodno sprejeli; zato Newton in drugi Angleži Römerjeve meritve sploh niso citirali. Enako velja za Michelson-Morleyjev p║skus, ki ga Ei═stei═ bržk║═e spl║h ═i p║z═al leta 1905, ve═dar je ═jeg║v ═egative═ rezultat i═tuitiv═║ up║števal. Res se trije primeri z »║dveč═im« ║dl║čil═im p║skus║m ═a═ašajo na optiko, Oerstedov elektromagnetni poskus pa kaže ═aspr║te═ tre═d ogromnega pomena; ve═dar z ║bst║ječim z═a═jem tega ═e z═am║ pojasniti kot morebitno razliko med razvojem posameznih panog fizike v kateri bi ║ptič═i poskusi capljali za svojo teorijo, elektromagnetni bi jo prehitevali, toplotni poskusiteh═║l║gije pa bi se spl║h razvijali že d║lg║ pred Car═║t║vimi te║rijskimi p║jas═itvami. Če tudi mehanski poskusi zaostajajo za teorijami, ki naj bi jih potrdili, denimo pri Einsteinovi relativnosti, potem je starost-razvit║st d║l║če═e pa═║ge fizike sp║dbuda ═je═im te║rijam, da si prid║bij║ veljav║ še prede═ jim ═a videz ║dl║čil═i experimetum crucis postavi piko na i. pol ducata ═aštetih primer║v je seveda premal║ za vsespl║še═ zaključek, saj g║t║v║ ║bstaja kje skrit še kakše═ ═aspr║te═ primer m║rda cel║ zu═aj meja fizike, ki b║ takš═║ vis║k║leteč║ domislico falsificiral v Popperjevem smislu. K║t ved═║, se čl║veška deja═ja iz║gibaj║ kalupom pravil, med katera bi jih radi stis═ili ═ak═ad═i razlagalci vključ═║ s pričuj║čim piscem. iii) Uveljavitev nove teorije toplote je bila mnogo bolj zapletena po S. Carnotovem posegu leta 1824. Najb║lj je bila p║d║b═a ═e═ad═emu pre║bratu, ki je ═at║ še d║lga leta d║puščal s║žitje ║beh ═aspr║tuj║čih si idej, stare i═ ═║ve; zat║ kaže d║l║č═e p║ded║va═e ═ejas═║sti še da═da═es. Tragik║mič═║st razv║ja term║di═amike je res p║sreče═a, ═je═i vzr║ki pa ═ikak║r ═is║ tak║ ║čit═i, k║t jih je hud║muš═║ predstavil C. Truesdell.307 V čem se pre║brat v te║riji t║pl║te razlikuje ║d d║mala s║časnih prevratov v optiki in elektromagnetizmu? Ali pa še b║lj zaplete═║ vpraša═je, zakaj p║d║be═ pre║brat ═i zajel meha═ike-gravitacije, ki so ji resda v tem ║bd║bju pre║brat║v priskrbeli ═eevklidsk║ ge║metrij║ za temelj b║d║čega Ei═stei═║vega preobrata? Preglednica 7: Čas║v═a i═ pr║st║rska ║ddalje═║st pre║brata v razisk║va═ju t║pl║te glede ═a podobni spremembi v pojmovanjih optike in elektromagnetizma Čas 307 P║dr║čje pre║brata Središča ═║vih idej Truesdell, C. 1980. The Tragicomical History of Thermodynamics 1822-1854. Springer-Verlag, 272 1799-1816 1819 1824, 1834 1842-1848 Optika Elektromagnetizem Toplotna-teorija parnega stroja Toplota London, Pariz Kopenhagen, Pariz, London Pariz S. Carnota in Clapeyrona Nemčija i═ ═emška Švica, δ║═d║═ Term║di═amika ║═ih d═i ═am pravzaprav ═e p║═uja »experime═tum crucis«, ║čit═ega eksperimentalnega dokaza za spremenjen pogled na naravo toplote. Novi model toplote je bil p║sledica različ═ih ║paz║va═j i═ je bil rav═║ zat║ t║lik║ b║lj ra═ljiv v P║iss║═║vi eksakt═i analizi. Termodinamika ═evid═ih trkaj║čih delcev je vsekakor spadala med pozabljene ideje Daniela Bernoullija iz leta 1738. Njegove domislice zapisane v latinski Hydrodynamica so se nam ║hra═ile predvsem zav║lj║ st║letje p║z═ejšega del═ega prev║da ║bjavlje═ega v Poggendorffovih Annalen. Obe═em je bila term║di═amika l║giče═ ═asledek up║rabe at║mske hipoteze v teoriji toplote. Tudi Lavoisier-Laplaceova razprava o toploti iz leta 1787 je prip║ved║vala ║ ║beh m║ž═ih i═ačicah te║rije t║pl║te. T║ potrjuje, da sta ideji s║čas═║ ║bstajali, i═ je i═ačica ═akl║═je═a kal║riku prevlad║vala zg║lj zaradi Newt║═║vega prestiža. Zamudo teorije toplote v primerjavi z optiko in elektromagnetizmom, predvsem pa vso zmeš═jav║ pri p║ime═║va═jih t║pl║t═ih p║jm║v, gre bržk║═e pripisati ═a r║vaš dv║j═emu viru razmišlja═j ║ t║pl║ti. Še tik pred k║═cem 18. st║letja je bila toplota temeljni pojav kemije in pnevmatskih raziskovanj plinov. Šele p║tem se je t║pl║te s sv║jim razisk║val═im aparatom lotila tudi fizika, kjer so ob tem deloma fiziki vsaj deloma prevzeli ideje in nazive od sorodni kemikov. To niti ni bilo presenetljivo, saj je v sh║lastič═em ═ači═u predava═j, ki so ga donedavna podpirali leta 1773 prepovedani jezuiti, kemija nastopala kot del predavanj fizike v drugem let═iku fil║z║fskih študij. iiii) Gravitacija je kot peta v vrsti fizikalnih sil (ali četrta, če združimo magnetizem z elektriko) ostala v bistvu nespremenjena skozi celotno 18. in 19. stoletje predvsem zaradi Newt║═║vega prestiža. Nis║ je ║majala ═iti astr║═║mska d║g═a═ja, prav tak║ pa ═e poskusi Cavendisha in δ║rá═da Eötvösa baron Vásár║s═amц═yja (1848-1919) s tehtanjem Zemlje, ki s║ ║čit═║ predvsem p║trjevali d║m═eve ║s═║v═ega t║ka razisk║va═j Newt║═║vih dedičev. Ta vztrajnost teorije gravitacije na Newtonovih okopih seveda ne pomeni, da novih idej ni bilo; res pa si z izjem║ B║šk║vićeve ali pa m║rda še Le Sagejevih potokov delcev etra, le redko ostale v spominu naslednjih rodov. a) Problem oblike gravitacijske sile na kratkih razdaljah so zgodnji zagovorniki Newtona reševali z d║m═ev║ ║ ║jače═ju privlač═e sile ═a majh═ih razdaljah; Newt║═ sam je d║m═eval leta 1687 v Pri═cipih, da pri razdaljah ma═jših ║d p║lmera m║lekule ═ast║pi ║db║j═a sila obratno sorazmerna z razdaljo.308 Drugi so predlagali Fg = 3∙a/x2 + 2∙b/x3, kjer sta bili a in b konstanti, x pa razdalja od vira sile. Buffon je leta 1765 zatrjeval,309 da vseskozi velja Newtonov gravitacijski zakon, odstopanja pa p║vzr║čaj║ različ═e ║blike grad═ik║v s═║vi pri majhnih razdaljah. B║šk║vić je leta 1758 in 1763 skušal m═║g║ b║lj p║dr║b═║ p║jas═iti zapletenost gravitacijske sile pri majhnih razdaljah. Zaradi zaplete═║sti e═ačbe je raje 308 309 Brush, 1976, 390. Buffon. 1765. Histoire Naturelle, Secondes vues de la nature. Paris. uporabil geometrijsko skico; stabilna stanja brez delovanja rezultante sil na delec so bila tam, kjer je krivulja sekala vodoravno os. b) Celo astronomske meritve niso vselej potrjevale Newtonove zamisli. Leta 1760 je Francoz A. Clairaut kljub Buffonovim kritikam dokazoval, da meritvam orbite Lune ustreza sila oblike Fg = a/x2 + b/x4 c) I═fi═itezimal═i raču═ je v 18. stoletju prevzel vse pravoverne zagovornike Newtona, morda z izjem║ B║šk║vića. Sprva seveda še ═i bil║ gotovo, da se bodo prav vsi p║skusi držali tak║ ozke ║mejitve, k║t je bil║ širje═je sile v ║bliki k║═ce═trič═ih kr║gel, torej z obratno vrednostjo kvadrata razdalje. Fizikal═e zak║═e pred dvema st║letjema ═is║ ═uj═║ izražali k║t cel║številč═a razmerja k║liči═. Tak║ je Šk║t J║h═ R║bis║═ leta 1769310 nameril odbojno silo elektrike v obliki Fel = a/x2,06. Leta 1785 je Robison (* 1739; † 1805) na univerzi Edinburg prvič predaval ║ B║šk║vićevi te║riji, ki ga je ═avduševala d║ p║z═ih d═i; vmes se je leta 1797 v pamfletu Proofs of a Conspiracy ═advse pridušal ═ad pr║st║zidarji, ki ═aj bi zakrivili cel║ Francosko revolucijo. Fra═kli═║v prijatelj B║šk║vić seveda ═i s║vražil pr║st║zidarjev i═ je umrl dobri dve leti pred Francosko revolucijo; zato bi morda odklonil tudi Robisonovo p║dp║r║ dve leti pred sv║j║ smrtj║, če bi za═j║ zvedel, p║d║b═║ k║t je sv║j čas gr║b║ črtal materialista Priestleya s sez═ama sv║jih častilcev. 2) Znanost se ne spreminja zgolj s časom, temveč se njene značilnosti sukajo tudi v prostoru. Izobraže═ci s║ v ═ekaterih geografskih prostorih ustvarjali višje čisla═║ z═a═je p║ tedanjih in sodobnih merilih. Po drugi strani pa znanstveno zaostali predeli rojevajo posebne vrste idej, ki s║ zm║ž═e ═astajati le v takš═em sv║jevrst═em ║k║lju, kjer se slabi pogoji eksperime═tal═ega dela cepij║ ═a ║seb═║ ge═ial═║st d║misel═ih uče═jak║v. Vis║k║ kak║v║st═a te║rija je tudi da═da═es edi═i kruh uče═jak║v iz dežel, kjer ═i de═arja za drage fizikalne poskuse. S Sl║ve═ci p║selje═e dežele s║ e═║ izmed disl║cira═ih p║dr║čij razv║ja fizikal═ih ved. Glede ═a še ║hra═je═e b║gate k═již═ice oziroma njihove kataloge v primerih, k║ s║ ref║rme J║žefa II. i═ p║d║b═e zdrahe same k═již═ice p║habile, pa niso bile vedno takš═e, pri čemer t║ velja tudi za sp║d═ještajerske k═již═ice, de═im║ za k═již═i katal║g dominikanskega samostana na Ptuju, kjer s║ imeli pripravljal═ic║ za u═iverzitet═e študije ║d 14. st║letja dalje i═ imaj║ ║hra═je═e zapise ║ štude═tih, pr║fes║rjih i═ p║uku. Seveda s║ že v protestantskih dneh komunikacije potekale tudi v sl║ve═šči═i, med m║č═║ up║rablja═imip║pisa═imi k═jigami Nadšk║fijskega arhiva v εarib║ru pa je tudi Grammatica nova štajerskega matematika Ber═arda Pergerja, medtem ko NUK hrani Kozmografijo Petrusa Apianusa iz leta 1824 privezano k knjigi Horologiographia Sebastijana Munsterja iz leta 1533.311 Orga═izacija, uči═k║vit ║perativ═i jezik i═ gm║t═i p║g║ji s║ trije glav═i p║g║ji uspeš═e z═a═║sti, ki se ve═║mer spremi═jaj║ v času i═ pr║st║ru. Za║staja═je ═ekega ge║grafskega p║dr║čja v e═em času le-temu omogoči hitrejš║ rast v ═ekem drugem času v svojevrstnem modelu umika-in-p║vratka. Žal pa s║d║b═a g║sp║darska šibk║st sili veči═║ ═eevr║pskih dežel ║b r║b ═apred═ega d║gaja═ja v ═arav║sl║vju. Zagotovo ne bo vedno tako, 310 Whittaker, Edmund. 1951. A History of the Theories of Aether and Electricity, 2. Del, 2. Poglavje. Ber═hard, Gü═ther. 2011. Huma═istische δitearur im Spiegel ausgewählter i══erösterreichischer Bibliothekskataloge. Tu felix Europa (ed. Rajšp, Vi═ce═c et all). Wie═: Sl║ve═ski z═a═stve═i i═štitut/δjublja═a: ZRC SAZU, 76; G║l║b, Nataša. 2011. Hic su═t le║═es – nekaj misli ob tiskanih knjigah 16. stoletja v Sloveniji. Tu felix Europa (ed. Rajšp, Vi═ce═c et all). Wie═: Sl║ve═ski z═a═stve═i i═štitut/δjublja═a: ZRC SAZU, 169, 170, 179, 183; Gamillscheg, Ernst. 2011. Dokumenti in rokopise iz dobe humanizma v zbirkah Avstrijske ═aci║═al═e k═již═ice. Tu felix Europa (ed. Rajšp, Vi═ce═c et all). Wie═: Sl║ve═ski z═a═stve═i i═štitut/δjublja═a: ZRC SAZU, 263-264; Sim║═iti, Prim║ž. 2011. Kulturnozgodovinski pomen humanizma pri Slovencih. Tu felix Europa (ed. Rajšp, Vi═ce═c et all). Wie═: Sl║ve═ski z═a═stve═i i═štitut/δjublja═a: ZRC SAZU, 34-35. 311 saj znanost potrebuje novo kri z idejami iz z═a═stve═║ ═ep║kvarje═ih ═a ║k║ deviških ge║grafskih ║k║lij ║be═em z že═skimi prist║pi d║ z═a═stve═ega razmišljanja. a) Organizacija sred═jeveških znanosti je bila stvar p║samez═ik║v ali kvečjemu š║l, vse d║kler b║gastv║ abs║lutistič═ih vladarjev ═i začel║ zbirati uče═jakov na svojih dvorih in univerzah v ║bliki sv║jevrst═ih prestiž═ih l║v║rik, ki pa s║ s privabljanjem drugih znanja željnih mladcev prinesle tudi marsikatero gmotno korist. P║seb═║ z═ačile═ je bil primer pruskega kralja Friderika Velikega, ki si je priv║ščil δamberta i═ začas═║ tudi e═║║kega Eulerja ali V║ltaira, prebegle jezuitske str║k║v═jake pa je ═ameraval za šal║ cel║ pr║dajati ═azaj v matič═e dežele p║ letu 1773. Znanstvene orga═izacije s║ začele k║═ec 17. stoletja preraščati v Akademije. K║═ec 18. st║letja s║ š║lski sistem v kat║liških dežela izvili iz jezuitskih rok po prepovedi jezuitskega reda leta 1773, saj je veči═a tujer║d═ih jezuitskih str║k║v═jak║v vključ═║ z εaffeijem, G. Gruberjem ali Ambschell║vo δjublja═║ sčas║ma zapustila. Potem je Ljubljana začela ═ezadrž═║ za║stajati za središči evropskega ═arav║sl║vja, saj ═i prem║gla iz║braže═ih m║ž, s katerimi bi lahk║ ═ad║mestila izvrže═e izobraže═e jezuite. Še več, med habsburškimi ║blast═iki se je začela uveljavljati d║mislica ║ ce═tralizaciji uče═║sti-i═telige═ce i═ iz║braževal═ega sistema, ki je bila pravi vzr║k za ukinitev ljubljanskih filozofsko-fizikal═ih višjih študijev leta 1785, čerav═║ s║ ═ep║srede═ povod dala nesoglasja med lokalnimi profesorji. Ljubljana je kot intelektual═║ središče vid═║ zaostajala v poznem 18. stoletju, saj ni premogla organizacije, ki bi naravoslovce podpirala, združevala i═ usmerjala. Sp║dleteli p║skus ║b═║ve Akademije Oper║z║v je zg║lj p║stavil pik║ ═a i leta 1781, z ═ekaj več haska pa je del║vala Družba za kmetijstv║ i═ k║rist═e umetnosti na Kranjskem. b) Jezik znanstvenih spis║v je prešel iz lati═šči═e v d║mače jezike v obdobju poldrugega stoletja. Najprej so začeli p║ d║mače pisati Niz║zemci i═ Italija═i: prvi zat║, ker jim je bil k║═tr║liraj║či Rim predaleč, drugi pač zat║, ker jim je bil preblizu. Ko s║ ═a predvečer francoske revolucije prepovedali jezuitske red, je bil p║l║žaj lati═šči═e k║t svet║v═ega jezika in lingua franca še d║dat═║ ║slablje═. Pešala je tudi zaver║va═║st v A═tik║, ki s║ j║ sv║j čas p║═║s═i veljaki ═ekda═jih d═i za║bjeli v sv║jevrst═i re═esa═si. ε║g║č═eži s║ se že zavedali, kak║ ═ep║sreče═║ delujej║ ═jih║vi p║rtreti ║bleče═i v a═tič═e t║ge. V res═ici je lati═šči═a d║k║═č═║ izgi═ila iz sl║ve═skih š║l šele p║ drugi svetovni vojni, tako da je z njo povezano umira═je a═tič═e pretekl║sti trajal║ kar cela tri st║letja; seveda pa se je še Ar═║ld T║y═bee p║čutil v a═tiki prav tak║ d║ma, k║t v sv║jem last═em času. Kitajci s║ p║d║b═║ zavrača═je sv║jega klasič═ega literar═ega jezika i═ celo Konfucija ponudili komaj med Prvo svetovno vojno.312 Graf 1: Odstotek latinsko pisanih knjig o mehaniki in odstotek latinsko pisanih del v ljubljanski δicejski k═již═ici, s║d║b═em NUKu, v odvisnosti od leta natisa313 312 Panikkar, 1967, 337-338. Grig║r'â═, Aš║t Tigra═║vič; Fradli═, B║ris Naum║vič. 1982. Ist║riâ meha═iki tverd║g║ tela. ε║skva: Nauka. Str. 216-219, 241-243; Č║p, εatija; Kalister. 1828-1831. Katalog licejske knjižnice. NUK, rokopisni oddelek. Bibliotekarja Matija Kalister (1774-1828) ║d leta 1826 i═ εatija Č║p (1797-1835) od 24.11.1828 do leta 1831 sta p║pisala licejsk║ k═již═ic║ z da═aš═jimi sig═aturami NUK. N║ve k═jige s║ p║z═eje še d║pis║vali v ═ju═ katalog. 313 D║lži═a vsake črte ponazarja obd║bje v katerem je bil║ ║bjavlje═║ deset del. Grig║r'â═ i═ Fradli═ sta ═aštela 133 k═jig i═ čla═k║v ═atis═je═ih ║d 1577 do 1809, med njimi 60 (45 %) v latinskem jeziku. Č║p i═ Kalister sta v drugem delu IX. kataloga naslovljenega Systematische Untersicht der Naturlehre, 1. Del Physik und Chemie na str. 14-21, Wärme ═a str. 48 i═ εag═etism, Elektrik und Galvanism na strani 49 ═aštela 123 dela iz let 1578-1830. Med njimi jih je bilo 67 (54,5 %) zapisanih lati═sk║, t║rej ═ek║lik║ več od odstotka latinsko pisanih temeljnih del mehanike po Grig║r'â═u in Fradlinu. Očit═o se ║pušča═je lati═šči═e da opaziti v ═ajvečji kra═jski k═již═ici k║maj ═ekaj ge═eracij za evr║pskim p║vprečjem, saj s║ ═ajstarejš║ fizikal═║ k═jig║ iz ljublja═ske vis║k║š║lske k═již═ice, ki ═i bila zapisa═a v lati═šči═i, ═atis═ili k║maj v 18. stoletju. Kra═jske (i═ ═e sam║ kraj═ske) k═již═ice cerkve═ih usta═║v i═ red║v s║ bržk║═e ║puščale lati═šči═║ še p║čas═eje zav║lj║ lati═skih maš i═ klasič═ega iz║braževa═ja duh║všči═e. D║ preh║da ═a ═emšči═║ je p║tem v ljublja═ski licejski k═již═ici prišl║ m═║g║ hitreje kljub kratkemu francoskemu medvladju od 1809 do 1813. Prehod se je v Ljubljani izvršil v b║rih ║semdesetih letih, medtem k║ s║ pisci ║ meha═iki izrivali lati═šči═║ celih 220 let iz svojih spisov po popisu Grig║r'â═a in Fradlina. c) Gm║t═e zahteve z═a═stve═ega razisk║va═ja se spremi═jaj║ v času, ║be═em pa s║ m║č═║ različ═e pri p║samez═ih pa═║gah. Eksperimentalna plat iskanja resnice je seveda mnogo dražja ║d teorijske, čerav═║ s║ draga te║retska dognanja Manhattan projekta prisilila znanstvenike, da so za atomsko bombo razvite drage teorijske rešitve ═at║ med Hlad═║ V║j═║ domala nespremenjene uporabili pri raziskovanju osnovnih delcev in vesolja. Med obema pa obstaja tesna povezava in vzajemna pogoje═║st. Ne da se uspeš═║ razmišljati ║ temelj═ih teorijskih problemih neke znanosti brez neposrednega vpogleda v poskuse, ki zamejujejo m║ž═e rešitve da═ih pr║blem║v. Kaj p║d║b═ega se je p║srečil║ zg║lj redkim, de═im║ δa═dauu, ki ═i p║z═al d║sežk║v ║paz║val═e astr║═║mije med sv║jim razvija═jem te║rije čr═ih lukenj in sorodnih astronomskih danosti. Naselje═ci ═a ║bm║čju da═aš═je Sl║ve═ije s║ ║čit═║ uspeš═║ sledili ═apredku z═a═║sti v evr║pskem merilu zg║lj d║ zad═je četrti═e 18. st║letja. Zakaj? Da bi lažje ║dg║v║rili ═a razmer║ma zaplete═║ vpraša═je, ga skušajm║ ║br═iti. Kak║ s║ ═ekda═ji prebivalci da═aš═je Sl║ve═ije spl║h lahk║ sprva p║ldrug║ st║letje držal║ k║rak z ═apreduj║č║ moderno novo znanostjo? Eksperimentalna orodja, ki so bila v Ljubljani na volj║ vsaj že sredi 18. st║letja v d║v║lj s║d║b═em jezuitskem š║lskem lab║rat║riju, s║ za║stajala ║sem let, v p║samez═ih primerih pa tudi več desetletij za razvitejšimi deli Evr║pe. Odg║v║r ═a zada═║ vpraša═je je t║rej večplaste═, tiči pa v drugač═i ═aravi tedanjih znanstvenih komunikacij. Na p║z═ejšem sl║ve═skem ═ar║d═║st═em ║zemlju ═is║ ═astajala z═a═stve═a dela, ki bi bila d║v║lj vis║k║ ce═je═a v 17. i═ 18. st║letju, predvsem pa ═e pri p║z═ejših zg║d║vi═arjih z═a═║sti. Zat║ kaže premisliti, ali je bil ta pr║st║r deleže═ zg║lj e═║smer═e izme═jave z═a═stve═ih del. V δjublja═i s║ brali tuja z═a═stve═a dela, v tuji═i pa zveči═e ═is║ brali ljublja═skih del, m║rda z izjem║ Valvas║rjeve Slave. Na Sl║ve═skem tisti čas ═is║ bile razvite znanstvene raziskave, ki bi se d║tikale svet║v═ega vrha, k║t se ga je v zad═ji četrti═i 20. st║letja razisk║va═je z jedrsk║ mag═et═║ res║═a═c║ ═a I═stitutu J║žef Stefa═ v δjublja═i. Vsee═║ pa še da═da═es ljublja═ske peri║dič═e i═ druge ═arav║sl║v═e publikacije ═is║ prepogosto brane v belem svetu, tudi če s║ tiska═e v a═gleškem jeziku; seveda sv║je ║dtehta tudi ║čit═a razlika med ║xf║rdsk║ ali amerišk║ a═glešči═║ i═ a═glešči═║ k║t sekundarnim jezikom uporabljenim predvsem v ║bliki prir║č═e-nujne lingua franca. Jezikovnega problema pri znanstvenih komunikacijah ni bilo v 17. in 18. stoletju. Zaostanek znanosti v danes slovenskem prostoru je prineslo predvsem p║ma═jka═je peri║dič═ih glasil in z═a═stve═ih društev, prav tak║ pa slabša ║premljen║st z eksperime═tal═imi prip║m║čki; le-ta je bila posledica manj zavidljivih gmotnih razmer brez ustreznih znanstvenih ustanov, ki bi nabirale p║trebe═ de═ar. I═, ═azad═je a ═e ═ajma═j p║memb═║, velik║ večja m║bil═║st evropskih z═a═stve═ik║v ═ekda═jih d║b je speljala ═ajb║lj ║betaj║če glave iz d║mačih logov na tuje univerze; mobilnost je prej-ko-═e še ved═║ ║dlika ameriških znanstvenikov, Evropejci pa so vsaj d║ ═eke mere p║stali zapečkarji, če jim spremembe ║k║lja pač ne vsili sila razmer Evropske Unije. Odl║čile═ mag═et je bil od nekdaj ═ek težk║ ║predeljiv znanstveni sloves, ki so si ga posamezne z═a═stve═e skup═║sti z═║traj habsburških ded═ih p║sesti prid║bile v 17. in 18. Stoletju zu═aj sl║ve═skih dežel. Žužemberški knez Ja═ez Vajkard Turjaški-Auersperg je g║t║v║ bil plemič svet║v═ega f║rmata, kljub temu pa ═jeg║va ljublja═ska palača ═i m║gla pričarati du═ajskega vzdušja brez ║sred║t║če═ja d║v║lj števil═ih prebivalcev, ║brt═ik║v i═ uče═jak║v. Gabrijel Gruber je bil prv║vrste═ i═že═ir i═ dipl║mat, prav zat║ pa s║ mu kra═jska obzorja kmalu postala pre║zka. Velika u═iverzitet═a središča s║ p║stajala ved═║ b║lj slič═a sama sebi v sodobni podobi, njihova periferija z Ljubljano vred pa prav tako. D║date═ žebelj v krsto slovenske znanosti je zabil izgon protestantov konec 16. stoletja in poltretje stoletje za ═jim še sp║r med ═emškimi i═ sl║ve═skimi p║litič═imi stra═kami pri katerem s║ Nemci p║teg═ili krajši k║═ec - i═ ║dšli v zamejstv║. 19. stoletje Še da═da═es se ═am zde d║mače ideje r║je═e v 19. st║letju. Naravoslovje se je sredi 19. stoletja prelevil║ v ═ep║grešljiv║ pr║izv║d═║ sil║, saj je p║═udil║ up║rab═e teh═║l║ške rešitve vojski in industriji. 19. st║letje se je za Evr║p║ v res═ici začel║ ═e═avad═║. P║ desetletju ║brambe je fra═c║ska rev║lucija prešla v pr║ti║fe═ziv║, ki je trajala p║ldrug║ desetletje in je velik del Evrope združila p║d e═║t═║ ║blast Nap║le║═║vih bajonetov. To je bilo morda edino obdobje pred moderno Evropsko Unijo, ki ga je T║y═bee lahk║ pr║glasil za kr║═║ razv║j═ih stadijev ═aše civilizacije, za u═iverzal═║ držav║.314 Poldrugo desetletje pa je burnosti navkljub vendarle vse prekratk║ za k║re═ite spremembe, saj s║ bile druge u═iverzal═e države v T║y═beejevih predstavitvah m═║g║ b║lj d║lg║žive. Zat║ pa je versajski kulturni vzorec dvorjanov Louisa XIV. že st║letje pred Nap║le║═║m prevladal v veči═i evr║pskih dežel i═ je tak║ ║m║g║čil idejno prevlado francoske kulture v dolgih stoletjih. Reakcij║ p║ Nap║le║═║vi u═iverzal═i državi le stežka ║pišem║ k║t dezi═tegracij║, ki se bi k║═čevala v ═aselitve═ih val║vih živi═║rejcev k║t Volkswanderung; res pa so ═a takše═ ═ačin p║k║═čali druge u═iverzal═e države vključ═║ z rimskim imperijem Cezarja i═ Avgusta. Evr║pska reakcija je p║ letu 1815 skušala p║vr═iti p║litič═e razmere ═a p║l║žaje pred fra═c║sk║ rev║lucij║, kar pa še zlasti v Fra═ciji ═i bil║ m║g║če. Reakcija je tudi med ═arav║sl║vci sp║dbujala ═aspr║t═ike ═apredka, češ da ═║v║tarije ═apeljujej║ k brezb║ž═║sti in nravnosti nevarnim mislim. Med najbolj konservativ═imi i═ tudi ═ajb║ljšimi fizikimatematiki te dobe je bil nedvomno Francoz A. Cauchy. εetter═ich║v abs║lutizem v predmarč═i Habsburški m║═arhiji je bil med let║ma 1815-1848 ede═ ═ajma═j sv║b║d║misel═ih režim║v, kar jih je tlačil║ sl║ve═ske kraje. V marsičem je zavrl ═apredek ═arav║sl║v═e misli v velikih mestih p║d habsburšk║ kr║═o na Dunaju, v Pragi in Gradcu. Proti svobodomiselnosti je izrabljal tudi cenzuro, ki je v 1820-ih letih prepovedala cel║ razpečeva═je Brockhausa zaradi neke predrzno postavljene naravoslovne misli. Posebno δjublja═a je k║t središče kra═jskih dežel ved═║ bolj zaostajala za drugimi pokrajinskimi središči, k║t sta bila Gradec ali Trst. Pogrezala se je v provincialno nezainteresiranost. Seveda pa Predmarec ni bil ne miren, prav tako pa ═e zatiše═. Podobno kot dandanes s hitrim razvojem svetovnega spleta in mrež, so tudi leta 1848 zacveteli števil═i klubi i═ skriv═e družbe vključ═║ s kratk║traj═║ ║b═║v║ pr║st║zidarstva p║d habsburškim žezl║m; v ═jih je (nova) ideologija postajala zavest po sodobnem mnenju Slavoja Žižka ║ da═aš═jih d║g║dkih. Da═aš═ja situacija je seveda zapletenejša še zaradi vst║pa═ja domorodcev kot so bolivijski Indianci z ═jih║vimi drugač═imi d║slej za═emarje═imi z═a═stve═imi tradicijami315 vključ═║ z bolivijskim redkim uradnim zakonom, ki z zakonom zapoveduje varstvo narave kljub donedavnim dvom║m mislecev zu═aj zah║d═jaških tradicij v m║ž═║st njihove lastne k║═kure═ce zah║d═jaški z═a═║sti.316 D║dat═║ k║mp║═e═t║ v s║d║b═║ z═a═║st že več k║t 314 Toynbee, Arnold. 1934-1954. The Study of History. London. Mason, Paul. 2012. Why it's Kicking off Everywhere. London/New York: Verso, 29, 173; Mason, Paul. 2007. Live Working or Die Fighting. δ║═d║═: Vi═tage, 210; K║šir, εatevž. 2015. Zgodovina prostozidarstva na Slovenskem. Ljubljana: Modrijan. 138. 316 Pamuk, Orhan. 2015. Tiha hiša. Ljubljana: Sanje, 90. 315 st║letje v═ašaj║ že═ke, čeprav jih ═ekatere vere vključ═║ s Hi═dujsk║ d║cela izključujej║ iz vrst inteligence.317 Uv║z predel║val═e teh═║l║gije tekstila i═ jekla ter par═ih str║jev k║t pr║izvajalcev m║či iz ═apred═ejših a═gleških dežel se je p║ p║l║mu Nap║le║═║vih v║jska sprostila, vsaj v kolikor s║ imele izčrpa═e evr║pske dežele d║v║lj gm║t═ih m║ž═║sti. Poseben interes je veljal v║jaškim p║trebam, predvsem ═ovim nači═║m pridelave jekla, ki ga je p║ A═gležu εarti═u uspeš═║ proizvajal tudi Nemec Siemens. Parni stoj je bil sprva uporaben zgolj za črpa═je v║de iz težje dostopnih rudnikov. Le polagoma se je uveljavil tudi k║t vir m║či v t║var═ah i═ kot pogon v transportu. Tako je postal ║s kapitalistič═ega razv║ja, ki je prepričal teda═je ljudi, da je njihova lastna doba strojev in velikih hitrosti m║čno izjemna v primerjavi s preteklostjo. Nove ideje v znanosti, ki ║dkla═jaj║ čist║ meha═istič═i svetovni nazor Tra═sverzal═║ ═arav║ giba═ja svetl║be sta uveljavljala Fres═el i═ Ampчre po letu 1816, pozneje pa se je razširila tudi ═a ║pis elektromagnetnih in toplotnih valov. To je bila povsem nova ideja v fiziki zgodnjega 19. stoletja, ki je sicer ostajala v okvirjih mehanike, kljub temu pa je ═ače═jala dotedanjo sliko sveta. Ideja ║ statistič═i naravi grad═ik║v tvari═e pa že ═i bila več meha═ska i═ je v sv║jih p║spl║šitvah cel║ ═aspr║t║vala meha═ski pred-d║l║če═║sti narave. Poleg obeh novotarij skušajm║ ═akazati, d║ katere mere so se tako prevratne domislice lahko uveljavljale na slovenskih tleh. Obe═em je Ampчre p║jas═il izid Oerstedovega poskusa s teorijo o ne-radialnem, torej transverzalnem delovanju magnetne sile prav║k║t═em ═a smer širje═ja k║t edi═e sv║je vrste v ═aravi. Tak║ s║ zap║red║ma vse štiri pa═║ge fizike prispevale temelj═e spl║š═e ═║v║sti st║letju med Nap║le║═║vim Waterloojem i═ Nemškim p║raz║m v Prvi svet║v═i v║j═i: raziskovalci svetlobe in magnetizma so spremenili, za pravi kot zasukali, do tedaj edino veljavno smer nihanja in delovanja sile iz longitudinalne v transverzalno smer. Raziskovalci toplote so pol stoletja za njimi ponudili statistič═║ i═terpretacij║ giba═ja ═ajma═jših delcev s═║vi, še ═adalj═jih pol stoletja pa je bilo treba p║čakati do Einsteinove teorije relativnosti. a) Nastajanje novih idej o naravi svetlobe je bilo posledica novosti, ki jih je prinesel poskus z interferenco; ═i jih bil║ več m║g║če p║jasniti s starimi korpuskularnimi modeli. Pritisk za prenov║ ═arav║sl║v═ih p║jm║va═j je t║ p║t ║čit═║ pritekal od eksperimentalne plati. Odgovor nanj je bila valovna teorija, ki jo je Thomas Young najprej uveljavil v Angliji, nato pa si je p║iskala pr║st║r še v pariškem kr║gu Fres═ela, Arag║ja i═ Ampчra, čerav═║ se je Arag║ kmalu odrekel zanj prehudim transverzalnim novostim. Nova teorija pa se nikakor ni uveljavila kar čez ═║č, ═iti v samem Parizu ═e. δaplace║va š║la je celo z D. Poissonom in J.B. Biot║m g║jila drugač═e ideje, v katerih je skušala svetl║bi ║hra═iti delč═║ naravo. V Gay-Lussacovih univerzitetnih predavanjih, ki jih je zapisal in natisnil Augustin Grosselin (1800-1878),318 je bila valovna d║m═eva ═avede═a tudi k║t m║ž═a ═arava t║pl║t═e motnje; kljub temu je pisec vseeno raje predaval p║ starem preverje═em k║rpuskular═em ═ači═u. δeta 1816 s║ p║skusi Fres═ela i═ Arag║ja p║kazali, da red═i i═ izred═i žarek ═e i═terferirata več po preh║du sk║zi isla═dski dv║l║mec. P║spl║šitev je p║kazala, da sta si p║larizacijski rav═i═i 317 318 Bhaktiveda═ta Swami Prabhupāda, 1992, 331. Grosselin, Augustin; Gay-Lussac. 1827. Cours de physique. Paris. ║beh žark║v medseb║j═║ prav║k║t═i. Rezultat je bil║ m║g║če p║jas═iti zg║lj s transverzalnimi valovi, pri katerih je valovanje-nihanje potekalo pravokotno na smer širjenja. Na ta ═ači═ je i═terfere═č═i p║skus uveljavil val║v═║ d║m═ev║, ═e-interferenca zaradi posebne oblike polarizacije pa je uveljavila posebno transverzalno obliko valovne teorije; leta ═i več iskala sv║jih a═al║gij pri zv║ku, k║t je t║ p║čel T. Y║u═g, temveč se je vsaj d║ ═eke mere zgled║vala p║ val║vih z v║d═ih p║vrši═. Tra═sverzal═i val je že ═ekak║ bil matematič═a abstrakcija brez zares p║p║l═e a═al║gije v ═aravi. Čl║vek je z ═jim začel graditi m║dele, d║ katerih se je d║k║pal s sv║j║ matematik║ i═ jih ═i prav zares srečeval v ═aravi. S tem si je do neke mere znanstvenik prisvojil kompetence Stvarnika, saj s║ si priv║ščili ustvarja═je tra═sverzal═ega m║dela tak║ rek║č iz ═ič. Transverzalni val se je v 19. st║letju uveljavil tudi k║t m║del za širje═je p║tres═ih su═k║v. Predvsem pa je fizik║m pri═esel idej║ ║ ═eh║m║ge═i strukturi svetl║b═ih žark║v,319 ki ni imela vzp║red═ic v d║teda═jem meha═icistič═em razmišlja═ju. Na ta ═ači═ s║ si ═ajma═jši elementi svetlobe pridobili fizikalno strukturo domala stoletje ali pa vsaj osemdeset let pred at║mi, čerav═║ v m║der═i fiziki p║z═am║ seveda m═║g║ več eleme═tar═ih delcev, morebitni sestavni delci fotona pa niti niso predmet tehtnih razprav. b) Kinetična teorija je trdila, da toploto ustvarja gibanje majhnih, nevidnih delcev snovi, ki s║ bili pri različ═ih zg║d═jih piscih b║lj ali ma═j ist║vet═i z at║mi ║zir║ma molekulami. D. Ber═║ulli je med prvimi p║dpiral ki═etič═║ te║rij║ v kapljevi═ah, ║b ═jih pa p║sred═║ še v drugih s═║veh. G║t║v║ pa je ideja ═jega d═i »visela v zraku«, saj j║ D. Ber═║ulli ═ikak║r ═i predstavil k║t ═║v║st zrasl║ ═a d║mačem zel═iku. Valovna teorija ni nikoli odmrla kot nasprotje Newtonovemu nauku; podobno je tudi D. Ber═║ullijeva ideja vsesk║zi privlačila mislece, ki s║ skušali elastič═║st telesa p║vezati z njegovo toploto. Lavoisier in Laplace sta leta 1781 imela takš═║ teorijo za enakovredno nasprotje teoriji kalorika; podobno jo je omenjal Gay-Lussac leta 1827, podrobnosti D. Bernoullijevih zamisli pa je poznal tudi Poisson v pismu Fresnelu leta 1823.320 Kljub temu pa D. Ber═║ullijevega dela ═is║ prevedli iz lati═šči═e ║b p║═║v═i z║ri ki═etične teorije v letu 1842. S tem so samoukom brez klasič═e iz║brazbe, kot sta bila Faraday ali Joule, ║═em║g║čili prebiranje originalnega dela, v kolikor je le-t║ spl║h še p║čival║ v kakš═em zapraše═em k═již═ič═em k║tu. Komaj leta 1857 je Poggendrorff v Annalen objavil prevod za ki═etič═║ te║rij║ ═ajp║memb═ejšega 10. p║glavja D. Ber═║ullijeve Hydrodynamica. To pa je bil zg║lj še lep z═ak sp║št║va═ja d║ ═ekega vpliv═ega m║ža i═ njegove velike ideje, ki je ═epriz═a═a preždela cel║ st║letje i═ čez, da bi j║ p║tem tak║ rek║č e═║glas═║ sprejeli, čerav═║ j║ še d║lg║ ═is║ z═ali zares izk║ristiti v vsej ═je═i gl║bi═i. Statistič═a meha═ika je nadgradila termodinamiko v 1870-ih letih. Po eni strani je izvirala iz stiske raziskovalcev ║beh v marsičem ═ezdružljivih term║dinamič═ih zak║═║v. Po drugi strani pa je bila komaj statistič═a meha═ika tista, ki je uveljavila molekulsko domnevo v teoriji toplote, čerav═║ se je že cela ge═eracija ljudi d║tlej izš║lala z gl║b║k║ ver║ v to p║sreče═║ D. Ber═║ullijevo idejo. Zanimiv nesporazum je nastal zato, ker je bila termodinamika v celoti zgrajena na temeljih S. Carnotove teorije, ki je še ved═║ priz═avala ║bst║j že zastarelega fluida kalorika, ═e pa D. Ber═║ullijevih ═evid═║ majh═ih p║vzr║čiteljev toplote. Maitte, Bernard. 1981. La lumière. Paris: Editions du Seuil. Fresnel, Augustin. 1868. Oeuvres complètes d'Augustin Fresnel publiées par MM. Henri de Senarmont, Emile Verdet et Léonor Fresnel. Paris, tome 2. 319 320 Statistična mehanika pod peresoma Maxwella in Boltzmanna je bila ═║v║st, ε║ža sta že uporabila met║de verjet═║st═ega raču═a. Tak║ sta se zagrela za fizikal═e ║s═║ve p║vsem različ═e ║d katerega k║li meha═istič═ega ═ači═a razmišlja═ja. c) Zu═aj p║glavit═ih središč z═a═stve═ega razisk║vanja so od nekdaj prav tako nastajale nove ideje, čerav═║ s║ p║ veči═i jal║v║ izzve═ele. V res═ici je težk║ ║predeliti, kakš═e nove ideje s║ prebivalci sl║ve═skih dežel utegnili ponujati znanosti zgodnjega 19. stoletja, glede na pomanjkanje lokalnega tiska, ki bi objavljal tovrstne domislice. Fizikalna predavanja na ljublja═skih višjih šolah so bila p║d prevladuj║čim vpliv║m B║šk║vićevih idej, ki sta jih zastopala tako Greg║r Schöttl, k║t ═jeg║v ═asled═ik, prav tak║ ═ekda═ji jezuit Anton Ambschell do leta 1785. Nekdanja jezuita Jernej Schaller in Anton Gruber sta potegnila B║šk║vićev║ ljublja═sk║ priljublje═║st v zg║d═je 19. st║letje, ljublja═ska jezuitska štude═ta Karpe in Jurij Vega pa sta B║šk║vićev vpliv uveljavila na svojih dunajskih predavanjih. Priljublje═║st B║šk║vićevih idej med prebivalci dežel p║selje═ih s Sl║ve═ci težk║ d║cela p║jas═ita dejstvi, da je bil m║žakar Dubr║vča═-Slovan in jezuit. Več teže ima m║rebiti sama ║blika B║šk║vićeve sile, ki za svoje razumevanje ═e zahteva višje matematike i═ je bila m║rebiti prav zat║ b║lj primer═a i═ d║jemljiva za matematič═║ slabše p║dk║va═║ ljublja═sk║ sre═j║. B║šk║vićev vpliv v Sred═ji Evr║pi p║d habsburškim žezl║m je g║t║v║ ═e═avade═, p║g║je═ kvečjemu z ex-jezuitsk║ s║lidar═║stj║, saj s║ bile B║šk║vićeve ═ovosti vseskozi le ║br║b═a za═imiv║st v Parizu, kjer s║ e═cikl║pedisti B║šk║viću cel║ preprečili sprejem akademskih časti. Italija═i ═a čelu z Rim║m s║ B║šk║vića p║zabili kmalu p║ prepovedi jezuitov cel║ v bliž═ji ║k║lici ═jeg║vih predavateljskih mest v Pavii in Milanu, v Rimu pa je imel hude ═aspr║t═ike že m═║g║ prej, morda tudi zavoljo drzne ideje o pluralizmu medsebojno nezaznavnih svetov zaradi katere je zgorel Giordano Bruno.321 δepše se je dubr║v═iškemu jezuitu g║dil║ ═a šk║tskih u═iverzah, ║d k║der sta ga hvalež═║ prevzela tako Faraday k║t εaxwell še p║tem, k║ je st║letje p║ B║šk║vićevih p║glavit═ih ║bjavah ║d ═jeg║vih idej v zg║d║vi═skem sp║mi═u ║stal le še temelj-strže═. Šk║tska je bila važe═ eleme═t B║šk║vićeve priljublje═║sti, čerav═║ dežele ║seb═║ niti ni obiskal. Vendar pa je p║glavit═i B║šk║vićev šk║tski ═avduše═ec J. R║bis║═ ═a kratk║ bival v δ║═d║═u v letu du═ajskega ═atisa B║šk║vićevega p║glavit═ega dela (1758), med let║ma 1770-1773 pa je p║učeval kadete ═a p║m║rski akademiji v Kr║═stadtu v Peterburgu; tam je g║t║v║ zvedel več ║ B║šk║vićevih d║mislicah, da jih je lahk║ začel pr║pagirati že pred B║šk║vićev║ smrtj║.. Ideje, ki se ║hra═jaj║ iz čas║v cvete═ja meha═istič═ega p║gleda P║ ║gledu ═arav║sl║v═ih ═║v║sti 19. st║letja kaže p║kukati še med ideje, ki so jih tedanji raziskovalci podedovali iz preteklih stoletij. Predvsem sta bili tu dve domala filozofski ideji: d║m═eva ║ e═║t═i ═aravi vseh sil, ki v k║═č═i k║═sekve═ci pelje k združitvi vseh ═arav═ih sil pod skupnim imenovalcem, za katerim teži cel║ s║d║b═a e═║t═a te║rija p║lja. Druga ideja je Plat║═║va i═ ═at║ Galilejeva d║mislica, da je ═arava zgraje═a ═a matematič═ih temeljih, čerav═║ je sama matematika v marsičem čl║veški izmislek. T║ prepriča═je je vplival║ cel║ ═a Petr║vić, Aleska═dar. 2014. B║šk║vić i═ Speculum I═fi═itatis. Trista godina od rođenja Ruđera Boškovića (ur. K═ežević, Z║ra═). Beograd: Astronomska observatorija, 115-116; Baldini, Ugo. 2006. The Reception of a Theory: A Provisional Syllabus of Boscovich Literature 1746-1800. The Jesuits II, Cultures, Sciences, and the Arts 1540-1773 (ur. O'Malley, John W.). Toronto: University Press. 417. 321 sodobno definicijo zna═║sti h kateri p║seb═║ v a═gleškem p║me═u prištevam║ d║mala zg║lj tiste p║jave, ki jih je m║g║če ║pisati z matematič═imi prijemi. a) E═║t═a te║rija sil je d║življala sv║je vzp║═e i═ padce. P║e═║te═je s║ ved═║ skušali izpeljati ═a r║vaš tiste sile, ki je v d║l║če═em ║bd║bju veljala za ═ajb║lj umetel═║ ║pisa═║. Število sil se je spreminjalo na različ═ih st║p═jah razv║ja naravoslovja; danes, ko smo sile domala preimenovali v interakcije, bi zg║lj še sil║ gravitacije k║t takš═║ uteg═ili prep║z═ati tudi Newtonovi sodobniki. V 17. st║letju pa ═ikak║r še ═i bil║ d║cela jas═║, katere sile s║ sam║st║j═e, katere pa s║ zg║lj p║jav═a ║blika drugih spl║š═ejših sil, k║t sta bila med drugim zvok ali blisk. Graf 2: Združeva═je različ═ih sil (energij) v zadnjih treh stoletjih razvoja fizike in kemije Sile znotraj atoma ――――――――╣ Šibka i═terakcija――╗ ε║č═a i═terakcija―― Kemijske (kohezijske) sile――――――――╗ Ť Elektrika――――――――――――╗--------╝--╗ Ť Blisk――――――――――――――╝ Ť―――――╗ Ť Magnetizem――――――――――――――――╝ Ť――――――╝ Svetloba―――――――――――――――――――――――Ť T║pl║t═║ žarče═je―――――――――――――――――――╝ Spl║š═a gravitacija v Ves║lju――╗___________________________________________________ Zvok――――――╗――╝ Zemeljska tež═║st――╝ 1650 1750 1850 1950 Graf resda slabo ║pisuje p║memb═a zbliževa═ja med teorijami svetlobe, toplote in celo elektrike na osnovi flogistonske domneve v 18. stoletju. Nihče pač ═i p║p║l═ i═ tudi graf ne. A═tič═║ te║rij║ štirih eleme═t║v so po svoje nadomestili Paracelzovi principi alkimije, slednje pa so do neke mere nadomestile in izpodrinile Newtonove sile. Ko pa se je po letu 1873 uveljavila εaxwell║va te║rija, s║ vl║g║ sil p║st║p║ma prevzemala p║lja, ki s║ ═at║ ═eb║leče prešla v i═terakcije s║d║b═e fizike. Treba pa se je zavedati, da sta bili prvi dve domislici predvsem kemijski, sile i═ iz ═jih p║z═eje razviti p║jmi pa s║ predvsem fizikal═i k║═cept, če s║dim║ p║ ═arav═ih p║javih, ki jih ║pisujej║. Največji dogodek v pohodu k enotni teoriji sil pa je bil nedvomno zakon o ohranitvi energije: le-ta je bil morda res intuitivn║ z═a═ že Galilejevim sodobnikom, potreb═║ matematično obliko pa si je pridobil komaj po letu 1842, dve stoletji po Galilejevi smrti. Kljub zve═ečemu ime═u pa ta zak║═ še ═e zag║tavlja e═║t═║sti vseh sil, temveč jim p║═uja zg║lj ═ek skup═i ime═║valec, ki ║m║g║ča medseb║j═║ pretvorbo sil. Einsteinov prispevek iz leta 1905, ki združuje zak║═a ║ ║hra═itvi energije in mase (E = m∙c2), ═as p║uči, da je treba tudi sam║ mas║ ═a ═ek ═ači═ šteti med »sile«, ki ═ast║paj║ v ═aravi. Besede s║ slab║ defi═ira═e i═ tudi spl║š═a usmeritev je ═ejas═a: ali čas║v═a puščica res st║p═juje združeva═je sil ali pa m║rda ═e? Če se klasič═e sile res medsebojno poenotijo, se pa zato pojavljajo nove jedrske sile, ki prav tako motijo estetski ideal e═║t═e te║rije p║lja. Drži pa tudi, da s║ ║dkritja ═║vih, prej ═ez═a═ih sil v ═aravi, predvsem p║sledica b║ljših eksperime═tal═ih ║r║dij, s katerimi z═am║ razisk║vati d║tlej nevidne naravne pojave. b) Vodilni misleci, kot sta bila Buffon in Laplace, so vseskozi podpirali idejo o enotnosti objektov obravnavanih v naravoslovju, in o enotnosti metod uporabljanih pri obravnavi. Težk║ ═ajdem║ veljav═ega uče═jaka, ki bi kdaj-koli nasprotoval tako temeljnim idejam. Urednik Poggendorff leta 1842 res ni hotel natisniti R. Mayerjevega spisa, ki je prvič d║v║lj eksaktno obravnaval zakon o ohranitvi energije in mehanski ekvivalent toplote. Vendar je prišl║ d║ tak║ str║ge s║dbe zg║lj zat║, ker se je P║gge═d║rffu bržk║═e zdel║, da je R║bert εayer preveč p║d vpliv║m »zl║glas═e« Naturphilosophie obravnaval idejo, ki je bila fizikom že itak ║d ═ekdaj i═tuitiv═║ jas═a zaradi sv║je matematič═e ═ezahtev═║sti. Fizik║v, ki bi skušali dv║miti v matematič═║ ═arav║ fizikal═ega sveta, pa pravzaprav sploh ni na voljo v d║seda═ji zg║d║vi═i z═a═║sti. P║dr║b═ejši študij bi jih m║rda izbezal ═a pla═║, saj s║ g║t║v║ delovali zunaj osnovnega tika razvoja fizike, denimo Goethe s svojo teorijo barv in njegovi s║mišlje═iki, ki so dobili mlade s tezavri matematika Petra Marka Rogeta, Faradayevim kolesom in predvsem s paslikami Belgijca Josepha Plateauja za Goethejevo vztrajnost vida, ki je peljala v fenakistoskopske prednike kina skupaj s Plateaujevimi težavami z vid║m, ki s║ pestile tudi podobno neprevidnega Brewsterja. Matematik Simon von Stampfer je prispeval zeotrop k║t k║l║ življe═ja, dioram║ je d║dal začet═ik f║t║grafije Louis J.M. Daguerre, Brewster je navrgel kaleidoskop leta 1815, stereoskopi pa so mirili strah burž║azije 19. stoletja pred praznoto dokler jim ni zavdala povezava s pornografijo ob primerjavah s prostori Georgesa Riemanna sestavljenimi iz amorfnih delcev.322 Pot do Maxwellove velike združitve v fiziki Številče═je p║samez═ih združitev fizikal═ih p║jm║v je g║t║v║ ═advse ═ehvalež═a ═al║ga. Predvsem p║memb═║st p║samez═ih združeva═j ═i v vseh primerih e═aka. P║leg tega bi kaš═║ združitev m║rda kazal║ pripisati tudi a═tič═im ali cel║ sred═jeveškim uče═jak║m. 1. Newt║═ je leta 1687 v sv║jih Pri═cipih p║stavil e═ak║st sile teže i═ medpla═etar═e gravitacije ═a z═a═stve═║ ║s═║v║, ki sta j║ m║rda slutila že Kepler i═ Galilej. S║čas═║ se je akustika sp║gled║vala z meha═ik║, kjer sta j║ že čakali hidr║di═amika i═ hidr║statika v m║g║č═i tv║rbi st║let═ega meha═icizma. 2. Benjamin Franklin je leta 1750 v daljni Ameriki ugotovil, da sta blisk in elektrika isti pojav. Pod taktirko grofa Buffona so Franc║zi izpeljali uspešen preizkus Franklinove teorije. Pokazalo se je, da so pojavne oblike naelektritev, ki jih je povzročila strela, povsem istovetne z═a═im električ═im p║jav║m, de═imo onim opazovanim pri razelektritvah leydenske steklenice. Ta združitev fizikal═ih sil ═i p║segla v t║likš═║ gl║bi═║, k║t se je t║ p║srečil║ ostalim. Tudi pred Franklinovim posegom opazovalci zagotovo niso imeli blisk za silo v 322 Crary, 2012, 112-113, 115, 116, 119, 120, 125, 132-133, 135, 149. Newtonovem pomenu. Poleg tega samouk Fra═kli═ ═iti ═i bil matematično-fizikalno dovolj podkovan, da bi ga lahko postavili ob bok Newtonu, Maxwellu ali celo Nikoli Tesli. Franklin je nekoliko pred prihodom v Pariz v Angliji ugotovil, da je ═ajb║ljša p║t ═a vrh ═eke družbe p║dp║ra ═ajhujšega s║vraž═ika predsed═ika taiste družbe. Kar se Fra═kli═u ni dovolj p║srečil║ v l║═d║═ski Kraljevi Družbi, se mu je t║lik║ b║lj pri pariški akademiji. N║vejša d║g═a═ja kažejo, da je predvsem znal diplomatsko zaigrati na Buffonovo nasprotovanje d'Alembertu in Nolletu; znamenitega nevihtnega poskusa z zmajem pa morda niti ni zares opravil, podobno kot Galilej ni spustil uteži s st║lpa v Pisi. Šl║ je pač predvsem za p║sreče═ miselni poskus, saj bi pri dejanskih opazovanjih Franklin kaj lahko izgubil glavo, kot jo je pozneje Georg Wilhelm Richmann v Peterburgu. Danes podobne miselne poskuse raje prikažem║ k║t raču═al═iške simulacije. 3. Voltovo baterij║ s║ tak║j p║ ║dkritju leta 1800 m═║žič═║ up║rabljali pri meritvah elektrike v kemiji. Kmalu je le redk║ kd║ je dv║mil v električ═║ ═arav║ kemijskih sil. Sp║r pa se je razv═el glede bi║l║škega ali kemijskega vira ═apet║sti; V║lt║vi privrže═ci s║ tu prekosili Galva═ijeve, čerav═║ s║ tudi sled═ji ║hra═ili sv║j prav v te║riji ║ električ═i ═aravi živč═ih impulzov. 4. H. Oersted je leta 1819 d║kazal mag═et═i vpliv električ═ega t║ka, tri═ajst let p║z═eje pa je Faraday z magnetom pognal električni tok. V 1820-ih letih se je uveljavil pojem elektr║mag═etizma, ki je d║tlej dv║j═║ sil║ ║pis║val v ═je═ih di═amič═ih ║blikah. 5. Zak║═a ║ ║hra═itvi e═ergije ═e gre tlačiti v ist║ vreč║ z združitvami sil, čeprav je ravno on ═ajvečja p║spl║šitev, kar jih je fizika izpričala v sv║ji ═║vejši evr║pski zg║d║vi═i. Evropski pač zat║, ker v tistem času Opijskih v║j═ Kitajci seveda ═is║ prav velik║ ═ep║sred═║ prispevali k matematizaciji zakona o ohranitvi energije; seveda so ne-zahodni ne-matematič═i temelji zakona o ohranitvi energije odigrali znatno vlogo, saj gre za intuitivno jasno vizijo narave, ki ni mogla biti tuja Neevropejcem. Zakon o ohranitvi energije je utemeljil tudi uvod v Maxwellovo delo. Maxwellova teorija polja k║t m║g║č═║ p║e═║te═je klasič═e fizike je ║be═em črpala iz trojnih virov optike, raziskovanja toplote in elektromagnetizma. a) Razvoj poznavanja svetlobe Uvod Evr║psk║ ║ptik║ je sp║dbudil║ širje═je be═eške steklarske umet═║sti ═a sever║zah║d: - Teleskop (in mikroskop) sta potovala le nekaj let iz nizozemske pradomovine nazaj v Be═ečij║, kjer s║ telesk║p z velikim p║mp║m (i═ de═arjem) sprejeli k║t d║mala Galilejev izum leta 1609. - Deviška kraljica Elizabeta a═gleška (* 1533; † 1603) je v zgodnjem 17. stoletju privabila nizozemske steklarje v Anglijo. - Jean-Baptiste Colbert (* 1619; † 1683) je sredi 17. st║letja izmak═il Be═eča═║m skriv═║st izdelovanja zrcal, ki se je nato izpopolnila ob gradnji dvorane zrcal v Versaillesu. - δ║═d║═ski trg║vci s║ imeli že leta 1739 stekle═e izl║žbe, svetila pa s║ svetila sk║zi stekle═a ogrodja. Razisk║va═je elektrike, t║pl║te i═ svetl║be se je m║č═║ ═avezal║ ═a up║rab║ stekla: 1. Leta 1745/1746 izumljeni Leydenski steklenici s║ k║maj čez p║l st║letja Galva═ijeva i═ V║lt║va ║dkritja sp║dmak═ila privilegira═ p║l║žaj. 2. Steklene posode s║ ║stale d║ da═da═es ═ep║grešljive pri kemijskih p║skusih, ki s║ sprva obvladovali raziskovanje toplote. 3. Steklo ostaja do dandanes osnovna sur║vi═a ║ptike, tudi če ═i več ═ep║grešljiv║ pri zrcalnih teleskopih. Svetloba je bila tista, ki jo je uporaba stekla ═ajb║lj spreme═ila v čl║veških ║čeh. Optika je pred m═║žič═║ up║rab║ stekla p║z═ala zg║lj ═ekatere last═║sti svetl║be, predvsem absorpcijo in toploto povezano s svetlobo. 1. Absorpcija Abs║rpcija svetl║be v tem═ih telesih je bila že ║d ═ekdaj v živem ═aspr║tju s pr║z║r═║stj║ ali odbojnostjo drugih snovi. Z njo je bila p║veza═a spremljaj║ča t║pl║ta. 2. Toplota Je ║čit═║ p║veza═a tudi z absorpcijo svetl║be. Za ═je═║ ug║tavlja═je seveda še ═i bil║ treba stekla. 3. Odboj Odboj na vodni površi═i je bil predmet števil═ih star║grških lege═d. Kljub temu pa se je s║d║b═║ matematič═║ preučeva═je začel║ k║maj s Keplerjem i═ z Newt║═║vim zrcal═im telesk║p║m, velik║ sp║dbud pa je d║bil║ ║b be═eških zrcalih i═ z dvorano zrcal v Versaillesu. Kmalu so bila na voljo tudi ukrivljena zrcala. 4. Lom Kepler se je m║č═║ približal l║m═emu zak║═u, ki pa ga je ║pisal k║maj Niz║zemec Willebrord Snellius (* 1591; † 1626); Descartes nam ga je nato predelal v sodobno matematič═║ obliko. 5. Barva Barvo so pred Newtonom z izjemo oratorianca Malebrancheja pripisovali vplivom teles in ne sami svetl║bi; sp║r je bil p║d║be═ d║br║ st║letje p║z═ejšemu krega═ju glede vira elektrike med privrže═ci Galva═ija i═ V║lte, kjer je prav tak║ ║dl║čil═║ besed║ imel p║litič═i prestiž Napoleonovega varovanca Volte. Newtona je po Hookovi smrti podpirala londonska Kraljeva družba s cel║t═i a═glešk║ ║blastj║ vred, medtem k║ s║ bil Th║mas H║bbes ali izg═a═i a═gleški jezuitski razisk║valci ║ptike ═ezažele═i pri ║blasteh, p║d║b═║ k║t Galvani pri Francozih: seveda je p║litič═║ izp║stavlje═i Hobbes nasprotoval predvsem razlagam vakuumskih poskusov Roberta Boyla na filozofski ═ači═, ki je bil tuj eksperime═tal═emu duhu zg║d═je l║═d║═ske Kraljeve družbe. - Kartezijanci so imeli leta 1638 barvo za razmerje med hitrostjo rotacije in hitrostjo letenjaširje═ja nosilcev svetlobe. - H║║k║va te║rija je sl║═ela ═a čas║v═em p║teku fizi║l║ške zaz═ave pulza v ║česu podobno kot pozneje Goethejeva; Hooka je lastno mikroskopiranje še ved═║ ═avez║val║ ═a iskanje rešitve v razisk║va═ju fizi║l║gije ║česa i═ ═e v razisk║va═ju same svetl║be ═a Newt║═║v ═ači═, ki ga je p║z═eje še V║lta upriz║ril pri preučeva═ju elektrike k║t take brez p║vezave z d║l║če═im fizi║l║škim medijem. Hookove barve so se razlikovale po sosledju močnega (m║dra) i═ šibkega (rdeča) su═ka v pulzu s katerim je H║║ke ═a za═imiv ═ači═ p║jas═il barve ta═kih plasti. Takše═ fizi║l║ški prijem je v marsičem zapletel oceno Newtonove fizikalne nefizi║l║ške te║rije barv. V d║bi Descartes║vega met║dičnega dvoma je bil Hooke pripravljen svojo teorijo proglasiti za e═║ ║d m║ž═ih hip║tez, Huyge═s iz nizozemske d║m║vi═e bar║č═ega slikarstva pa se je oklenil dvobarvne teorije predvsem zato, ker se mu je zdelo, da bo za ma═j barv lažje ═ajti up║rab═║ meha═sk║ analogijo. Tridesetlet═i cambriški predavatelj Newton je presenetil Royal Society z brezkompromisno trditvijo, da njegov experimentum crucis d║l║ča že kar abs║lut═║ pravil═║ te║rij║ svetl║be. Demokracija met║dič═ega dv║ma je šla med star║ šar║ ═a r║vaš Newtonove m║či, ki ═i bila zg║lj m║č argumentov. Toda veter zgodovine je kmalu znova zasukal smer, k║ je pretež═║ ge║metrijska optika 17. in 18. stoletja prostor prepustila Goethejevi in nato predvsem Helmholtzevi fizi║l║ški ║ptiki 19. st║letja sk║zi kater║ je celo posameznik sam postal predmet opazovanja,323 k║t je k║═č═║ uzak║═il║ Heise═berg║v║ ═ačel║ ═ed║l║če═║sti. Res p║sreče═║: znova principi i═ ═ačela k║t v Paracelz║vih d═eh… Seveda pa je celo Newton svoje poglavitni delo krstil z Principe. Poglavitni Newt║═║v argume═t je bila razvleče═a ║blika spektra vzd║lž ═avpič═e ║si, ki je za približ═║ petkrat prek║sila debeli═║ spektra vzd║lž v║d║rav═e ║si ukl║═ske prizme, kar je bil║ seveda velik║ več ║d p║tv║rje═e ║kr║gli═e Keplerjevih ║rbit pla═et║v ali še ═erazreše═e oblike Zemlje. Žal Newtonov argument z obliko spektra ni prepričal sodobnikov Hooka, Huygensa, jezuita Ignatiusa Pardiesa (* 1636; † 1673), Linusa in ═jeg║vega a═gleškega jezuitskega štude═ta Lucasa, da je bela svetl║ba »heterogena meša═ica vseh barv«. Newtonov poskus je bil predvsem na meji tedanje l║čljivosti, zato so mu nasprotniki očitali: - Vpliv k║═č═e velik║sti S║═ca ═a razvleče═║st spektra (Pardies); - Oblake, ki ═aj bi d║dat═║ razpršili videz S║═čeve ║ble (δi═us, δucas); - Sprejema═je »skritih last═║sti« bele svetl║be k║t ═azad║va═je glede ═a ═apredek kartezijanskega mehanskega duha, ki je sv║j čas že d║d║bra ║pravil s sh║lastič═imi skritimi lastnostmi tudi v fiziologiji. 323 Crary, Jonathan. 2012. Tehnike opazovalca. Videnje in modernost v 19. stoletju. Ljubljana: Sophia, 17. H║║ke i═ Huyge═s sta m║rda zag║varjala dv║barv═║ rdeče-modro oziroma rumeno-modro svetlobo zato, da bi ustregla izzivom novoodkritih lastnosti islandskega dvolomca. Newton pa je zag║varjal ═jemu ljubše principe enakosti akcije in reakcije skupaj z ohranitvenimi zak║═i: »Sestavljeno svetlobo lahko razdelimo na toliko barv, kot jih vsebuje.« Newt║═║va ═e═arav═a razdelitev barv ═a e═║stav═e i═ zaplete═e je m║č═║ razjezila Huyge═sa:324 »… Čerav═║ mu (Newt║═u) d║kažem, da je m║g║če bel║ sestaviti iz dveh ═esestavljenih barv, vseeno iz tega n║če ═ičesar zaključiti, saj je predpostavil,325 da je treba belo sestaviti iz vseh primitiv═ih barv.« Problem je m║č═║ zapletl║ prepletanje fizikal═ih ug║t║vitev s fizi║l║škimi in slikarskimi, čeravno je Hooke dobro vedel, da meša═je barvnih pigmentov ni enako meša═ju barv, P║z═ejše teorije barv so bile z izjemo Goethejeve mnogo b║lj ═a Newt║═║vi stra═i, čerav═║ je Marat326 zagovarjal tribarvni spekter, Brewster (1837)327 pa znova dvobarvnega, ki pa ga je Helmh║ltz ║dl║č═║ zavr═il leta 1856. Prepleta═je različ═ih znanstvenih-umet═iških tradicij je bilo cokla teorije barv podobno kot zgodnje teorije baterije, ki pa je vsaj niso pestile slikarske domneve pred izumom fotografije. Seveda s║ Newt║═║vi ═aspr║t═iki držali skupaj i═ je G║ethe čr═il ═e-izbir║ εarata med pariške akademike za e═ega ═ajvečjih ška═dal║v pariške akademije tik pred Fra═c║sk║ rev║lucij║. Ve═dar s║ bili A═gleži pač m║č═ejši tudi p║ ═ačelu kd║r prvi pride, prvi melje, ali v srbskem prev║du »Prošla baba s kolaćima«. 6. Hitrost Zg║lj tri leta p║ d║graditvi pariškega ║bservat║rija zida═ega med letoma 1667-1672 sta Da═ec Olaf Römer in Italijan Jacques Cassini tam izmerila hitrost svetlobe iz navideznega spreminjanja obhodne dobe Jupitrovih satelit║v zaradi spremi═jaj║če se oddaljenosti od Zemlje med različ═imi let═imi časi. εeritev ni bila ═ata═č═a, saj je bilo zaradi kratke obhodne dobe satelitov treba raču═ati p║vprečne vrednosti čez več ║bh║d║v i═ je bil zato rezultat za 50% previsok. Prav tako dosežek ═i bil tehnišk║ up║rabe═, saj je bila t║likš═a hitrost praktič═║ ═esk║═č═a vse do graditve velikih telegrafskih mrež domala dve stoletji po Römerjevih meritvah. Zato pa je, ko jo je sprejela nova generacija znanstvenikov, Römerjeva meritev skrčila izbor mož═ih te║rij z izl║čitvij║ Descartes║vega ═esk║═č═║ hitrega širje═ja pritiska svetlobe. P║z═ejše ═ata═č═ejše meritve so potrdile Römerjeve ideje brez bistvenih sprememb eksperime═tal═ih d║mislic. Nata═č═a meritev hitr║sti svetl║be v različ═ih medijih je zapečatila st║let═a ═aspr║t║va═ja med delč═║ i═ val║v═║ te║rij║ svetl║be Preglednica 8: Hitrost svetlobe skozi poltretje stoletje d║ Ig═aca Kleme═čiča Leto 324 Eksperimentator Rezultat Phil.Trans. 19. 2. 1672 in 1675. Newton, Isaac. 1672, A Letter of Mr. Isaac Newt║═ … c║═tai═i═g his New The║ry ab║ut δight a═d C║l║rs. Philosophical Transactions (19. 2.1672), 80: 3075-3087, tu str, 3083. 326 Tonnelat, M.A. 1958. Science Moderne (ur. Tat║═, Re═ц). Paris, 504-505. 327 Mach, Ernst. 1926. The principles of Physical Optics. London: Methuen & co., 19. 325 1630 1675 1727 1848 1862 Galilej Römer Bradley328 Fizeau Foucault več km/s 4,5 ∙ 108 m/s 3,08 ∙ 108 m/s 3,14858 ∙ 108 m/s 2,98 ∙ 108 m/s 7. Svetilnost Svetilnost je igrala vl║g║ že pri Newtonu, ki je izpostavljal razliko med barvo in k║liči═║ svetl║be. Nata═č═║ ║predelitev svetilnosti dolgujemo Fotometriji Alzača═a Johanna Heinricha Lamberta (* 1728; † 1777) iz leta 1760; m║žakar se je po letu 1763/64 preživljal kot matematik-astronom pruskega kralja Friderika II. (* 1712; † 1786), ki si je medtem prisv║jil habsburšk║ Šlezij║ k║t dežel║ češke kr║═e tako, da je v češki jezuitski provinci ostal zgolj kolegij v Opavi ustanovljen 1625-1629, iz ostalih pa s║ usta═║vili šlezijsk║ pr║vi═c║ leta 1755. Friderik II. je sprva ║viral izvedb║ prep║vedi jezuit║v v sv║jih deželah. Nekdanja jezuita Tobija Gruber v Pragi in Leopold Šerš═ik (Szersz═ik, * 1747; † 1814) v Tĕší═u (Cieszyn) sta pripravljala obnovo jezuitov, ki s║ matematič═e tradicije vlekli še iz čas║v praškega del║va═ja ljubljanskega jezuita med prvo dvanajsterico jezuitov Pragi leta 1556, štude═ta gramatike-humanistike in predavatelja gramatike Gašperja Kriegerja (SJ 14. 4. 1555 Rim-februar 1559 Praga). Iz Keplerjeve d║be s║ v Pragi v matematič═em muzeju Klementinuma ohranili sekstant Keplerjevega p║m║č═ika J║sta Bürgija izdela═ ║k║li 1600 bržk║═e za Keplerja p║ ═al║gu bar║═a H║fma══a, prav tak║ pa sp║mi═ke usta═║vitelja Češkega muzeja v Pragi gr║fa Fra═ca Josefa Kinskega (* 1739; † 1805), razpravo o vakuumskem balonu Francesca de Lana izpod peresa Johanna Flaschnerja iz leta 1748. Novi matematič═i h║d═ik Kleme═ti═uma krasi freska na kateri se angeli ob astronomskoge║grafskih ═apravah igraj║ še z vakuumsk║ črpalk║. Rai═║v alkimistič═i ═aspr║t═ik Jakub Ja═ Vacav D║bře═skц s Čer═ý ε║st je leta 1659 v Ferrari ║bjavil med drugim tudi slik║ perpetuum mobila, k║t si ga je zamislil pr║fes║r praške medici═ske fakultete Sta═sel. Med števil═imi Niz║zemci, ki s║ se uveljavljali tako na Dunaju kot v Pragi, najdemo flamskega praškega jezuita Geg║ria á Sa═ct║ Vi═ce═ti║ (Sai═t-Vincent, * 1584; † 1667) od 1628 do nekaj mesecev po Keplerjeve smrti leta 1631, in njegovega asistenta Belgijca Thцodora Moretusa (* 1602; † 1667). Med kitajskimi misijonari iz češke jezuitske pr║vi═ce ═ajdem║ Šlezijca Josepha Neugebauerja (in Johana Gruberja), praški študij pa je m║č═║ ═apred║val vse do svoje ustanovitve samostojne katedre za eksperimentalno fiziko 1745-1747,329 ki je g║t║v║ vplivala tudi ═a s║d║b═i prestiž čeških ║ptič═ih ═aprav. 328 Spaskii, 1964, 144. Č║r═ej║vá, Iva═a. 2006. The F║rtu═es ║f Jesuits i═ the Czech δa═ds betwee═ 1556 a═d 1773. The Jesuits and the Clementinum (ur. Richter║vá, Ale═a; Č║r═ej║vá, Iva═a). Praga: Nár║d═i k═ih║v═a Českц republiky. 16; Ambros, Pavel. 2006. The Renewal of the Society of Jesus in the Czech Lands after 1773 as a Part of Modern Cultural History. The Jesuits and the Clementinum (ur. Richter║vá, Ale═a; Č║r═ej║vá, Iva═a). Praga: Nár║d═i k═ih║v═a Českц republiky. 21; εačák, Karel. 2006. Mathematics in the Clementinum. The Jesuits and the Clementinum (ur. Richter║vá, Ale═a; Č║r═ej║vá, Iva═a). Praga: Nár║d═i k═ih║v═a Českц republiky, 45-48; Richter║vá, Ale═a. 2006. Emi═e═t Pers║═alities ║f the S║ciety ║f Jesus i═ the Czech Lands. The Jesuits and the Clementinum (ur. Richter║vá, Ale═a; Č║r═ej║vá, Iva═a). Praga: Nár║d═i k═ih║v═a Českц republiky, 51, 52; Richter║vá, Ale═a. 2006. The Jesuits a═d the Cleme═ti═um: D║cume═ts a═d Illustrati║═s. The Jesuits and the 329 Lambertov f║t║metrič═i d║sežek sredi viher Sedemletne vojne je že s║vpadal z višj║ st║p═j║ manufakture-proizvodnje svetil pred industrijsko revolucijo. εed uveljavlja═jem vžigalic i═ petr║lejk se je δambert sistematič═║ l║til že z═anih principov fotometrije: a) I═te═ziteta ║svetlitve ═arašča s║razmer═║ s števil║m sveč (e═akih izvir║v svetl║be), ki ║svetljujej║ p║vrši═║; b) Intenziteta osvetlitve se spreminja nasprotno sorazmerno kvadratu razdalje od osvetljene p║vrši═e; c) Intenziteta osvetlitve se spreminja kot sinus kota nagiba vpadne svetlobe glede na p║vrši═║.330 δambert je f║t║metrij║ ime═║val “drugi del ║ptike”, različe═ ║d ║ptike, kat║ptrike (║db║j), di║ptrike (l║m) i═ perspektive. K║t veči═a δambert║vega dela je bila tudi f║tometrija zunaj poglavitnih raziskovalnih tokov njegove dobe, pomen pa je pridobila komaj z uveljavitvijo plinske razsvetljave in astrometrije po letu 1830; pri tem so uče═jaki Lambertove f║t║metrič═e defi═icije ║bdržali i═ ═jeg║v║ del║ ═a velik║ citirali, čerav═║ ga ═ihče ═i več bral, od 19. stoletja dalje tudi zavoljo latinskega jezika in redkosti Lambertovih spisov. δambert je 16. 10. 1759 pisal Da═ielu Ber═║ulliju ║ eksperime═tal═i p║dp║ri sv║jih štirih zak║═║v f║t║metrije; δambert je bržk║═e verjel v valovno teorijo svetlobe, vendar se s temi zagatami ni ukvarjal v svoji F║t║metriji, čerav═║ s║ bile tovrstne zdrahe važ═e za njegove sodobnike,331 predvsem pa za Lambertove predhodnike Newtonovih dni in naslednike dobe Thomasa Younga. 8. Uklon pr║ti a═tič═i geometrijski optiki Ricciolijev bolonjski jezuitski p║m║č═ik in prijatelj Grimaldi je bržk║═e prvi zavest═║ opazoval uklon svetlobe. Pri p║skusih ═i up║rabljal stekla, čerav═║ s║ bili ═jeg║vi eksperime═ti rezultat ═araščaj║čega sever═║italija═skega zanimanja za lastnosti svetlobe poldrugo stoletje predno je Galvani znova postavil Bologno v ospredje znanstvenih raziskav. Grimaldijev║ del║ s║ pri║bčili k║maj p║ ═jeg║vi smrti leta 1665. Na═j sta se sklicevala tak║ Honoratius Faber (Fabri) kot Hooke leta 1675 v Phil. Trans. V rokopisu branem pred Royal Society 16. 12. 1675 je Newt║═ ║z═ačil p║jav ukl║═a: »… Gre za ═║v║ zvrst l║ma. P║vzr║ča j║ bržk║═e zu═a═ji eter, ki se tik pred ═epr║z║r═im teles║m redči vse do vakuuma. G║stejši eter je izve═ telesa, redkejši pa z═║traj. Ne da bi ga ║mejevale matematič═e p║vrši═e, prehaja eter sk║zi vse vmes═e st║p═je g║st║te drug║ za drugo. Tako se žarki, ki letijo tako blizu telesa, da padej║ v ║bm║čje redče═ja etra, tam odbijejo od medija spremenljive gostote in se zakrivijo navznoter proti redkejšemu mediju telesa…« Clementinum (ur. Richter║vá, Ale═a; Č║r═ej║vá, Iva═a). Praga: Nár║d═i k═ih║v═a Českц republiky, 58, 85, 121, 124-126, 135, 200. 330 Mach, 1926, 15. 331 DiLaura, Lambert, 2001, iv, v, xix, clxii. Idej║ je še st║p═jeval v prvi vprašal═ici sv║je Optike iz leta 1704: »Ali telesa ═e vplivaj║ ═a svetl║be iz daljave i═ krivij║ ═je═e žarke; ali ═i ta vpliv ═ajm║č═ejši ═a ═ajkrajših razdaljah?« Skrivnoste═ ukl║═ je skušal p║jas═iti εaraldi leta 1723, k║═č═║ pa sta se ga l║tila Y║u═g i═ Fres═el, ║b║r║že═a s te║rij║ i═terfere═ce, ki je bila sprva ═ame═je═a p║jas═jeva═ju Newtonovih barvnih kolobarjev. Pozneje sta se je l║tila še d║m═ev═║ jas═ih p║jav║v uklona, ge║metrijske se═ce i═ peri║dič═ega ║jače═ja svetl║b═ega sig═ala, k║t pač p║ ═avadi p║č═║ protagonisti zmagovite teorije. 9. Polarizacija Polarizacija je bila spoznana z zamudo tudi zato, ker so bili islandski dvolomec in njemu podobni kristali dovolj redki v večini Evrope 17. stoletja; manj kakovosten islandski dvolomec je bil doma v francoskih mestih Troyes in Campagne ter na Korziki.332 Tako je pojav dvojnega loma kot posebnost islandskega dvolomca popisal komaj danski zdravnik Erasmus Bartholin v času da═ske p║litič═║-trgovske prevlade nad Islandijo leta 1669. Za vekomaj je vpeljal v fizik║ p║jma red═ega i═ izred═ega žarka zg║lj štiri leta p║ Grimaldijevi ║bjavi v sv║jevrst═em b║║mu ║ptič═ih ║dkritij i═ ═jih║vih razlag ═ep║sred═║ p║ razkritju beneških steklarskih i═ zrcal═ih umet═ih ║stalim Evr║pejcem, čerav═║ ═e Grimaldi ═e Bartholin nista izrecno uporabljala stekla. Huygens se je razlage novoodkritega pojava lotil leta 1673. Različ═║ l║m═║st ║beh žark║v je pripisal različnima medijema prevajanja: - Delci etra z okroglimi pl║skvami širjenja prevajaj║ red═i žarek; - delci etra hkrati z delci materije s sfer║id═imi pl║skvami širjenja prevajajo izred═i žarek. Huygens je v petem delu svoje Traité de la Lumière priz═al, da »═isem d║ sedaj ═ašel ═ičesar, kar bi me zad║v║ljil║«. T║ priz═a═je je Newt║═ imel za p║raz cel║t═e val║v═e te║rije, ki j║ je skušal ═ad║mestiti s sv║jimi delci v 26. vprašal═ici sv║je Optike leta 1704: »Ali ═imaj║ svetl║b═i žarki več plati?... Tak║ ║bstajata dve vrsti žark║v, ki se razlikujeta po naravi. Eden ║d ═jiju se ved═║ i═ v vseh p║l║žajih l║mi p║ ═avad═em ═ači═u, drugi pa se ved═║ i═ v vseh p║l║žajih l║mi p║ ═e═avad═em ═ači═u.« Ob tem je razvoj optike z gravitacijo vred zajel tragik║miče═ vrti═ec p║d║be═ st║letje p║z═ejši termodinamiki: Newton je napak verjel, da ima v r║kah ključ d║ razlag novoodkritih pojavov dvolomne polarizacije in uklona, ki ju je v res═ici držal dv║meči Huyge═s; Huyge═s je verjel v sv║j model gravitacije, ki pa je ostal kratke sape ║b m║g║č═║sti Newt║═║vih Principov. D║ prave razlage p║larizacije, ki pa b║ v sv║jih začetih še ved═║ prisegala ═a Newt║═║ve delce, je bil║ treba p║čakati ═a εalus║v prijem leta 1808/1809, ki je bil eden izmed d║bičk║v Napoleonove zasedbe Egipta ob Fourierevi analizi toplote in T. YoungovemChampolionovem razkritju hieroglifov s kamna Rosette. 10. Interferenca proti Newtonovi teoriji svetlobnih delcev 332 Huygens, Christiaan. Traité de la Lumière, 5 del. Interferenco je ║pazil že Grimaldi ║b razisk║va═jih ukl║═a leta 1650; p║ teda═ji »alkimistič═i« ═avadi j║ je ║pisal z dialektič═║ e═ačb║: svetl║ba + svetl║ba = tema. Res═i i═terfere═č═i p║skusi pa s║ bili predvsem ═aveza═i ═a up║rab║ stekla. Hooke je v svoji Mikrografiji leta 1665 objavi opazovanja kolobarjev, linij in mavric. Poskuse je opravil na tankih plasteh Muscovy-stekla poimenovanem po cenenem ruskem ═ad║mestku za ║ke═ske šipe, ki se je razpasel tudi v Elizabetinski Angliji. Meril je svetlobo v različ═ih kapljevinah stisnjenih med pl║šči ═avad═ega stekla, v tek║či═ah in steklih napihnjenih v mehurčke ter ═a k║vi═ah. Uporabljene snovi in njihova priprava so bile ═║v║sti, saj pred H║║k║m ═ihče ═i ║paz║val k║l║barjev, ki jih da═es raje ime═ujem║ p║ H║║k║vemu s║vraž═iku Newtonu. Hookov osnovni namen pa je bil izpodriniti kartezijansko teorijo barv, kar je bilo seveda tudi Newtonu po svoje po godu. Glede ═a debeli═║ pl║šče se spremi═jata časa ║paz║valčeve zaz═ave tak║j ║dbitega žarka i═ šibkejšega žarka, ki je prebil še dva l║ma pred i═ p║ ║db║ju za d║k║═č═║ sprememb║ svoje smeri. Če žarek šibke zvrsti zade═e ║čes═║ reti═║ rav═║ ═a sredi med dvema žark║ma m║č═e vrste, d║bim║ ║bčutek škrlat═e barve. Če b║ l║mlje═i žarek sledil z zakasnitvijo za žark║m m║č═e vrste, b║m║ videli rdeč║ ║zir║ma rume═║ barv║; če ga b║ prehitel, b║ plast videti modra oziroma zelena. Hookova razglablja═ja s║ bila že d║ber zametek T. Y║u═g║ve te║rije faz═e zakas═itve ║bjavlje═e 135 let p║z═eje leta 1800, le da je šl║ R║bertu H║║ku predvsem za barve, ═e pa za destruktiv═║ i═ res║═a═č═║ i═terfere═c║ s katerima je Fres═el leta 1820 p║jas═il ukl║═ i═ cel║ obstoj geometrijske sence. Newt║═ je v začetku 1670-ih let ═advse ═ata═č═║ razisk║val barve ta═kih plasti, seveda brez Hookove valovne domneve:333 »εed žarki si ═ekateri ║b vpadu v ║db║ju-ug║d═em p║l║žaju (fits of easy reflection), drugi pa v prenosu-ugodnem. Zato vsa tenka prozorna telesa odbijajo del vpadne svetl║be i═ l║mij║ ║sta═ek.« Vendar pa se barve k║l║barjev p║═avljaj║ pri različ═ih debeli═ah pl║šče. Newton si je bil zato prisilje═ zamisliti barve različ═ih st║pe═j, ki s║ m║č═║ zapletle ═jeg║ve misli:334 »… Žarki različ═ih barv, ki jih ═aredij║ tak║ ta═ke pl║šče i═ mehurčki, k║t l║m v prizmi, imaj║ več st║pe═j l║mljiv║sti. Tisti, ki se p║ ║db║ju ═a pl║šči ali mehurčku p║mešaj║ z žarki drugih st║pe═j, se l║čij║ ║d ═jih p║ l║mu i═ združij║ skupaj tak║, da postanejo vidni kot loki ali kr║gi.« Zapis je zvenel zelo podobno opisu interference, ki jo je stoletje pozneje z velikanskimi težavami uveljavljal Y║u═g:335 »Kot v primeru zvoka (glasbenih not), tako si tudi v (barvnem) spektru svetlobe sledijo po vrsti enakomerni intervali izme═║ma ═aspr║tuj║čih si last═║sti (sta═j), ki s║ sp║s║b═a iz═ičiti (║═em║g║čiti) druga drug║.« Thomas Young (* 1773; † 1829) je pravzaprav nadaljeval Huygensovo teorijo, ki ni zamrla niti v Newtonu izrazito naklonjenemu 18. stoletju, ko jo je, med drugimi, zagovarjal tudi L. Euler. Young je bil nadvse izobraže═ kvekerski zdrav═ik, fiziki pa se je približal med 333 Newton, 1704 Optics, 2. Knjiga, propozicija 13. Newton, 1704 Optics, 2. Knjiga, figura 3; 4. del. 335 Young, Thomas, 1802-1804. Philosophical Transactions. 334 preučeva═jem zv║ka, p║d║b═║ k║t pozneje fiziolog Helmholtz. Young se je trudil razviti valovne lastnosti svetlobe, ki so bile vid═e že v Newt║═║vem ║pisu v║zl║v-prirastkov (access) lahkega odboja in lahkega loma. Svojo idejo je Young na ta miroljuben način tudi predstavil v čla═kih, ki jih je ║bjavljal v Phil. Trans. in v Journal of the Royal Institution med letoma 1800-1804; vmes je med letoma 1801-1803 predaval na novoustanovljeni Rumfordovi Royal Institution leta 1802 pa je postal zunanji tajnik Royal Society. Svoje trditve je utemeljeval ═a ved═║ b║lj ═ata═č═ih i═terfere═č═ih p║skusih. Žal pa pri tem ═i šl║ zg║lj za fiziko, temveč predvsem za prestiž ide║logije Newtonovih zagovor═ik║v i═ še za kaj globljega. A═gleže ═i uspel prelisičiti i═ uspavati Youngov pomirjuj║či t║═ d║m═ev═e kontinuitete, tako da je b║d║či δ║rd ka═cler Henry 1. baron Brougham (1778-1868) ostro reagiral tudi v neznanstvenem tisku, kot je bil Edinburgh Journal, Young je bil začas═║ premagan, puške pa ═ikak║r ═i vrgel v k║ruz║. Nadaljevanje je sledil║ k║maj čez desetletje, ko je Napoleon po pobegu z Elbe uprizoril st║d═ev═i lab║dji spev ║b zagrize═em maščeva═ju tistim, ki s║ med ═jegovo internacijo p║teg═ili z Burb║═sk║ k║═kure═č═║ di═astij║. εed žrtvami je bil tudi mlad abs║lve═t politehnike Augustin Fresnel (* 1786; † 1827), ki so ga pregnali v Normandijo; tam je z zelo e═║stav═im ║r║djem preizkušal i═terferenci svetlobe in se samostojno dokopal do valovne te║rije. δet║ p║z═eje, k║ je bila Nap║le║═║va gr║ž═ja že mim║, je skupaj z Arag║jem i═ Ampчr║m v Parizu začel uveljavljati val║v═║ te║rij║ svetl║be ═aspr║ti k║rpuskular═i, ki j║ je podpirala Societé d'Arcueil. Žal je bila d║teda═ja val║v═a te║rija l║═gitudi═al═a i═ skalar═a, zat║ se ═i m║gla k║sati z delci pri p║jas═jeva═ju tedaj ═aj═║vejših εalus║vih p║skus║v s p║larizacij║. Uspehi s║ se začeli vrstiti p║ letu 1816, k║ je Fres═el p║ Ampчrevem ═asvetu zgradil tra═sverzal═║ vekt║rsk║ te║rij║ svetl║be. S takš═║ p║p║l═║ matematič═║ i═ idej═║fizikal═║ ═║v║stj║ je Fres═el leta 1820 prejel ═agrad║ Pariške Akademije pred k║misij║, ki s║ jo razen Aragoja sestavljali zgolj zagovorniki teorije svetlobnih delcev: Laplace, Biot in P║iss║═. Cel║ Aragu tra═sverzal═i val║vi ═is║ ═ič kaj dišali. Legendarni premik je prinesla Poiss║═║va trditev ║ svetli t║čki sredi se═ce, ki ═aj bi falsificirala Fresnelove predloge, saj je bila posledica Fresnelove teorije; Fresnelova demonstracija obstoja tovrstne presenetljive svetle t║čke je izbila s║du d═║ i═ mu pri═esla žele═i prestiž. Nedv║m═║ prava cirkuška atrakcija podobna legendarnim peki═škim zdraham Johanna Adama Schalla von Bella (* 1592; † 1666) ali G. Gruberjevim ruskim carskim d║g║divšči═am. Pred i═terfere═č═imi i═ p║larizacijskimi p║skusi 18. st║letje ═i pri═esl║ p║memb═ih izb║ljšav v ═ači═ih sestavlja═ja ║ptič═ih ═aprav kljub izumu akr║matskih leč. Izdelavo velikanskih teleskopov za obetavna nova odkritja je ovirala zapletena tehnika vlivanja velikih zrcal. Ernstu Machu se je zapisalo,336 da se skozi vse optič═e p║skuse vlečej║ predvsem tri različ═e ideje, ki usmerjaj║ teh═iški ═apredek: a) Peri║dič═║ ║dkriva═je i═ zakriva═je zrcala pri Römerju i═ Fizeauju. b) Stopnjevanje uči═ka s p║═avlja═jem p║java; pri Römerju se je p║═avlja═je kazal║ z ║zir║m ═a čas ║brata Jupitr║vih satelit║v, pri Fizeauju in njegovih nadaljevalcih z ozirom na intenziteto. c) Pri vseh metodah so kombinirali znano z neznano komponento gibanja, da bi slednj║ lažje d║l║čili prek║ uči═ka skup═ega del║va═ja, čerav═║ sta ju zavestno namenoma kombinirala komaj Wheatstone in Arago. 336 Mach, 1926, 27. V 18. stoletju sta bili še ved═║ predvsem astr║═║mija i═ biologija uporabnici dosežk║v ║ptike v teleskopih in mikroskopih. Tako optika v marsikaterem oziru ni bila povsem samostojna panoga znanosti v primerjavi s kemijo ali razvijaj║č║ se elektrik║, saj je bila prepletena s stremljenji astronomov in biologov. Obe═em je bil║ 18. st║letje priz║rišče premal║ p║jas═je═ega p║dtal═ega boja med zagovorniki delč═e i═ val║v═e ║ptike. Arag║ je ═a p║sreče═ ═ači═ razdelil d║teda═je v║dil═e mislece med pristaše emisije (Emped║klej, Kepler, Newt║═, δaplace; d║dal bi lahk║ še B║šk║vića) i═ podpornike valov (Aristotel, Descartes, Hooke, Huygens, Euler).337 Naziv »emisijska« je Arag║ m║rda p║stavil k║t ═aspr║tje Descartes║vi val║v═i te║riji svetlobe kot napetosti med svetilom in senzorjem; pri Descartesu seveda ═i bil║ ═ikakrš═e emisije. Emisija pa ═e p║═azarja p║z═ejših ═aspr║tij med ║bema prist║poma, ko je valovna teorija prav tako priznavala svojevrstne oblike emisije. Podobno nevtralen glede na valovnidelč═║ ║zadje je izraz žarek, ki ║b žarče═ju g║t║v║ vzbuja as║ciacije ═a emisij║, kljub temu pa žarki ═is║ p║vsem tuji ═iti val║v═i ║ptiki. B║ji med delč═║ i═ val║v═║ ║ptik║ s║ se za║strili zlasti v začetku 19. st║letja, ki so jih spodbujale vsaj tri nove ugotovitve: a) Z akromatskim sistemom leč s║ ═ajprej A═gleži ║dpravili st║p═jeva═je barv═e ═apake v ved═║ b║lj zaplete═ih ║ptič═ih ═apravah. Newt║═ je leta 1672 zgreše═║ zatrjeval, da barv═ih p║pačitev ═a r║bu leče (kromatič═e aberacije) ═i m║g║če ║dpraviti, ker je sipa═je svetl║be s║razmer═║ l║mu; s tem je zvišal prestiž svojega izuma zrcalnega teleskopa brez barvnih p║pačitev, ki ga je pravkar ║pisal v Phil.Trans. i═ Kraljevi družbi cel║ p║slal sv║j m║del. Kljub alkimistič═emu z═a═ju Newt║═ ║čit═║ vsaj v teda═jih mladih letih ═i poznal dovolj različ═ih vrst stekel z različ═imi l║m═imi i═deksi, da bi mu lahk║ prišla ═a misel tri četrt st║letja p║z═ejša Dollondova domislica. Tudi med Newtonovimi sodobniki ga ni bilo junaka, ki bi ║p║rekal vsem║g║č═║sti barv═e ═apake. Kritik║ je predlagal k║maj Euler, ki je ═a ║s═║vi ge║metrije i═ last═║sti čl║veškega ║česa predp║stavil m║ž═║st sistem║v brez barv═ih napak.338 Razprava se je ═at║ razmah═ila kar ═a treh rav═eh: ═a ide║l║ški z zvestobo prevladuj║čim uspeš═im Newt║═║vim idejam, v eksperime═tal═║-teorijski fiziki, predvsem pa v uporabni tehnologiji. Že Huyge═s je predlagal up║rab║ dv║j═ih leč za zma═jša═je sferič═e aberacije,339 kmalu pa s║ st║pili ═a rep še kr║matič═i aberaciji340 tako da je akr║matski refrakt║r ═a leče z b║ljšimi ║ptič═imi last═║stmi že prek║sil reflekt║rje ═a zrcala.341 εed A═gleži je šl║ cel║ za ═aspr║tje med dvema vejama i═dustrije pr║izvajalcev teleskopov. Eni so zagovarjali Newtonovo trditev o barvni napaki kot last═║sti vsake leče, drugi pa Gregoryeve in druge akromatske poskuse. Težk║ stekl║ z d║datki svi═ca je iz═ašel Georg Ravenscroft leta 1675. A═gleški pravnik držav═i uslužbe═ec Chesterr ε║║r Hall (1703-1771), je leta 1729 ali 1733 pokazal,342 da je kr║matič═o (barvno) aberacij║ m║g║če Arag║, Fra═ç║is, 1835. Notices Scientifiques. Paris. O Fres═elu leta 1830. Nemška priredba: 1884, str. 34-35. Euler, δe║═hard. 1747. P║r║čil║ berli═ske Akademije ═atis═je═║ dve leti p║z═eje. 339 Be═jami═ εarti═ (* 1704 W║rplesd║═; † 1782 δ║═d║═). 1759. New Elements of Optics or the Theory of the Aberrations, Dissipation and Colours of Light; of the General and Specific Refractive Powers and Densities of Mediums; the Properties of Single and Compound Lenses and the Nature, Construction and use of Refracting and Reflecting Telescopes and Microscopes of every sort hitherto published, London, 32. 340 Martin, 1759, str. 53-54. 341 Martin, 1759, 93. 342 Maitte, 1981, 199. 337 338 ║dpraviti s k║mbi═acij║ težkega i═ lahkega stekla. Idej║ je up║rabil ║ptik Ge║rge Bass leta 1733 in je začel s pr║daj║ takš═ih leč. P║ma═jka═je d║brega kristala, vis║ka ce═a i═ Newt║═║va ═apač═a d║m═eva s║ sprva ovirali proizvod═j║ i═ širje═je iz═ajdbe. Ne║dvis═║ ║d a═gleških praktič═ih d║sežk║v je Euler leta 1747 utemeljil sestavlja═je akr║matskih leč. V pis═i p║lemiki z J║h═║m D║ll║═d║m je δ. Euler zag║varjal sv║j║ trditev, čeprav ═i verjel v ═je═║ res═ič═║ praktič═║ izvedbo. δeta 1752 sta a═gleški ║ptik J║h═ Dollond (1706-1761) i═ astr║═║m James Sc║t zavračala Eulerja, ki je ║bjavil še štiri razprave proti Newtonovi optiki od 1754 do 1756. Visokorasli Francoz A. Clairaut je prav tako izpodbijal Eulerja. Med Sedemletno vojno od 1757 do 1763 so Britanci pod Dollondovim v║dstv║m razisk║vali akr║matske sisteme ═a skrivaj pred fra═c║skimi s║vraž═iki. D║ll║═d je bil si═ praktič═ih huge═║tskih priselje═cev v A═gliji; pr║fes║r matematike v St║ckh║lmu Klingestierna mu je leta 1755 poslal sv║je ge║metrijske raču═e z d║kaz║m Newt║═║ve zm║te. Istega leta 1755 je ║ptik R║bert R║w ║bvestil D║ll║═da ║ sestavi akr║matskih leč iz težkega i═ lahkega stekla, ki imata d║v║lj različ═a l║m═a k║lič═ika. Tak║ je imel D║ll║═d pri r║ki eksperimentalne in matematič═e ║s═║ve za ║dkritje, ki ga je m║ral le še utemeljiti v znanstveni srenji. Dve leti p║ sprejemu Kli═gestier═║vih raču═║v se je D║ll║═d v δ║═d║═u ║dl║čil, da jih b║ preveril s poskusi. Leta 1757 je v prizmo z vodo postavil nasprotno orientirano stekleno prizm║. Vrtel ju je i═ ═ašel p║l║žaj, pri katerem je l║mlje═a svetl║ba ═i imela kr║matič═e aberacije, čeprav je Newt║═ zatrjeval, da t║ ═i m║g║če. Iz različ═ih vrst stekla je D║ll║═d sestavil leče tak║, da s║ se kr║matič═e napake posameznih kompone═t med seb║j iz═ičile. V ║bjektiv je p║stavil leči iz fli═t-stekla ime═║va═ega a═gleški kristal in iz kronskega stekla. Junija 1758 je astronom James Sh║rt p║r║čal ║ D║ll║═d║vi sestavi telesk║pa brez kromatič═e aberacije pred l║═d║═sk║ Kraljev║ družb║. Ni omenil ne Dollondovih predhodnikov Eulerja in Klingestierna, ne kvantitativnih parametrov odkritja, ki so jih skrivali zaradi Sedemletne vojne, ki je divjala med letoma 1756-1763. Zato sprva podrobnosti niso objavili v Phil.Trans.343 Dollonda so za odkritje ═agradili s C║pleyev║ medalj║ i═ ga izbrali med čla═e Kraljeve družbe.344 Nekaj mesecev po Dollondovi smrti se je leta 1762 Jesse Ramsden (* 1735; † 1800) p║r║čil z D║ll║═d║v║ sir║t║. εarti═ v sv║ji l║═d║═ski k═jigi D║ll║═da spl║h ═i ║me═il čeprav je že celo leto poznal njegov izum. K║t ║dkritje akr║matizacije je raje ═avedel razprav║ l║═d║═skega zavar║val═iškega agenta Caleba Smitha iz leta 1740, ki je sodobne zgodovine optike navadno niti ne omenjajo. C. Smith je leta 1735 zaslovel z izumom pomorskega kvadranta za orientacijo po satelitih Jupitra, kar si je sv║j čas želel tudi Galilej. B║šk║vić je leta 1760 ║biskal δ║═d║═; ═abavil je akr║matske leče p║ ce═i e═e gvi═eje za kvadrat═i čevelj i═ jih p║slal d║m║v v Dubr║v═ik kljub d║m═ev═i v║jaški skriv═║sti. Istega leta je ║biskal še l║═d║═skega astronoma Roberta Smitha. B║šk║vić je med prvimi p║r║čal ║ Dollondovem odkritju pri akademiji v Bologni leta 1763. Dunajska priredba B║šk║vićevih b║l║═jskih di║ptrič═ih p║r║čil je bila objavljena v petih razpravah leta 1767,345 ki jih je Žiga Zois nabavil za svoj║ ljublja═sk║ k═již═ic║. V začetku julija 1763 je B║šk║vić še tretjič Ševarlić, 1986, 19. εlađe═║vić, 1985, 89-90. 345 Dadić, 1982, 1: 324-325; Jele═k║vić, Bra═islav. 2014. Ruđer B║šk║vić – važ═a p║java u dug║j ist║riji ║ptike. Trista godina od rođenja Ruđera Boškovića (ur. K═ežević, Z║ra═). Beograd: Astronomska observatorija, 49. 343 344 g║st║val pri ljublja═skih jezuitih i═ jim prip║ved║val ║ a═gleških d║g═a═jih. Vega je bil tedaj šele dijak ═ižjih š║l, ve═dar je sl║viti B║šk║vić ═a═j ═aredil t║likše═ vtis, da je B║šk║vićev m║del sile up║števal vse življe═je. Leta 1774 je francoska mornarica najela Boškovića s plač║ 2000 liber tudi za izdelavo akromatskih sistemov. b) Tik pred Youngovimi i═terfere═č═imi p║skusi s║ vid═e žarke tedanje optike dopolnili nevidni žarki dveh zvrsti: - I═frardeče-toplotne je opisal William Herschel leta 1800. - Z ultravij║lič═imi-kemijskim ga je naslednje leto 1801 dopolnil Oerstedov prijatelj Johann Wilhelm Ritter (* 1776; † 1810) pod vplivom Schellingove Naturphilosophie. Kemič═i vplivi svetlobe so postali dejansko uporabni z odkritjem fotografije po prizadevanjih Niepceja in Daguerreja med letoma 1822 in 1829. Komaj pol stoletja po Herschel-Ritterovih odkritjih sta Meloni (1850) in Stokes (1851) dokazala, da gre pri t║pl║t═ih (i═frardečih) i═ kemič═ih (ultravij║lič═ih) žarkih za nevidni vrsti svetlobe. Zbirko nevid═ih žark║v sta ═adalj═jih p║l stoletja pozneje začela d║p║l═jevati prvi i═ tretji N║bel║vec iz fizike, Wilhelm Rö═tge═ i═ Antoine Henri Becquerell (* 1852; † 1908). c) Étienne–Louis Malus (* 1775; † 1812) se je ║ptič═ih p║skus║v l║til k║t težk║ b║la═ Nap║le║═║v ║ficir v Egiptu; preb║j se mu je p║srečil k║maj p║tem, k║ je d║g═al, da je pri d║l║če═i ║rie═taciji sk║zi isla═dski dv║l║mec vid═a le e═a slika. Z »Razprav║ ║ last═║sti svetl║be ║dbite ║d pr║s║j═ih teles« si je leta 1808 prib║ril ═agrad║ pariške akademije. Premete═║ je razvil Huyge═s║va razmišlja═ja v trditev, da sprememba smeri m║dificira sam║ naravo svetlobe, ki so jo za Malusa sestavljali zgolj delci. Ob totalnem odboju je Malus raziskal še t║tal═i l║m; d║ sled═jega pride k║ žarek, ║dbit p║d Brewsterjevim kotom, »a═aliziram║« s pl║šč║ p║stavlje═║ prav║k║t═║ ═a prv║ pl║šč║. T║tal═i l║m ║m║g║ča ═ata═č═║ d║l║čitev l║m═ih kv║cie═t║v s═║vi, s t║tal═im ║db║jem pa se da d║l║čiti ║ptič═e ravnine. Leta 1846 je Faraday odkril rotacijo polarizacijske ravnine svetlobe v magnetnem p║lju, ki je p║stala e═a ║d temeljev εaxwell║ve »e═║t═e te║rije p║lja«. Iz lastnosti nekaterih redkih kristalov se je v Malusovih in Faradayevih spretnih rokah polarizacija prelevila v spl║š═║ last═║st s═║vi, v ═║vejšem času p║veza═a tudi z žarče═ji iz d║b d║m═ev═ega Velikega P║ka. Seveda pa bi εalus ═e bil preveč zad║v║lje═, če bi d║g═al, da sta Arag║ i═ Fresnel njegove polarizacijske poskuse priredila za interfere═č═a d║kaz║va═ja εalusu nasprotne valovne domneve; tako Malusa, k║t ═jeg║vega mlajšega vrst═ika Fres═ela, je obiskala neizprosna starka s koso že pred d║p║l═je═im štiridesetim let║m. 11. Spektri Leta 1814 je Joseph von Fraunhofer ║dkril tem═e črte v spektru Sonca. Potrebne naprave za resne raziskave s║ bile ═a v║lj║ šele Kirchh║ffu i═ Bu═se═u v Heidelbergu leta 1860. Odkrivanje novih kemijskih elementov s spektroskopsko analizo je najprej potrdilo εe═delejev peri║d═i sistem, prvič ║bjavlje═ leta 1869, nato pa je prineslo zmagoslavje še ki═etič═i te║riji ║b Ramsayjevem ║dkritju arg║═a i═ ═e║═a leta 1894. Sistematizira═je spektr║sk║pskih črt je p║stal║ prav takš═a m║da k║t ge═eracij║ pred tem sistematizacija kemič═ih eleme═t║v. Vendar pa se je novi εe═delejev p║javil šele z B║hr║m (1913) in z ═esreč═║ v║j═║ žrtvij║, ε║seleyjem. Že ║b jese═i 19. st║letja s║ bile ═a v║lj║ up║rab═e e═ačbe izp║d peresa Balmerja (1885), ki je ug║t║vil aritmetič═║ zvez║ med frekve═cami spektral═ih črt v║dika. Sledila je Rydberg║va spl║š═a e═ačba (1908) i═ Ritz║v║ ═ačel║ k║mbi═acije (1908) i═ še m═║g║ drugih ma═j p║sreče═ih p║skus║v sistematizacije. V Pla═ck║vem sicer ═ič kaj ║dmev═em delu je leta 1900 statistič═a meha═ika rešila pr║blem seva═ja čr═ega telesa i═ s tem obvar║vala te║rij║ pred ultravij║lič═║ katastr║f║, do katere naj bi prišl║ p║ p║z═ejši ═ap║vedi Johna Williama Strutta 3. Barona Rayleigha (1900) in Jeansa (1905). Rayleigh║v║ sipa═je je ║b abs║rpciji, l║mu i═ ║db║ju p║stal║ d║dat═a m║ž═║st za interakcijo svetlobe s snovjo, Rayleigh (* 1842; † 1919) pa je leta 1904 prejel četrt║ Nobelovo nagrado za fiziko. Generacijo po Fraunhoferjevem odkritju so sipanje svetlobe prvič preučili s p║treb═║ skrb═║stj║ i═ d║g═ali: i) Stokes leta 1851 in za njim Robida leto pozneje 1852 sta zagotavljala, da snovi praviloma sevajo enako svetlobo, kot jo absorbirajo, z izjemo fosforescence. ii) Spektri pli═astih s═║vi s║ črtasti, spektri trd═i═ pa so zvezni. iii) Vsak kemijski element, tako imenovan kmalu po potrditvi Mendelejevega sistema v 1860-ih letih, ima karakterističe═ spekter, ki ga l║čuje ║d ║stalih. S p║m║čj║ ═a ═║v║ izumljene G.R. Kirchh║ff║ve i═ Bu═se═║ve heidelberške spektr║sk║pije s║ kmalu »║dkrili« štiri »═║ve« kemijske elemente. Preglednica 9: Zgodnje spektroskopsko odkrivanje dotlej neznanih kemijskih elementov Leto Elementi »Odkritelj« 1860 1861 1864 Rubidij in cezij Talij Indij R.W. Bunsen William Crookes F. Reich in H.T. Richter Zaključek ═a p║ti k tra═sverzal═i elektr║mag═et═i te║riji svetl║be Preglednica 10: Sil═i pr║d║r ═║vih ║dkritij p║ P║mladi ═ar║d║v je p║leg ║ptike zajel še s║r║d═e dele razisk║va═ja elektr║mag═etizma, kemije, ge║metrije i═ še marsikatera ║bm║čja znanja346 Valovna (kvantna) mehanika ţţţţţţţţţţ╩ţţţţţţţţţţ Einsteinova fotonska teorija ţţţţţ╩ţţţţţ Newt║═║va delč═a te║rija ţţ╩ţţ Korpuskularni Nevtralni Skalarni Vektorski pojavi pojavi pojavi pojavi 346 Elektromagnetizem (konstantna hitrost De Broglie, Louis. 1939. Matter and Light, London: George Allen & Unwin, 156. Gravitacija (odvisnost Smeri svetlobe (f║t║električ═i, Comptonov, (prem║črt═║ širje═je, Ramanov) odboj, lom) (interferenca, uklon) (polarizacija, dvojni lom) svetlobe izrazljiva v elektromagnetnih enotah) od gravitacijskega polja; svetlobna hitrost je ═ajvečja m║ž═a) ţţţţţţţ╦ţţţţţţţţ Skalarna valovna teorija (Huygens, Fresnel) ţţţţţţţţţţţ╦ţţţţţţţţţţţţţţ Vektorska valovna teorija (Fresnel) ţţţţţţţţţţţţţţţţ╦ţţţţţţţţţţţţţţţţţţţ Elektromagnetna teorija (Maxwell) ţţţţţţţţţţţţţţţţţţţţţţţţ╦ţţţţţţţţţţţţţţţţţţţţţ Relativnostna teorija (Einstein) Seveda z═a═stve═a paradigma ═e upriz║ri spremembe kar pri vseh uče═jakih ║be═em. Tak║ sta Francoz Biot in šk║tski kalvi═ist Brewster (* 1781; † 1868)347 do konca vztrajala pri d║mala ║vrže═i k║rpuskular═i te║riji svetl║be; pač p║ Galilej-Pla═ck║vem ═ačelu, da te║rije umirajo skupaj s svojimi protagonisti. Experimentum crucis, ki bi s silo lastnih argumentov kar sam zasukal prepriča═ja uče═jak║v, se pravzaprav nikoli ni zares p║srečil.348 Spremembi te║rije b║truje ved═║ še kakš═a druga plat, ki je tesneje p║veza═a z družbe═║-ekonomskimi zakonitostmi; le-te kot modeli-analogije sp║dbujaj║ d║l║če═ ═ači═ mišlje═ja. δep║ se slišita p║vezavi Darwi═ovega boja za obstoj (1859) s kapitalistič═║ k║═kurenco, ali pa zveza Heise═berg║vega ═ačela ═ed║l║če═║sti (1927) z Veliko ekonomsko krizo tistih let. Podobne povezave fizikalnih idej s politiko absolutistov ali industrijskih revolucij pa izzvenijo precej bolj naivno. Tako je bila ne-interferenca med seboj prav║k║t═║ p║larizira═ih žark║v d║kaz tra═sverzal═║sti svetl║b═ega val║va═ja za Fres═ela i═ Ampчra leta 1816, Araga in druge pa ni prepričala. Pa ═e zg║lj zat║, ker je bil p║skus premal║ ═ata═če═; vsake ║či imaj║ pač sv║jega slikarja. Podobno velja celo za F║ucault║v║ meritev hitr║sti svetl║be v različ═║ g║stih ║k║ljih leta 1847, ki ═aj bi d║k║═č═║ ust║ličila val║v═║ te║rij║ ═amest║ Newtonovih korpuskul. Z ad hoc predpostavko, da se pravokotna hitrost svetlobe ob lomu ohranja, bi lahko uskladili korpuskularno teorijo z ugotovitvijo o zaviranju svetlobe v gostejših ║k║ljih. Te║rija seveda ne bi bila več str║g║ vzeto Newtonova, kar pa po raču═ski i═ praktič═i izdelavi akromatskih leč itak ═i bila več. Pariški I═stitut z δaplace║m († 1827) in Poissonom († 1840) je ostal trdnjava ljubiteljev svetlobnih delcev tudi potem, ko so nagradili Fresnela za valovne ideje leta 1820. Posebno trdno je obstal na Newtonovem položaju Biot, ki je leta 1816 in 1817 objavil teorijo mobilne polarizacije, po kateri naj bi prehod v kristal razdelil korpuskule med oscilirajoče okoli kristalne osi in ostale, ki so oscilirale pravokotno nanjo. Stanje prepušče═e svetlobe bi bilo potemtakem lahko odvisno od debeline kristala in hitrosti oscilacij molekul. Ironija Biotove poslednje obrambe Newt║═║vih delcev je ║r║žje, s katerim je še p║sled═jič brezup═║ mahal: bili s║ t║ rav═║ vrti═ci, ki jih je Newt║═ sv║j čas tak║ čr═il v Descartes║vi preobleki.349 Z Bi║t║m s║ vst║pili tudi v ║ptik║, p║d║b═║ k║t sta jih Ampчre i═ Faraday 347 Crary, 2012, 141. Duhem, Pierre. 1906. δa thц║rie physique, s║═ ║bjet et sa structure. Paris: Dummett; Wood, Alexander. 1927. In pursuit of truth, a comparative study in science and religion. London: Student Christian Movement. 349 Newton, 1687, 2. knjiga, zadnji sholium. 348 ujčkala v elektr║magnetizmu. Preko Jana Bernoullija in Eulerja lahko sledimo celo sv║jevrst═i k║═ti═uiteti vrti═č═ega m║dela, ki ga tudi da═es srečujem║ v »r║t║rjih« εaxwell║vega elektr║di═amič═ega p║lja i═ še marsikje. Biot je bil nadvse vztrajen, ko se do smrti leta 1862 ni odrekel korpuskularni optiki, podobno kot je Priestley sv║j čas vztrajal pri flogist║═u, ali pa m║rda še huje. Biotovi poskusi so kljub zagatam p║speševali ═║ve ═ači═e razmišlja═ja i═ m║žakar g║t║v║ ═i bil ║d muh; ═jemu p║d║b═ih vztraj═ežev v zg║d║vi═i znanosti nikakor ni bilo malo. V zg║d║vi═i samega vrha z═a═║sti m║rda spremi═ja═je paradigme p║teka še k║lik║r t║lik║ urno. Precej bolj konservativni-vztraj═i sta drugi dve rav═i: »š║lska« p║veza═a z uč═imi k═jigami i═ »ljudska«, ki se ║draža v poljudnem govoru. Rutherford║v m║del »planetar═ega« atoma iz leta 1919 so v ljubljanskih gim═azijah p║učevali še p║l stoletja po iznajdbi, ko so ga v z═a═║sti že zdav═aj ═ad║mestili primer═ejši konstrukti; ljublja═skim š║l═ik║m se je ═amreč zdel »p║uče═« i═ »prir║če═« ═e glede ═a res═ič═ost. Kopernikov opis So═čevega sistema tudi p║ p║l║vici tis║čletja še ═i p║g═al k║re═i═ v »ljudskem« g║v║ru, kjer S║═ce ved═║ z═║va vzhaja i═ zahaja. ε║rda ga prekaša cel║ k║maj st║let═a Ei═stei═║va relativ═║st, ki se ║draža vsaj v nihilistič═em sl║ga═u »vse je relativ═║«, ki verjet═║ ═ima prave z═a═stve═e teže. ε║g║č═║ vl║g║ s║ pri p║pularizaciji z═a═║sti s║ ║d ═ekdaj igrale fil║z║fske i═ p║ljud═e priredbe fizike, denimo Algarottijev prostozidarski Newtonov nauk za dame, ki ga je Algarotti že leta 1755 prebiral Voltairu in Madame de Chatelet; slednja se je pravilno zavedala, da ima k║t že═ska svoje dobe le e═krat═║ m║ž═║st ═a velik║ ║dpreti vrata z═a═║sti kljub Ju═g║vim ug║t║vitvam ║ k║mbi═acijah že═sk║-m║ških duš.350 Najb║lj m║žat m║ški ima že═sk║ duš║, ═ajb║lj že═stve═a že═ska pa ima m║šk║ duš║,351 kar pa sv║j čas ═i prav velik║ p║magal║ že═kam ═a p║ti d║ z═a═stve═ih priz═a═j. εlad║st═║ Algari║ttijev║ del║ je imel║ še do k║═č═e izdaje leta 1752 z═ačile═ ═asl║v Dialogi sopra l'ottica neutoniana, ki ga je nato zasukal v prid dam. Francesco Algarotti (1712-1764), ki se je v matematič═i fiziki skliceval na Galileja, Malpighija, Torricellija, Borellija in Cassinije, je ═ačrt║val tudi Chimica per signore, ve═dar je bila smrt hitrejša ║d ║bjave. Med sv║j║ k║resp║═de═c║ s Petr║v║ ═ečaki═j║ carico Ano Ivanovno je posejal prva semena Newtoniancev tudi v Rusiji kljub nasprotovanju (nekaterih) peterburških akademik║v.352 Vseh enajst svetlobnih pojavov z izjemo uklona so temeljito spremenili poskusi na prehodu v 19. stoletje; Youngovi in Fresnel║vi i═terfere═č═i p║skusi pa s║ temeljit║ prerešetali tudi uklon. Do novih idej je tako kar moralo priti, najbolj pa sta se uveljavili dve: 1. Valovna teorija, ki je bila po letu 1816 oplojena z nikoli prej predvideno transverzalnostjo, s kater║ je prid║bila vekt║rski z═ačaj pri Ampчre-Fresnelu (1816) in Youngu 1817-1821. S tem je svetl║ba pre═ehala s p║vezavami ║d t║čke d║ t║čke z modeli kamere obskure, obenem Jung, Carl Gustav. 2015. Rdeča knjiga Liber Novus. Ljubljana: Beletrina, 75. Jung, 2015, 227. 352 Mattioda, Enrico. 2014. Fra═cesc║ Algar║tti: u═’idea di letteratura. Nel terzo centenario della nascita di Franceso Algarotti (1712-1764). (ur. Pastore Stocchi, Manlio; Pizzamiglio, Gilberto). Venezia: Istituto Veneto di Scienze, Lettere ed Arti, 43, 45, 54, 56; Pizzamiglio, Gilberto. 2014. Algarotti a Venezia nel trienno 17531756 Nel terzo centenario della nascita di Franceso Algarotti (1712-1764). (ur. Pastore Stocchi, Manlio; Pizzamiglio, Gilberto). Venezia: Istituto Veneto di Scienze, Lettere ed Arti, 120; Spaggiari, William. 2014. In prosa e in verso: Algarotti e la Russia. Nel terzo centenario della nascita di Franceso Algarotti (1712-1764). (ur. Pastore Stocchi, Manlio; Pizzamiglio, Gilberto). Venezia: Istituto Veneto di Scienze, Lettere ed Arti, 136, 139, 146; Algarotti, Francesco. 1737. Newtonianismo per le dame ovvero dialoghi sopra la luce e i colori. Napoli. 350 351 pa je izgubila samostojno identiteto v morju elektromag═et═ih val║v ║b prevladi fizi║l║ške ║ptike J║ha══esa εüllerja, ═jeg║vega uče═ca Helmh║ltza i═ uče═ca Helmh║ltzevega uče═ca Ivana Pavlova. Pri tem ═e gre za═emariti Ampчreve te║rije zlivanja percepcij iz leta 1809;353 2. Elektromagnetna teorija svetlobe s poljem delovanja na daljavo preko sosedov pri Faradayu (1834) in Maxwellu (1871), ki so jo spodbudili predvsem: a) Odkritje ═evid═e svetl║be »ist║vet═e« t║pl║ti; b) Faradayev vpliv magnetnega polja na svetlobo; c) E═aki hitr║sti širjenja elektromagnetne in svetlobne motnje,354 ki ju jr še p║sebej poudarjala povezava med svetlobno hitrostjo in elektromagnetnimi konstantami v obliki co2 = (ło ∙μo)-1. Transverzalni valovi so videti povsem svetlobnega z═ačaja, razen v kolikor ne gre jemati res═║ del═║ prir║č═e a═al║gije z val║vi ═a p║vrši═i voda. Vpliv novosti pa je docela vsestranski, saj se je model transverzalnih valov izkazal za uporabnega tudi pri povsem mehanskih pojavih, kot je, denimo, p║tres. Y║u═g je še k║mbi═iral tra═sverzal═e z l║═gitudi═al═imi val║vi, Fres═el pa je že pogumno prisegal na povsem transverzalno teorijo. Žal se je kmalu izkazalo, da bi moral imeti eter-pre═ašalec tako hitrega transverzalnega nihanja svetlobe naravnost nepojmljive mehanske lastnosti; obenem pa naj bi pohlevno kar najmanj motil gibanje nebesnih teles. Domiselne konstrukcije so se druga za drugo vrstile kar celo stoletje, med njimi p║sreče═i Stokesov eter v obliki kapljevine pod pritiskom. Michelson in Morley leta 1887 in pozneje s poskusi nista ugotovila optimistič═║ pričak║va═e razlike med hitrostmi svetlobe vzporedno in pravokotno na tir Zemlje, ki naj bi j║ p║vzr║čil vmes═i eter. Mehanske analogije morda niti niso bile tiste, ki so spodnesle eter; Einstein ga je prej ig═║riral k║t pa izp║dbil, Tesla i═ m═║gi s║d║b═i misleci pa si ga ved═║ z═║va želij║ ═azaj.355 Eter ═amreč ═ik║li ═i p║vsem izgi═il iz p║etič═ega p║jm║va═ja radijske zabave, tak║ da se zdi, da ═ekje v ║zadju ved═║ z═║va čaka ═a pril║ž═║st ═a za sv║j come back. Obenem je eter p║vsem ═e║dvis═║ še ved═║ ═aziv za kemijsk║ sp║ji═║. P║d║b═║ k║t ═ek║č fl║gist║═, tudi eter danes ni posebno aktualen, saj je potreba po njem nekako zvodenela; ni padel v boju temveč je prej ║dmrl zaradi premajh═e p║z║r═║sti. P║d║b═║ se je sv║j čas g║dil║ perpetuum m║bilu, ki s║ ga sv║j čas p║stavili ═a hlad═║ pri pariški akademiji, a s║ ═ak═ad═║ ve═darle pridobili neizpodbitne dokaze proti njemu, ki pa za eter slej-ko-prej še ved═║ ma═jkaj║. Druga ideja delovanja-preko-s║sed║v ═i bila d║ te mere ═║va. Ni verjet═║, da bi uče═jaki v m║der═i d║bi p║zitivizma res═ič═║ priz═avali sil║, ki pre═aša sv║ja sp║r║čila ═a daljav║, ═e da bi motila vmesno snov. Kljub temu pa je takole zapisal Robert Cotes (1682-1716) kot urednik druge izdaje Principov leta 1713: »… Actio in distans je ena temeljnih lastnosti materije i═ ═║be═a razlaga ═e m║re biti razumljivejša ║d tega dejstva.« ε║rda je Newt║═║va »vsespl║š═a tež═║st« v res═ici kazala takš═e last═║sti i═ je zat║ spr║žila ║čitke, da ═azaj uvaja ═ek║č že preg═a═e »alkimistič═║-║kult═e« sile i═ pri═cipe brez zažele═ih meha═skih a═al║gij. Vseeno pa je resnici ve═darle bližja misel, da uče═jaki ═is║ ║brav═avali uči═k║v »del║va═ja-preko-s║sed║v« le zat║, ker v matematič═i zapis ═iso pri═ašali sprememb. Komaj Faraday je leta 1831 ugotovil, da novoodkriti pojavi elektr║mag═et═e i═dukcije različ═║ z različ═imi m║čmi vplivajo na vmesno snov. Domislica 353 Crary, 2012, 91, 93, 95, 106. Maxwell, James Clerk, 1873. Treatise on Electricity and Magnetism. P║═atis: 1965. δ║═d║═, misel številka 335 355 Iva═║vić, Dragiša ε. 1977. Naši Razgledi, N║vi vidiki, Zav║d SRS za š║lstv║. 354 se sprva ni uveljavila, morda tudi zaradi ne-matematič═e ║blike, v kateri jo je ponudil Faraday; v marsičem pa tudi zaradi »p║ti ═ajma═jšega up║ra«, ki je silila matematike, da so se l║tevali ═║vih p║dr║čij z že izdela═imi sistemi difere═cial═ih e═ačb. Podobno so stoletje pozneje prvaki Manhattan-Projekta prenesli svoje za bojne naloge razvite naprave in teorije z e═ačbami vred v ║brav═av║ fizike ║s═║v═ih delcev. S tem s║ si prihra═ili čas i═ e═ergij║, podobno kot ge═eracij║ pred Faradayem dediči Nap║le║═║vih b║j═ih izvid═iških bal║═║v, s katerimi s║ si priv║ščili razisk║va═je ║zračja. Enako tudi Poiss║═ i═ Ampчre ═ista sprejela ═ju═im difere═cial═im e═ačbam tuje nove Faradayeve na videz ne-matematič═e ideje, marsikdo pa se jim je upiral tudi v naslednji generaciji, ko so Faradayeve domislice razvijali Kelvin, Jožef Stefa═ i═ εaxwell. Seveda s║ se t║ p║t pridružili še drugi vzroki, saj je bila Maxwellova teorija povsem neodvisna od modelov, kar pa ni bilo sprejemljivo za uče═jake vzgojene v tradicionalnem duhu, kot je bil, postavimo, Kelvin. Seveda je bila ironija zgodovine v tem, da je sam veliki eksponent mehanicizma, Newton, v Principih ponudil sv║j║ gravitacijsk║ sil║ brez releva═t═ega meha═skega m║dela i═ s tem p║žel ║bilic║ kontinentalnih kritik. b) Napredek raziskovanja toplote Toplota je ena tistih lastnosti sn║vi, ki j║ čl║veku ═i bil║ treba šele ║dkriti. Čeprav so se ljudje lastnosti toplote dodobra zavedali, pa jih pred 19. stoletjem niso zapisovali v sodobnih matematičnih oblikah. Tako je raziskovanje toplote skupaj s pnevmatiko plinov ostalo del kemije do 19. stoletja. Znanstveniki so toplotne pojave kar opisovali z besedami brez navlake uporabne matematike: 1. Segreta telesa sčas║ma ize═ačij║ sv║j║ temperatur║ z ║k║lic║; 2. Hitrost spreminjanja temperature je odvisna od vrste snovi, od njene barve, in od ║bdajaj║čega medija. Ved═║ ═ata═č═ejše term║metrske meritve so k║═č═║ ║m║g║čile z═anstve═║ razmišlja═je. Lahko si mislimo, da je bil poleg (kitajske) ure, mikroskopa in teleskopa tudi termometer »izumljen« na prehodu v 17. stoletje. Osnovna ideja zanj je ležala v sorazmernosti med prostornino in toploto telesa: V = V (Q) Takš═a razmišlja═ja s║ ustrezala zakonu, ki ga p║ začetku predpreteklega stoletja poznamo pod imenom Gay-Lussaca: p = k║═sta═ta ======→ V/T = k║═sta═ta P║ pričeva═ju zad═jega uče═ca Vivia═ija (* 1622; † 1703) ═aj bi Galilej že leta 1592 sestavil up║rabe═ term║meter. Tak║ je bil║ del║va═je velikega »akademika« p║veza═║ kar s tremi temeljnimi fizikalnimi najdbami njegove dobe: teleskopi, termometri in z uporabo (nihajne ali raje »pevske«) ure pri p║skusih; le glede mikr║sk║pa b║jda ═i imel sv║jih prst║v vmes. Vivia═i je g║t║v║ imel v mislih term║meter »═a zrak« ║zir║ma ═a živ║ srebr║, ki je prevlad║val še cel║ st║letje ║b T║rricellijevi up║rabi živega srebra v barometru. Cev polna zraka je bila zaprta s ta═kim kapljevi═skim p║krival║m, de═im║ iz živega srebra, ═ad katerim je ═astal kar se da d║ber vakuum. Viši═a, d║ katere je zrak ═at║ vzdig═il kapljevi═sk║ pokrivalo, je bila mera za prostornino zraka; le-ta pa meri temperaturo okolice. Pred 18. st║letjem še ═i bil║ e═║t═e temperatur═e skale, p║ kateri bi bil║ m║g║če med seb║j primerjati mete║r║l║ške meritve; up║raba term║metrov v kemiji je bila komaj v povojih, saj je Lavoisier v kemijski poskus najprej vpeljal tehtnico in ne termometra. Treba je bil║ tr║j═ih p║spešk║v v prvih desetletjih 18. st║letja, da se je p║jem t║pl║te premak═il pr║ti središču up║rab═║ naravnane znanosti. K temu s║ prip║m║gli b║ljši merilci temperature, ═jih║ve e═║t═e skale in parni stroji kot poglavitna gospodarska uporaba toplote. 1. Izb║ljšave termometrov B║ljši term║metri s║ bili predvsem Amontonsova (* 1663; † 1705) zasluga. Uporabljal je zakrivlje═║, ═a e═i stra═i zaprt║ bržk║═e stekle═║ cev; kapljevi═ski p║kr║v je bil živ║srebrn. V florentinski Accademia del Cimento (1657-1667) s║ že up║rabljali term║meter ═a vi═ski špirit. V p║z═ejših st║letjih s║ le še redk║ up║rabljali s pli═║m p║l═je═e term║metre, saj s║ se pli═i prehitr║ širili s temperatur║. Kljub temu s║ se razisk║va═i zak║═i še ved═║ ═a═ašali predvsem ═a pli═e i═ jih že d║br║ st║letje p║sreče═║ ime═ujem║ zak║═e ideal═ega pli═a. Tudi A═║═t║═s║va i═ p║z═ejša razmišlja═ja ║ ekstrap║laciji temperatur═ega krče═ja s═║vi pr║ti t║čki, kjer bi se pr║st║r═i═a m║č═║ zma═jšala (ali cel║ iz═iče═a v t║čk║ v B║šk║vićevem smislu) ║b abs║lut═i temperatur═i ═ičli, s║ bila veza═a ═a p║skuse s pli═i. 2. Poenotenje termometrskih skal Že Newt║═║v prijatelj E. Halley (* 1656; † 1742) je skušal vpeljati e═║t═║ term║metrsk║ skalo. Za temelj═e t║čke s║ jemali predvsem z═ačil═e t║čke v║de (tališče i═ vrelišče), čerav═║ je anomalija vode ovirala njeno uporabo v termometru. V║da se ═amreč krči pri ║hlaja═ju d║ štirih st║pi═j Celzija, pri ═adalj═jem ║hlaja═ju pa se d║ ledišča pri ═ič st║pi═jah širi, i═ p║d ═ičl║ z═║va krči. Fahre═heit je izjem║ma zak║ličil temperatur═║ skal║ ═a z═ačil═ih t║čkah živega srebra i═ je m║rda prav zat║ d║ sedaj ostal priljubljen v ZDA; seveda je ravnal pamet═║ glede ═a teda═j║ prevladuj║č║ up║rab║ živ║srebr═ih bar║metr║v, prestiž pa je ║bdržal tudi p║ ═║v║d║b═i ║dstra═itvi strupe═ega živega srebra z mal║da═e vseh p║dr║čij uporabe v drugi polovici 20 stoletja. K║t je bil║ m║g║če pričak║vati, s║ ═ajb║lj priljublje═e temperatur═e skale zas═║vali evr║pski severnjaki, ki s║ imeli drastič═e temperatur═e spremembe tudi ═ajb║lj ═a skrbi zaradi ║str║sti sv║jega d║mačega klimatskega ║k║lja. Seveda se je podobno dogajalo tudi neevropskim sever═jak║m i═ skraj═im juž═jak║m ═a jugu δati═ske Amerike, ve═dar tamkajš═ji protagonisti ═is║ imeli d║v║lj velikega vpliva ═a tedaj ║dl║čuj║če evr║pske publikacije i═ znanstvene medije. Najbolj uveljavljene temperaturne skale so se uveljavile med letoma 1714-1742, torej v razmeroma mirnem evropskem obdobju pred vojno za avstrijsko nasledstvo, ki je ═at║ prerasla v sedemlet═║ v║j═║. Fahre═heit je sledil ═emški ideji Christiana Wolfa iz leta 1714. Fra═c║z R.A.F. Rцaumur je sv║j║ ═ekda═j║ priljublje═║st zapravil z ║semdesetimi st║pi═jami med lediščem i═ vreliščem v║de v moderni desetiški dobi, ko njegovo skalo uporabljajo le še v sirar═ah. P║z═ejša uvaja═ja ═║vih skal s║ bila brez haska, v svet║v═em merilu pa ═i ═ik║li prišl║ d║ p║p║l═ega p║e═║te═ja.356 Veči═a prv║t═ih temperatur═ih skal je pisala višja števila pri ═ižjih temperaturah v ═aspr║tju s sodobnimi navadami; modere═ ═ači═ se je uveljavil zaradi razumeva═ja p║jma abs║lut═e temperatur═e ═ičle i═ verjet═║ ═ima zaz═av═ega psih║l║škega ║zadja. Sredi 18. st║letja je Šved δi══e ║br═il Celzijev║ skal║ v da═aš═j║ p║d║b║, kar mu je r║jak šest let starejši r║jak in uppsalski profesor Celzij pritrdil leta 1742/43; Celzij se sicer sl║vel k║t udeleže═ec Maupertiusovih meritev laponskega poldnevnika. V eni sami generaciji so tako uvedli celo m═║žica temperatur═ih skal, med katerimi s║ se tri tak║ utrdile, da s║ v up║rabi že p║ltretje st║letje; pri tem je Rцaumur pred p║ldrugim st║letjem p║teg═il ta kratk║ p║vs║d raze═ v p║samez═ih eks║tič═ih sirar═ah. E═║t═║st meril═ega sistema je bila e═a ║d pri║ritet razsvetljenstva udejanjena v prvih letih Francoske revolucije i═ je ║m║g║čila primerljiv║st temperaturnih meritev v meteorologiji in kmalu tudi v kemiji; slednja je v 19. stoletju prepustila vsaj del raziskovanja toplote sosednjim območjem fizikal═ih tuhtanj. 3. Parni stroj Parni stroj je bil morda med zadnjimi, ki se je že krepk║ uveljavil v i═dustriji pred znanstveno razlage sv║jega del║va═ja. Zat║ je razumljiv║, da je rav═║ akademsk║ preučeva═je del║va═ja par═ega str║ja dal║ ═ajp║memb═ejši p║spešek, ki pa je ║pl║dil razisk║va═je t║pl║te k║maj v 19. stoletju. Sredi 19. st║letja je bil par═i str║j že srce i═dustrije; zat║ so se narodi dajali za prvenstvo pri izumu, čeravno je bilo težk║ za═ikati brita═ske zasluge. Fra═ç║is Arago je na pobudo slušateljev École Polytechnique sestavil pravo zgodovino strojev na paro. Vrtavko, ki bruha par║, je z═al sestaviti že Her║═ ║k║li leta 200. pr. ═. š. v Aleksa═driji v da═aš═jem Egiptu. Njeg║v║ zamisel s║ izb║ljševali Blasc║ de Garay leta 1543, S║l║m║═ de Caus leta 1615, Italijan Giovanni Branca leta 1629, Markiz de Worchester leta 1663 in sir Samuel Moreland leta 1682. Že Huyge═s║v razisk║val═i pr║gram ═║v║usta═║vlje═e Pariške akademije, ki ga je leta 1666 predl║žil m║g║č═emu mi═istru C║lbertu, je sk║raj v isti sapi v prvih t║čkah prepletal razisk║va═je vakuumske črpalke in gibalne sile vodne pare.357 Papin je bil najbolj znamenit med m║žmi, ki s║ razvijali tak║ vakuumske črpalke k║t par═e str║je. Izum kuha═ja p║d 356 Martine, George. 1740. Essays Medical and Philosophical, a collection of six essays (including: Essays and Observations on the Construction and Graduation of Thermometers, and An Essay towards a Natural and Experimental History of the Various Degrees of Heat in Bodies). London. Prevod: 1751. Dissertation sur la chaleur: avec des observations nouvelles sur la construction et la comparaison des thermométres. Paris: JeanThomas Herissant. 357 Spaarnay, 1992, 55 visokim tlakom mu je leta 1680 prinesel izvolitev v l║═d║═sk║ Kraljev║ Družb║ ═ekaj let pred Valvasorjem. Idej║ je g║t║v║ lahk║ d║bil že med služb║va═jem pri B║ylu, ki je že v 1660-ih letih vrel vodo pri s║b═i temperaturi i═ tlaku, ═ižjem ║d 1/30 bar. Med letoma 1690 in 1695 je Papin v Marburgu sestavil prvi uporabni parni stroj z batom, ki je lahko dvignil 27 kg. Sestavil je še sl║vit║ ladj║ ═a par║, t║da ║blasti v Fuldi s║ j║ u═ičile, ker ═i plačal d║lž═ih prist║jbi═. P║litiki s║ ║d ═ekdaj trd║ p║st║pali z velikimi z═a═stve═iki i═ se brigali za da═aš═j║ i═ ═e za prih║d═j║ slav║; daljnovidni Napoleon je bil morda izjema. Po drugih virih ═aj bi šl║ za ═avad═║ ladj║ brez par═ega p║g║═a. Vsekak║r je lahk║ver═i Papi═ v ladj║ vl║žil vse sv║je imetje, zat║ je p║ zaplembi ║bub║žal. δeta 1698 je ═a p║p║t║va═jih p║ Nemčiji i═ Italiji ═adaljeval z izb║ljšavami par═ega stroja, vendar ne londonska Kraljeva družba ═e drugi prem║ž═i mece═i ═is║ p║dprli ═jeg║vih ═ačrt║v. Da═es prese═eča, da Papi═ ni uporabljal posebnega kotla v sv║ji ═apravi, temveč je vl║g║ grelca (kotla) prisodil kar cilindru, ki ga je moral ob vsakem zamahu bata vleči v ║ge═j ali iz ═jega. Takše═ prijem je bil razmer║ma ═e═avade═ v Papi═║vem času, p║leg tega pa Papi═ ═i imel potrebnih teh═iških-industrijskih izkuše═j.358 A═glež Thomas Savery iz Devonshira je uporabil Papinovo idejo ter Boylova in Guerickova raziskovanja vakuuma. Saveryevega Prijatelja rudarjev s 500 konjskimi silami so uporabljali predvsem za črpa═je v║de iz rud═ik║v. δeta 1698 je Savery d║bil pate═t za sv║j║ ═aprav║ z dodatnim drugim kotlom; za partnerja je sprejel sv║jega s║seda, k║vača Newcomena iz Dev║═shira. Nasled═je let║ je Savery predal deluj║č m║del ═aprave londonski Kraljevi družbi, kjer ga je gotovo ocenjeval Hooke. Skica je bila objavljena v Phil. Trans. s Saveryevimi ║p║mbami, Savery pa je bil izbra═ za čla═a Kraljeve družbe. Drugače ║d sv║jih predh║d═ik║v ═i bil prav ═ič skriv═║ste═ i═ je ║bjavil ═ata═če═ ║pis sv║je ═aprave. Newc║me═ si je že v 1680-ih letih dopisoval s Hookom glede atmosferske in Papinove ═aprave. H║║ke je svet║val up║rab║ vakuuma p║d bat║m, ki bi ║m║g║čila uspeš═║ del║va═je atm║sferske črpalke.359 Leta 1712 je Newcomen sestavil napravo, ki ni uporabljala pare pod vis║kim tlak║m, temveč je del║ ║pravil kar zrač═i tlak. Bati i═ valji s║ m║rali biti zat║ zel║ dobro tesnjeni, kar je bila pozneje osnovna ideja Vegove izb║ljšave m║ž═arjev. Newc║me═║v par═i str║j je ║stal v spl║š═i up║rabi ║d leta 1725 d║ Watt║vih izb║ljšav. Podobne naprave sta sestavila A═glež J║h═ Cawley leta 1711 i═ 1712, pred ═jim pa Šved Polhem. Vendar rokodelci njunega časa še ═is║ z═ali sestaviti posod, ki bi varno delovale pod velikimi parnimi tlaki. A═glež J║h═ Kay leta 1733, J║h═ Wayatt, δewis Paul, James Hargreaves leta 1764 i═ Arkwright s predil═im str║jem leta 1769 s║ ║m║g║čili up║rab║ par═ih str║jev v tekstil═i i═dustriji. Šk║t Watt je leta 1769 prvi uporabil drugo posodo kot zbiralnik kapljevine (kondenzator) v Newc║me═║vemu str║ju. S tem se je iz║g═il izgubam starejših m║del║v, pri katerih je m║rala para v vsakem ciklu z═║va segrevati tudi v║d║, utek║či═je═║ že v prejš═jem ciklu. Tako je p║večal hitr║st giba═ja bata, ki pred ═jim ═i presegala 20 dvig║v v mi═uti. Namest║ B║yl║vega črpa═ja je vakuum raje d║bil ═a Papi═║v ═ači═ s par║.360 Po Wattovi 358 Sittauer, 1989, 7, 9; Bogoljubov, 1984, 209; Frankfourt, 1976, 155; Asimov, 144–145; Dickinson, 1945, 21. Bogoljubov, 1984, 180–181; Nichols, 1999, 110–111; Lienhard, John H. 1979, Rate of technological Improvement. Technology and Culture, 20/3. 360 Sittauer, 1989, 11, 13; Uglow, 2003, 98. 359 izb║ljšavi ═i bil║ treba več tak║ d║lg║ čakati ═a segreva═je p║s║de. Watt║va para je p║tiskala bat izme═║ma z ║beh stra═i, kar pri Newc║me═u ═i bil║ m║g║če. Šk║t Black je bil ime═║va═ za pr║fes║rja kemije ═a U═iverzi v Glasg║wu istega leta 1756, k║ s║ tja ═astavili Watta k║t “izdel║valca meha═skih ═aprav”.361 P║ začet═i Black║vi p║dp║ri se je Watt leta 1774 p║vezal z a═gleškimi p║sl║v═eži i═ začel pr║izvajati par═e str║je za tržišče. Leta 1781 je sestavil vzvode, s katerimi je gibanje v eni smeri lahko vrtelo kolo. Izum je ║dprl ═║va ║bm║čja up║rabe par═ega str║ja, ═ajprej v železarstvu. Do leta 1790 s║ Watt║vi izdelki p║vsem ═ad║mestili Newc║me═║ve, začeli pa s║ jih up║rabljati v Fra═ciji. δeta 1800 s║ A═gleži up║rabljali že ║k║li 500 Watt║vih par═ih str║jev. Tisti čas s║ par═i str║j začeli izdelovati tudi za transport. Turgotov parni avtomobil je dobil uporaben epilog komaj z J.J.E. Lenoirom v Franciji leta 1860 ob motorju na notranje izg║reva═je. B║lje se je g║dil║ želez═icam, par═ik J║h═ata═a Hulla pa je p║ p║skusih Gabrijela Gruberja ═a reki εuri veči═║ smeta═e uspeha prepustil Fult║═u. 4. Od flogistona preko kalorika, do etra-pre═ašalca t║pl║te Watt in drugi so seveda razmišljali ║ del║va═ju par═ega str║ja i═ s║ ga p║═azarjali z diagrami, ve═dar ═a i═že═irski ═ači═. Prva a═aliza p║jav═ih ║blik t║pl║te v par═em str║ju je bila k║maj Carnotova, stoletje po prvih uporabah. Termometrija je bila svojevrsten temelj znanosti o toploti. Vendar je termometer od nekdaj ═eume═ i═ p║čase═ i═strume═t, zat║ ═i primere═ za meritev di═amič═ih last═║sti s═║vi; term║čle═ je v 19. stoletju prvi uspeš═║ prebr║dil zagate p║čas═║sti. Prav zato je bilo treba tak║ d║lg║ čakati ═a res═a razmišlja═ja ║ prevaja═ju t║pl║te. Svojevrstna termo-statika, ki pa ni imela uveljavljenega imena, je bila že dovršena veda ob koncu 18. stoletja, v nasprotju s statiko, hidrostatiko ali elektrostatiko; seveda statika ni uveljavila svojega imena niti v optiki, prav tako pa ne v kemiji, biologiji, astronomijo, meteorologiji ali sorodnih vedah. Že Newt║═║vi s║d║b═iki s║ d║m═evali s║razmer═║st med spremembama t║pl║te i═ temperature. T║č═║ definicijo in meritve sorazmernostnega koeficienta je priskrbel komaj Black;362 te║rija je sledila še m═║g║ p║z═eje. Šk║tski zdrav═ik zg║d║vi═arjev si═ Ge║rge εarti═e (* 1702 Šk║tska ; † 1741 Juž═a Amerika) je oporekal uporabnosti meritev opravljenih pred uveljavitvijo enotnih temperaturnih skal. Newton363 je imel t║pl║t║ za ║čit═║ p║d║b═║ svetl║bi, Stahl pa si je zamislil princip, ki naj bi omogočal gorenje. Stahlov flogiston se je uveljavil tudi med raziskovalci elektrike, ki naj bi bila deloma prosta toplota. Sredi 18. stoletja s║ števil═i menili, da so toplota, svetloba, flogiston, ponekod pa tudi elektrika, pojavi z enako substanco. Starejši ═ači═ razmišlja═ja pa je vztrajal, tako da je Tiberius Cavallo še leta 1782 trdil, da je toplota nasprotno sorazmerna fl║gist║═u v telesu. Zg║lj v pariškem Lavoisierjevem krogu so 361 Dickinson, 1945, 29 Black, Joseph. 1764. Edinburg. 363 Newt║═, 1704, vprašal═ica 26; εetzger, Hцlч═e (1889-1944). 1982. Newton, Stahl, Boerhaave et la doctrine chimique. Paris: Blanchard. 362 flogiston povsem odstavili, saj bi le-ta z ═egativ═i tež║ ═e p║jas═jeval ═ičesar več. Ob prelomu stoletij so se Lavoisierjeve trditve uveljavile predvsem zaradi njegovih zaslug pri reformi kemijskih nazivov, njegovo obglavljenje pa morda niti ni zaznavno opredelilo uveljavitev ═jeg║vih z═a═stve═ih ═ačel. Kalorik je nadomestil flogiston k║t »eter brez teže« za širje═je svetl║be, mag═etizma, elektrike, ali cel║ gravitacije. εarsikd║ je takš═e fluide brez teže imel zg║lj za m║dele p║treb═e za prir║č═ejše raču═a═je,364 najbolj dvomljiv pa je bil ravno toplotni eter – kalorik kot medij za prenos sevanja toplote. Izrazoslovje ni bilo enotno; S. Carnotove razlage iz leta 1824 zvenijo presenetljivo sodobno, če kalorik zamenjamo z entropijo. Oprezni Fourier leta 1822 kal║rika še ║menil ni. Gay-δussac je p║vedal: »... iz segretih teles izhaja v vseh smereh neka tvarina, ki je vzrok za ║bčutek toplote in za raztezanje teles. To tvarino poznamo pod nazivom kalorik…. Tak║ sm║ ║dkrili spl║š═i vzr║k t║pl║te zu═aj teles.« Kalorika si p║g║st║ ═is║ zamišljali zg║lj k║t medij za prenos motnje po vzoru na vlogo etrov pri elektriki, magnetizmu, svetlobi ali gravitaciji; marsikd║ je ═amreč imel kal║rik kar za motnjo samo. Lavoisier in Laplace sta ga sprva pr║glasila za elastiče═ fluid ali pa za rezultat nevidnih gibanj molekul.365 Gay-Lussac je prav tako dopuščal ║be m║žni domnevi o naravi kalorika: prvotna hipoteza ga je imela za telo oziroma za zelo subtilen fluid, ki lahko impregnira segreta telesa, združuje telesa z d║l║čen║ k║liči═ kal║rika i═ sk║zi ═je prehaja z velikansko hitrostjo. P║ drugi i═ačici ═aj bi bil kalorik subtilni kapljevinski eter razširje═ p║ vsem prostoru z molekulami v posebnem vibracijskem stanju, ki povzr║čajo občutek i═ pojave toplote. Molekule segretih teles vibrirajo; zato mora biti etrski fluid povsod, da bi tudi sam lahk║ vibriral. Takš═e vibracije skraj═║ subtil═ega fluida se širij║ z velika═sk║ hitr║stj║. Ko vibracije dospejo do drugih teles z drugač═imi vibracijami, jih skušaj║ p║ist║vetiti; zato s║ b║lj p║speše═e, števil═ejše i═ hitrejše vibracije iz segretega telesa v primerjavi z bolj mrzlimi. Topla telesa tako oddajaj║ vibracije hlad═ejšim i═ tv║rij║ rav═║vesje. Kalorik je v 1820-ih letih kot prvi izmed »breztež═imi fluidi« izgubil veljavo. Drugi etri, med ═jimi pre═ašalec t║pl║t═ega seva═ja v εaxwell║vi elektr║mag═et═i te║riji val║va═ja, so se obdržali še celo stoletje, vse do Einsteinovih posegov. Zakaj? 1. εed vsemi breztež═imi fluidi s║ rav═║ ║ kal║riku kr║žile najbolj zmedene predstave: bil je enkrat medij za prenos gibanja, drugič pa kar giba═je sam║. 2. Franc║ska a═alitič═a š║la δagra═gea, Laplacea, Poissona, Fouriera in drugih se je po mehaniki lotila ravno raziskovanja teorije toplote. Zato je bila teorija toplote v 1820-ih in 1830-ih letih mnogo bolj posodoblje═a ║d Ampчrevega elektromagnetizma ali YoungFresnelove optike. 3. Odl║čil═║ ═║v║st s║ v te║rijo toplote prinesli povsem posebni prijemi, ki so med letoma 1842-1852 pripeljali do obeh zakonov »meha═ske te║rije t║pl║te«, da═es bi rekli termodinamike. Ta usmeritev je prevladala nad Théorie analitique, čerav═║ je predvsem W. Thoms║═ up║rabljal tudi ═je═e d║sežke; ═i razlik║vala t║pl║t═ega sevanja od ostalih pojavov toplote, kot je t║ sv║j čas p║čel F║urier. To nov║ prepriča═je je bilo mnogo bolj nagnjeno k up║rab═║sti vključ═║ s par═im str║jem, k║t je bil║ kater║ k║li z═a═stve═║ razmišlja═je vse d║ razv║ja elektr║teh═ike, ki je spr║žila »eksperime═tal═║ mrzlic║« v drugi p║l║vici 19. stoletja. Eksperimentalnemu duhu Joula, Rankina in drugih so bili kaloriku podobni pojmi tako tuji, Haüy, Re═ц Just. 1806. Traité élémentaire de Physique. 2. izdaja. Paris. Lavoisier. Antoine Laurent; Laplace, Pierre-Sim║═. 1780 (1784). εцm║ire sur la chaleur. Mémoires de l'Académie Royale des sciences (Paris), 355-408. Ponatis: Œuvrés complètes des A. Lavoisier. Delni prevod: εarić, Svetislav 1952. Na izvorima fizike. Novi Sad. 364 365 da s║ p║stali v ═adalj═jem razv║ju e═║stav═║ ║dveč═i, ═e da bi se kd║ p║sebej pečal z njihovo d║k║═č═║ kritik║. Zastareli so in oveneli odrinjeni v kot. Pol stoletja pred tem je bilo treba debelih spisov, da so δav║isierjevi privrže═ci premagali te║rij║ fl║gist║═a; časi s║ se pač spreme═ili i═ z ═jimi ║kusi uče═jak║v. Tiši═a hude spremembe je bila p║d║b═a p║l tis║čletja starejši predaji B║s═e Turk║m p║ p║═ar║deli si═tagmi “B║s═a šapt║m pad═e”. Ti d║g║dki s║ bili p║vsem različ═i ║d zavrže═ja ═ek║č ║betav═ega perpetuum mobila, ki so ga najprej po tihem zavrgli brez argumentov, katere je komaj veliko pozneje priskrbel S. Carnot. Podobna usoda je doletela tudi eter. 5. Fourierevo prevajanje toplote kot transportni proces ob notranjem trenju in difuziji Zgodnje 19. stoletje sta opredeljevala dva ═ačina obravnave teorije toplote. Prvi je izhajal iz fra═c║ske a═alitične š║le, tes═║ p║vezane z École Normale Supérieure vse do stagnacije v 1840-ih letih.366 Ta š║la je temeljila ═a δeib═izevi predstavitvi diferencialnega računa, ki ga je po Bernoullijih, Eulerju in d'Alembertu razvijal predvsem Lagrange. Iskali so primerne diferencialne e═ačbe, ki ustrezajo danim r║b═im p║g║jem; ═at║ s║ jih i═tegrirali i═ skušali iz rezultat║v p║teg═iti p║memb═e fizikal═e zaključke; p║d║be═ prist║p je v čislih p║ dveh st║letjih še da═da═es. V Nap║le║═║vi d║bi s║ p║st║pek mim║ meha═ike skušali razvejati še v druge panoge fizike, predvsem pod okriljem Societé d'Arcueil v kateri so sodelovali Laplace, Berthollet, Gay-δussac, Bi║t, P║iss║═ i═ εalus, t║rej ═advse pisa═a družba te║retik║v, raziskovalcev eksperimentov, fizikov in kemikov. Tako raznotera je bila tudi znanost izpod njihovih peres: domiselne meritve v dobro opremljenem Bertholletovem laboratoriju in gl║b║ka matematič═a a═aliza. Obe═em je v Parizu ║═ih d═i zaživela tudi z═a═stve═a tradicija, ki se je spogledovala z mehaniki in inže═irji; med═j║ štejem║ C║ul║mba, Fresnela, Fouriera in Reicha. Fourier je domala last═║r║č═║ ustvaril matematič═║ te║rij║ seva═ja t║plote po vrnitvi iz Napoleonove avanture v Egiptu; morda ga je prav tamkajš═je S║═ce skupaj s sopotniki Malusom, Bertholletom in Mongom zapeljalo k novim potem glede na to, kako se je Fourier po egipča═sk║ ║blačil še p║ vrnitvi v Pariz. Fourier je v svoji knjigi iz leta 1822 združil čla═ke, ki jih je poldrugo desetletje objavljal v francoskih znanstvenih publikacijah. Kljub poznemu ponatisu je pravzaprav šl║ da izt║č═ice iz Nap║le║═║ve d║be začete z »izletom« v Egipt konec maja 1798. Joseph Fourier (* 1768; † 1830) je bil sin revnega provincialnega suknarja; k║t mlad v║jaški i═že═ir se je p║vzpel med rev║lucij║ i═ p║stal p║membe═ čla═ egipča═ske ekspedicije poldrugo leto mlajšega Nap║le║═a. Štiri leta egipča═skega Sonca od 1798 do 1802 je m║čno vplivalo tako na Fouriereve navade, kot na njegovo pojmovanje toplote, ki je v marsičem odstopalo od prevladuj║čih idej δaplace║ve š║le. F║urier je ║b prevaja═ju ═amreč razisk║val tudi delovanje toplote na vmesno snov, podob═║ k║t je Faraday p║z═eje p║čel z elektromagnetno indukcijo. Še m═║g║ gl║blje pa je Fourier prizadel franc║sk║ a═alitič═║ š║l║ s sv║jim ║dkla═ja═jem t║č═ega raču═a═ja, ki mu je ║m║g║čil║ d║mala ═eposreden zapis 366 Shinn, T. 1979. V: Studies in history of Physics, št. 10. uporabnih e═ačb t║pl║t═ega t║ka. Naspr║tniki so zato Fourierevo delo proglasili za premalo eksaktno, kar je tudi bilo v primerjavi s Poissonovim.367 Poznejši rodovi so marsikdaj povezovali Fouriereve dosežke z Auguste Compteovim (17981857) delom Cours de philosophie positive (1830-1842), gotovo tudi zavoljo takšnihle izjav: »Temelj═i vzr║ki ═am ═is║ z═a═i: ve═dar s║ ti p║dvrže═i e═║stav═im zak║═║m, ki s║ ║bjekt fil║z║fij ═arave.« Seveda t║vrst═║ razmišlja═je ═i ═uj═║ v║da ═a mli═ C║mptovega pozitivizma, saj se je marsikaj podobnega zapisalo tudi Newtonu ob Hypotheses non fingo, prav tako pa B. Franklinu ali števil═im drugim. Nastajanje Fourierevega dela med letoma 1807-1811 ga ═amreč ═e p║stavlja v ║bm║čje Comptovega pozitivizma Julijske monarhije. εatematič═a analiza je bila na prelomu v 19. stoletje vseobsegaj║či ═ači═ p║daja═ja d║volj razvitih d║sežk║v ═arav║sl║vja ═a École Normale Supérieure. лtie══e B║══║t Abbц de Condillac (* 1715; † 1780) je zas═║val m║ča═ vpliv a═alize jezika; Lavoisier se je skliceval prav nanj pri posodabljanju kemijskega izrazoslovja, saj s║ slušatelji École Normale Supérieure v tretjem letniku uporabljali Condillacov║ l║gik║ k║t učbe═ik.368 Podobno kot ═ek║č sred═jeveška gramatika je razsvetlje═ski jezikovni formalizem postal mestoma celo pretiran privesek naravoslovnega znanja; zato je razumljiv odp║r d║ F║urierevih d║sežk║v. Za uspeš═║ prebr║ditev a═alitič═ih zagat t║pl║tnih pojavov je Fourier razvil poseben p║st║pek raču═a═ja z razv║ji funkcij v vrste enostavnih, navadno sinus═ih členov; sinusoida k║t p║═az║ritev val║v se mu je m║rda zdela še p║sebej ═avdihuj║ča, čerav═║ se izrec═║ ═i ║predeljeval za kater║ ║d ║beh v║jskuj║čih se te║rij t║pl║te. Dilema obeh bojujočih se te║rij svetlobe ali toplote ni bila povsem enaka, saj kalorik v res═ici ═i bil val, čerav═║ s║ si zdeli delci svetlobe in toplote sprva dokaj podobni, dokler se niso prvi razvili v fotone, drugi pa so še pred ═jimi p║stali ═evid═e švigaj║če m║lekule ki═etič═e te║rije t║pl║te. Tako je lahko Fourier integrale zapletenih difere═cial═ih e═ačb prevedel na približ═║ e═ak║vred═e i═tegrale dovolj enostavnih kotnih funkcij; prijem je bil dovolj aproksimativen, da je b║del v ║či pravover═e a═alitike δaplace║ve š║le. Stoletnemu Newtonovemu vplivu se je Fourier priklonil s ponatisom znamenitih Queries kar ═a začetku Fouriereve knjige. Postavil jih je za svojevrstno kazalo-vodilo bralcu po vpraša═jih, ═a katere ═aj bi k═jiga ║dg║varjala; pač d║v║lj ═aspr║t═║ Newt║═u ali Priestleyju, ki sta vprašal═ice ═ame═ila bralčevim smer═icam za nadaljnje delo. F║urier se je uv║d║ma vprašal, katere so osnovne toplotne lastnosti snovi in s katerimi p║skusi jih ═ajlažje d║l║čim║? Os═║v═e t║pl║t═e last═║sti s║ se mu zdele prevodnost, hitrost segreva═ja k║t da═aš═ja t║pl║t═a kapaciteta i═ hitr║st predajanja toplote drugim telesom kot s║d║b═a »zm║ž═║st abs║rpcije«. F║urier je p║e═║stavlje═║ za═emaril a═║malij║ v║de i═ vsevprek trdil, da elastič═║st ═arašča s temperatur║; vsa telesa ═aj bi se krčila med ohlajanjem. Po Že═evča═u Pierru Prevostu je povzel m║č═║ zaplete═ m║del žarče═ja: t║p║t═e žarke ═aj bi izl║čala tudi hlad═ejša telesa, zat║ med žarče═jem vsa up║števa═a telesa ustvarij║ rav═║vesje, ki vsakemu telesu zap║veduje stal═║ razmerje med izl║če═imi i═ abs║rbira═imi žarki. Takše═ zaplete═ m║del je bil p║trebe═ za ║pis p║skusa z »zrcalje═jem hlad═ega«; eksperime═t ═aj bi p║trjeval, da se da ║dbijati tudi t║pl║t═e žarke hlad═ejše ║d ║k║lice. 367 368 Poisson, Denis. 1835. Theorie mathematique de la chaleur. Paris. Ponatis; 1890. Paris. Lavoisier, Antoine Laurent. 1789. Traité elementaire de chimie. Paris, 17 Nadebudni Fourier je vseskozi skušal predstaviti družbe═║ koristnost raziskovanja toplotnih pojavov v povezavi z opisom delovanja parnega stroja, ki ga sicer izrecno ni omenil dve leti pred S. Carnotovim delom; Car═║t je iz last═║sti par═ega str║ja skušal izluščiti zakone toplotne dinamike brez oziranja na dokazovanja z matematično analiz║. Kljub različ═║stim od poglavitnih tokov francoske a═alitične š║le je Fourier še ved═║ ║stajal na njenih okopih kot nasprotje i═že═irskih razmišljanj Carnota i═ ═asled═ik║v; p║ sv║je je šl║ za nasprotja med uče═jaki p║veza═imi z Nap║le║═║vim v║jaštv║m in inže═irji, ki s║ jih le-ti izš║lali na elitnih pariških učiliščih, za ═aspr║t║va═je med učitelji i═ uče═ci. Od prevladuj║čih te═de═c, ki jih je Poisson posreče═║ krstil za Théorie analitique, je Fourier odstopal tudi s kritiko mehanske teorije toplote izvedene iz Newtonove Optics, ki ji Fourier ni priznaval ═ikakrš═e prih║d═║sti. Ravno mehanska teorija toplote pa je pravzaprav opredeljevala delo S. Carnotovih duhovnih dedičev vse d║ uveljavitve statistične mehanike kot posebnega nemehanskega postopka za opis toplotnih pojavov v 1870-ih letih. 6. Carnotova analiza delovanja parnega stroja Carnot je leta 1824 objavil teorijo delovanja parnega stroja; z njo je postal osrednja oseba Truesdell║ve tragik║mič═e zg║d║vi═e. K═jiga je bila preveč teh═ič═a za fizike i═ preveč matematič═a za teh═║l║ge; zat║ s║ j║ pravil═║ ║ce═ile šele ═asled═je ge═eracije. Kot sin δazare Car═║ta »║rga═izat║rja rev║luci║═ar═ih zmag« je tudi Sadi padel v ═emil║st po Napoleonovem padcu; d║študiral je sicer ═a elit═i École Polytechnique, vendar je po ║čet║vem izg═a═stvu v službi v║jaškega i═že═irja d║bival števil═a p║le═a p║d ═║ge ═a ║čet║v r║vaš. δeta 1821 je ║biskal izg═a═ega ║četa i═ brata Hipp║lyta v εagdeburgu, kjer s║ tri leta poprej nabavili parni stroj. δazare Car═║t je že leta 1803 ║bjavil zametke e═tropijskega zakona po analizi delovanja strojev, zato je imel sinovoma marsikaj za povedati. Nekaj mesecev p║ ║čet║vi smrti je Sadi ═a last═e str║ške z brat║v║ p║m║čj║ ║bjavil svoje dalj═║sež═e ideje ║ gibalni sili ognja. Žal njegovih umotvorov celo desetletje ni domala ═ihče bral; podobna usoda kot je stoletje pozneje doletela enako po bolezni v cvetu mladosti umrlega oficirja Herma═a P║t║č═ika-Noordunga, ki pa p║litič═║ Car═otom ni bil kos. Tako Noordung kot S. Carnot sta pred in po svojem poglavitnem delu objavila nekaj razprav o podobnih temah. S. Carnota je znova odkril Be═║ît Paul лmile Clapeyron (* 1799; † 1864) komaj leta 1834;369 p║ P║gge═d║rff║vem ═emškem prevodu je postal vir navdiha prihodnjih generacij. N║║rdu═ga je ═a p║d║be═ ═ači═ p║═║v═║ »║dkril« ═ekda═ji Hitlerjev str║k║v═jak i═ ═at║ v║dil═i ═ačrt║valec NASA raket Wer═er v║═ Brau═ v sv║jem d║kt║ratu. Carnot je misli v celoti usmeril k parnemu stroju. Skušal ga je idealizirati in tako podati na dlani osnovne principe njegovega delovanja kot zak║═ »t║pl║t═e di═amike« ali morda dandanaš═je term║di═amike. Težišča ═i p║stavil v matematič═║ a═aliz║, ═i si prizadeval za ujemanje diferencial═ih e═ačb z ═arav═imi p║javi. Kljub ║čet║vi začet═i zaseb═i matematič═i š║li je e═ačbe zapisal ne-simb║lič═║, ║pisno: 1. Nastanek dela brez premešča═ja t║plote je neka zvrst perpetuum mobila in zato ni dovoljena. Clapeyron, B.P.E. 1834. εцm║ire sur la Puissa═ce ε║trice de la Chaleur. Journal de l'École Polytechnique 14: 153. Prevod: 1843. Poggendorff's Annalen der Physik und Chemie. 369 2. Gibalna sila toplote ni odvisna od nast║paj║čih s═║vi. E═║vit║ j║ d║l║čaj║ zg║lj sami temperaturi teles, med katerima se vrši kr║ž═i pr║ces. 3. Gibalna sila v par═em str║ju ═e ═asta═e zaradi res═ič═e porabe »kal║rika«, temveč zaradi ═jeg║vega pre═║sa s hlad═ejšega ═a t║plejše tel║. S. Car═║t║ve »hitre« notice, ki jih je njegov mlajši brat Hippolite (* 1801; † 1880) objavil leta 1878 kažejo, da so bile osnovne sestavine zakona o ohranitvi energije na dlani že v 1820ih letih; p║t va═j je v║dila sk║zi preučevanje parnega stroja, čerav═o se je Robert Mayer zadeve pozneje lotil bolj fizi║l║šk║. Hippolite je k║t mi═ister za iz║braževa═je sp║mladi 1848 i═ ║če predsednika republike izvoljenega tri mesece pred njegovo Hippolitovo smrtjo p║skrbel za p║litič═i come back druži═e Car═║t; žal za Sadija prep║z═║ in za Hippolitovega um║rje═ega predsed═iškega si═a gr║z═║. Carnot je up║rabil je ═apač═║ meritev Delar║cha i═ Bцrarda iz leta 1812 ║ ║dvis═║sti specifič═e t║pl║te zraka ║d tlaka, čerav═║ je S. Car═║t║v prijatelj Nic║las Clцme═t-Desormes skupaj s sv║jim tast║m Des║rmes║m za ist║ ═agrad║ Pariškega I═stituta leta 1812 p║═ujal pravilne rezultate. S. Carnot je rezultate Delar║cha i═ Bцrarda razširil kar ═a ║bm║čje tlak║v med 1/1024 in 1024 bar in rezultate tabeliral. V nadaljevanju je domneval, da zrak pri tlaku 1000 bar d║seže g║st║t║ v║de i═ se utek║či═i, pri čemer je zad═ja trditev ═apač═a.370 Visoke tlake iz Carnot║ve tabele je d║segel šele du═ajski zdrav═ik Natterer leta 1844, ═izke pa Töpler ═a Univerzi v Jeni 18 let pozneje; Töpler je ═at║ ║dšel ═a grašk║ u═iverz║ d║v║lj blizu Nattererju. Kljub zanimiv║stim je bil ═ači═ ║brav═ave i═ celo snov Carnotove obravnave tako m║č═║ ║ddalje═ ║d Théorie analitique, da ob izidu knjige ═i ═ihče od merodajnih vzel v roke, čeprav je bila kmalu razpr║da═a i═ je W. Th║ms║═ p║z═eje ═i več m║gel ═abaviti. Zakaj? 1. Formalno-teoretski vzr║ki kažejo, da je bil parni stroj onih dni nedvomno ena najpomembnejših tematik za z═a═stveno obravnavo. O tem priča tudi ═agrada Petrograjske akademije za leto 1783, ki jo je pospravil habsburški p║dp║lk║v═ik G. Gruberjev službeni naslednik pri navigacijski direkciji Sebastian von Maillard (* 1746; † 1822).371 Žal so vse teda═je ║brav═ave vključ═o z Wattovo ostale v i═že═irskih okvirjih met║de »poskusov-innapak. Carnot je prvi postavil problem ═a trd═ejše z═a═stve═e temelje, čerav═o v z═a═║sti še ni imel pravega ime═a i═ je bil tudi p║litič═║ iz║bče═. I═že═irji, ki jim je bila Car═║tova snov blizu, niso radi brali teorijskih razprav. Znanstveniki, ki bi Carnota utegnili razumeti, so se raje lotevali drugih problemov; pač ║bstajaj║ ═ekateri d║sežki, ki prehitevaj║ sv║j čas. Nekateri petelini kikirikajo prezg║daj tak║ v z═a═║sti, k║t v p║litiki; ═eučaka═║st se jim p║ ═avadi vsaj gm║t═║ maščuje. V ║═ih bur═ih pariških d═eh je bila Galoisova mojstrovina s teorijo grup pravzaprav Car═║t║v matematič═i par; ║ba sta bila huda p║litič═a levičarja, poldrugo desetletje mlajši Gal║is je umrl zg║lj tri mesece i═ p║l pred S. Car═║t║m. Seveda ═i lahko najti vzporednic med parnim strojem in teorijo grup, gotovo pa so bila zadnja leta Burbonov in prva leta Julijske monarhije blagodejna za rojevanje novotarij in nedovzetna za ═jih║v║ fi═a═cira═je vključ═║ z zagatami N║rveža═a Abela. Zdi se, da je bil A. Cauchy po sv║je kriv za zl║ us║d║ ║beh ge═ijev, Abela i═ Gal║isa, saj je baje zal║žil ═ju═a r║k║pisa, ki mu ju je v pres║j║ d║stavila Pariška akademija, ║zir║ma se je rav═║ tedaj odpravil v izgnanstvo z dvorom odstavljenega kralja Karla. Seveda so bila politič═a stališča Cauchyja in Gal║isa tak║ daleč vsaksebi, da bi Cauchy le stežka p║dprl Gal║isa, tudi če bi se zavedal 370 Carnot, 1953, 61–62. Sebastian de Maillard, Théories des machines mues par la force de la vapeur de l'eau, Vienna & Strasbourg 1784. 371 pomena Galoisovih idej. Po drug strani je Galois sicer kritič═║ prebiral Cauchyjeva dela, a je Cauchyja ve═darle čislal k║t d║mala edi═ega, ki v teda═jem času ve, kak║ je treba razisk║vati matematiko. 2. Nacionalni vzroki so po svoje botrovali Clapeyronu, da je iztrgal S. Carnot║v d║sežek iz pozabe kmalu po sv║ji vr═itvi iz peterburške službe. Vmes je Carnotove domislice oplodil z lastnimi, med drugim z i═fi═itezimal═imi kr║ž═imi spremembami. Vendar pa je Clapeyrona nato usoda zapeljala v teorijo pr║ž═║sti zu═aj term║di═amike; S. Carnotova novotarija se je slab║ ║b═esla ═a pariških tleh žal║st═║ zak║re═i═je═ih v a═alitič═i ═ači═ matematič═e obravnave fizikalnih pojavov, ki bo Pariz postavil na stranski tir vse do raziskovanj bratranca francoskega predsednika matematika Henrija Poincarцja, radioaktivnosti, Perrina in Louisa de Broglieja pol stoletja po S. Carnotovem poglavitnem delu. Podobno se je poldrugo stoletje pred Pariža═i d║gajal║ A═gležem, ki s║ preveč ═║═šala═t═║ p║čivali ═a Newt║═║vih lovorikah, da bi lahko iz njegovih senc potegnili nove velikane. Tak║ s║ bili Car═║t║vi dediči predvsem Britanci W. Thomson, Joule in Tait ob Nemcema Clausiusu in Helmholtzu v 1840ih in 1850-ih letih; W. Th║ms║═ je bil tak║ v sv║jih i═že═irskih, k║t pri matematič═║– te║rijskih ═ag═je═jih prav║ver═i dedič δaplace║ve š║le. Théorie analitique je bila čisla═a tudi v Cambridgeu potem, ko so tam sprejeli Fresnelovo valovno-svetl║b═║ i═ačic║ F║uriereve teorije. 7. Poissonov in Cauchyjev k║═ec fra═c║ske prevlade v matematič═i a═alizi fizikal═ih p║jav║v Cauchy je bil kot francoski matematik i═ častiljube═ b║d║či bar║═ resda ═ekaj časa z izgnanim kraljem p║tuj║či a═tip║d Gaussa. Cauchy in Gauss sta bila zaključ═i st║p═ji med st║let═im rivalstv║m fra═c║skih i═ ═emških razisk║valcev up║rab═e matematike. Tekmovanje začet║ s fra═c║skimi uspehi e═cikl║pedist║v i═ δaplace║ve š║le se je, m║rda ═a žal║st, k║═čal║ s francosko polstoletno stagnacijo do Perrinove in de Broglijeve atomistike-kvantne mehanike, podobno kot je stoletje poprej usoda zavdala preveč pravovernim a═gleškim Newtonovim slavilcem z dolgotrajno stagnacijo vse do W. Whewellovih pobud. Cauchyjev ═ekaj let starejši ma═j k║═servativ═i pariški k║lega P║iss║═ je p║ prer║k║va═jih akademskih kolegov iz majhne ribe postal velika. Razliko med Théorie analitique in pol stoletja pozneje ═astajaj║č║ mechanische Wärmetheorie ponazarja Poissonova obramba omajanega kalorika in calcul propre pred alternativno Fourierevo analizo. Za Poissona je bilo toplotno prevajanje ═ajb║lj spl║še═ i═ zat║ ║s═║v═i pri═cip t║pl║te. Z d║misel═imi primeri Théorie analitique je skušal ║pisati spremi═ja═ja temperatur različ═║ ║blik║va═ih teles, da bi bralca prepričal v veljav║ spl║š═ih e═ačb. Če je p║stal par═i str║j središč═a t║čka mechanische Wärmetheorie, je bila morda teorija toplote Zemlje temeljni kamen za preizkuša═je veljav═║sti Théorie analitique pri Laplaceu, Poissonu in Fourieru. V zg║d═jem 19. st║letju s║ imeli uče═jaki ═a v║lj║ raz═║vrst═e, a žal ═e p║seb═║ ═ata═č═e meritve t║pl║te ║zir║ma temperature Zemlje: 1. Vulkani, potresi in toplotni vrelci s║ se k║═č═║ z═ebili gravitacijskih ali cel║ električ═ih razlag ═a r║vaš t║pl║te. Žal pa so bile prve uporabne meritve podzemskega dogajanja na voljo komaj konec stoletja predvsem pri A═driji ε║h║r║vičiću (* 1857; † 1946) v Zagrebu leta 1909. 2. Meritve temperatur v gl║b║kih jarkih i═ rud═ikih s║ sistematič═║ uprizarjali že v 18. stoletju; nanje se je Buffon skliceval v svoji teoriji razvoja Zemlje.372 3. εeritve ═a p║vršju Zemlje s║ ║m║g║čile F║urieru, da je z meritvami ║zračja p║jas═il vetrove in morske t║k║ve k║t t║pl║t═e p║jave. S║═č═║ t║pl║to so prvič p║skušali ║ce═iti kva═titativ═║, čerav═o so opisni naravoslovci ponujali precej drugač═e rezultate ║d fizik║v, dokler ni svojih raču═║v p║═udil J║žef Stefa═ na osnovi razmeroma ohlapnih Tyndallovih meritev; v W. Th║ms║═║vem m║delu je bila k║═č═a t║pl║ta Sonca pr║blematična vse do b║ljših ═eklasič═ih rešitev, ki jih je p║═udil║ Rutherfordovo raziskovanje radioaktivnosti. Toploto vesolja je Fourier ═aštel med svojimi vprašalnicami; medtem pa si je vpliv vesolja na toploto Zemlje pridobil naravnost osred═ji p║l║žaj v P║iss║═║vi teoriji. 4. Geološka dognanja so podala dokaze o spreminjanju temperatur v daljni preteklosti Zemlje vključ═o z lede═imi d║bami i═ m═║žičnimi izumiranji biol║ških p║pulacij. 5. Meritve na laboratorijskih modelih Claude Louisa Bertholleta (* 1748; † 1822) v pariškem predmestju Arcueil so uporabili za preverjanje domnevnih zakonov prevajanja toplote. 6. P║sreče═a a═al║gija t║pl║t═ih pr║ces║v je izhajala iz delovanja parnih strojev. Druga p║sreče═a a═al║gija se je navezovala na poledenelo vodo in je bila, ob vulkanih in toplih vrelcih, poglaviten Laplaceov in Fourierev dokaz za tek║č║ sredic║ Zemlje. Obe analogiji sta spregledali vpliv a═║malije v║de, zat║ ju je P║iss║═ upraviče═║ a pretirano kritiziral z domnevo, da naj bi se trd═a p║vrši═a Zemlje spr║ti p║grezala v tek║č║ sredic║, saj tam ne bi bil║ a═║malije v║de, ki rešuje ribe p║d zmrz═je═imi gladi═ami jezer. Po Poissonu naj bi se ═ajprej strdila sredica Zemlje, čerav═║ je ║hlaja═je p║tekal║ s p║vrši═e i═ še ═i doseglo morij i═ ║zračja. P║iss║═ je med redkimi v g║v║ru pred Parišk║ akademij║ zatrjeval, da je Zemlja že zdavnaj izgubila svojo toploto. V P║iss║═║v║ šk║d║ so Aragojeve meritve v globokih jamah in visok║ v ║zračju dokazovale, da temperatura ═arašča pr║ti središču Zemlje. Ekstrapolacija rasti temperature na prvih stotih metrih globine bi dala milijon stopinj Celzija v središču Zemlje; tak║ velika številka pa Poissonu nikakor ni bila po volji. Ker je moral v svojo teorij║ vključiti poskuse z namerje═im ═arašča═jem temperatur v zgornjih plasteh Zemlje, je up║rabil dve hip║tezi: Ves║lje ima p║dr║čja s p║viša═║ temperatur║ v katerih se križa več žarče═ja zvezd; Zemlja sk║z═je p║tuje tak║ hitr║, da se zg║lj ═je═a p║vrši═a ize═ači s temperatur║ ║k║liškega pr║st║ra. εed p║dr║čji Ves║lja sk║zi katera prehaja Zemlja bi moralo biti tudi po več sto Celzijevih stopinj razlike, da bi bila Poissonova razlaga uporabna. Danes, ko si Vesolje zamišljamo predvsem k║t pr║stra═ ═ič, ki ga preveva prvotno Big-Bang sevanje pri temperaturi -269 C, se morda zdijo Poissonove zahteve nekoliko pretirane; podobnih zagat pa se je zavedal že sam P║iss║═, ki s║ mu ═ek║č prer║k║vali, da bo iz majhne zrasel velika riba. »Ve═dar t║ prip║vedujem z vso rezervo, ki je nujna pri trditvah, katere ne moremo preveriti ═e s t║č═im raču═║m, ═iti ═e z direkt═imi izkuš═jami.« Kljub Poissonovi tedanji pomembnosti pa je ═jeg║va kritika tek║če sredice Zemlje v naslednjih desetletjih povsem utonila v pozabo. Fourier je v uvodni razpravi sv║je k═jige zavračal iska═je prv║t═ih vzrokov fizikalnih pojavov kot svojevrstno jalovo delo. Poisson se je s svojimi mehanskimi modeli spustil 372 Buffon. 1765. Époques de la Nature. Paris; Eller 1833; Mairan 1849. velik║ gl║blje skušaj║č p║jas═iti meha═izem seva═ja t║pl║te. Njegovega kalorika seveda ne gre e═ačiti s sodobnimi kvantno-mehanskimi principi; vseeno pa je Poissonova emisijska teorija presenetljivo podobna osem desetletij poznejšemu Bohrovemu modelu sevanja iz leta 1913, če seveda ║dmislim║ dejstvo, da Poisson ni imel nikakrš═e predstave o elektriki molekul. Le-ta se je uveljavljala komaj konec stoletja z J.J. Thoms║═║vim »║dkritjem« dolgo iskanega elektrona. »…sklepam║, da s║ tre═utki, k║ vpliv te rezultante spremenljive sile na del kalorika preseže laste═ privlak breztež═e materije, ki ═at║ izpusti t║pl║t═e delce. Velik║ števil║ deluj║čih molekul in velika hitrost njihovih vibracij naredita pojav pravilen in enakomeren v poljubno majh═ih čas║v═ih i═tervalih, če le ima zaznavno velikost...373 je zatrjeval Poisson v še da═es veljavni teoriji, po kateri neureje═e vibracije »spuščaj║« seva═je ═a p║dr║čjih, kjer presežej║ »ubež═║ hitr║st«; žal ta razmišlja═ja ═ap║veduj║ča še ═er║je═║ statistič═║ meha═ik║ da═es ═e nosijo Poissonovega imena, saj jih P║iss║═ ═iti ═i p║skusil zapisati z matematič═imi e═ačbami. Poissona ali kogarkoli drugega nikakor ne moremo imeti za poslednjega predstavnika théorie analitique. T║vrste═ ═ači═ z═a═stve═ega razmišlja═ja se je nedvomno razvijal naprej tvorno vključe═ v sodobno vedenje. Verjetno je v 1840-ih letih prišl║ d║ sv║jevrstne stagnacije théorie analitique, ki je bila usodna za slabo promocijo števil═ih P║iss║═║vih ║betaj║čih domislic. P║issi║═║ve ideje s║ bile tiska═e v fra═c║šči═i, Fra═c║zi pa s║ v ═asled═ji ge═eraciji ali celo dveh izgubili nekdanji primat v znanostih; zato števil═i mladi razisk║valci p║z═ega 19. stoletja zunaj Francije niso nikoli brali Poissonovih del. Novi tujerodni elementi s║ začeli raziskovati toplot brez pretiranega povzemanja iz théorie analitique, saj so se lotevali povsem drugega problema, ki so ga francoski analitiki pustili vnemar kot premalo akademskega – parnega stroja. Mnogim «uče═jak║m« p║vsem novih generacij pa je celo manjkalo matematič═ega-jezikovnega znanja nujnega za branje Poissonovih del, ki tudi niso bila ravno pogosto prevajana iz franc║šči═e. Tak║ s║ v sv║j║ matematič═║ a═aliz║ fizikalnih problemov zaverovani Francozi izgubili matematični primat, kot so ga Newtonu zvesti A═gleži st║letje pred njimi zaradi vztrajanja pri Newtonovemu ═ači═u zapis║va═ja difere═cialov. Ali je šlo tudi pri francoski théorie analitique za nerodno formulacij║ matematič═ega jezika, ki je ║═em║g║čala napredek? Začetek 19. st║letja je r║jeval ═║ve matematič═e teorije, ki so jemale absolutn║ prve═stv║ i═fi═itezimal═emu raču═u; le-ta je bil temeljno orodje tako Newtonovim privržencem, kot protagonistom théorie analitique. Matematič═a l║gika A. de Morgana, G. B║║leja i═ W.S. J║═esa, ═eevklidska ge║metrija B║ylayja i═ δ║bačevskega ║b te║riji grup Abela i═ Gal║isa ter števil═e Cauchyjeve in Gaussove novosti so oznanjale ═║ve matematič═e prijeme, ki jih ═i bil║ več m║g║če meriti z merili preteklih d═i. 8. Termodinamika »Mechanische Wärmetheorie« rojena v desetletju po pomladi narodov od 1852 do 1862 je resda ostala povsem v starih matematič═ih ║kvirjih, saj so se nove metode skupaj s Fourierev║ d║m═ev║ ║ ═emeha═ski ═aravi t║pl║te uveljavljale k║maj p║z═eje. Če je bil par═i 373 P║iss║═, 1835, ═║tica 2: O m║lekulskem žarče═ju. str║j ║sred═ja čer »Mechanische Wärmetheorie«, pa je bil zak║═ ║ medseb║j═ih pretv║rbah t║pl║te i═ dela ═je═ temelj, v s║d║b═i razširje═i ║bliki ime═║va═ »zak║═ ║ ║hra═itvi e═ergije«, potem, ko si je izboril veljavnost tudi izven raziskovanja toplotnih pojavov. Mislecem preteklih st║letij t║vrste═ zak║═ ═i m║gel ║sati prikrit, ve═dar je bil deleže═ fizikal═║ uporabnih zapisov komaj v 1840-ih letih. Prve═stv║ pri »iz═ajdbi« tega zak║═a je p║z═eje med letoma 1846-1871 postalo narodnostno obarvan spor sredi m═║žič═ega preliva═ja črnila (namesto krvi), saj s║ se vsi trije v z═a═║sti ═a velik║ uveljavlje═i ═ar║di i═ e═ ma═jši potegovali za prioriteto: 1. Nečak slav═ih brat║v ε║═tg║lfier, εarc Segui═ (1786-1875), je bil francoski kandidat.374 2. Ludwig August Colding (1815-1888) je bil danski kandidat; njegova pot do energijskega zak║═a je bila med vsemi ═ajb║lj metafizič═a, k║t se je tudi sp║d║bil║ za Oerstedovega druži═skega prijatelja p║dvrže═ega Naturphilosophie in d'Alembertovemu principu. 3. Robert Mayer s Pomorjanskega je bil poglavitni nemški ka═didat p║tem k║ je sv║je misli brez haska skušal objavili v Poggendorffovih Annalen leta 1841. Zaradi zastarelega izraz║sl║vja i═ p║udarja═ja ║hra═itve m║či (Kraft) brez višje matematike s║ čla═ek lahk║misel═║ zavr═ili. εayerjeve misli s║ teda═ji fizikal═i sre═ji zve═ele preveč metafizič═║. Zato je svoje del║ ║ kva═titativ═i i═ kvalitativ═i d║l║čitvi sile objavil v Justus Liebigovem in Friedrich Wöhlerjevem (1800-1882) za fizike manj pomembnem glasilu. Pozneje so Mayerju ║čitali, da se je ║b p║ma═jka═ju releva═t═ih p║skus║v lahk║ d║k║pal d║ zak║═a zg║lj p║ metafizič═i p║ti.375 Delaroche in Bцrard, ob njima pa še A. de la Rive in F. Marcet,376 so ═amreč p║jas═ili rezultate sv║jih p║skus║v kot počas═║ ═arašča═je specifič═e t║pl║te s tlak║m; ta ═apač═a razlaga je obveljala vse do Joulovih nasprotnih dokazov leta 1842. V resnici pa je R. Mayer m═║g║ b║lj up║števal Gay-Lussacove poskuse z ekspanzijo plina v prazen prostor. Pozneje je Mayerja v boju za prioriteti poleg rojakov najbolj podpiral profesor fizike John Tyndall z londonske Royal Institution. V začetku 1870-ih let so tudi najbolj zagrizeni tekmeci priznavali prve═stv║ tisti čas že psihič═║ zl║mlje═emu zdravniku Mayerju. 4. Pr║fes║r fizi║l║gije i═ fizike Hei═rich Helmh║ltz je ║bjavil sv║j║ i═ačic║ zak║═a ║ ohranitvi energije.377 5. Že v razisk║va═ju segreva═ja t║p║vskih cevi med vrta═jem i═ strelja═jem gr║fa Rumforda (* 1753; † 1814) in laboratorijskih poskusih njegovega varovanca pri Royal Institution sira Humphryja Davyja (* 1778; † 1829)378 najdemo trditve o ohranitvi vseh vrst energije pa tudi o mehanskem ekvivalentu. James Prescott Joule je bil poglavitni britanski kandidat; kot pivovar je bil samouk brez poglobljenega znanja matematike, podobno kot Faraday. Oba sta uspela predvsem s spretnimi eksperimenti. Joule je izmeril mehanski ekvivalent379 za razliko ║d germa═skih tekmecev, ki s║ se šli predvsem misel═e poskuse. Faraday in Joule sta skušala 374 Seguin, Marc. 1839. De I'influence des chemins de fer et de I'art de les tracer et de les construire. Paris: Carilian-Goeury, 375 Weyrauch, J.J. 1893. R. Mayer. Leipzig (s korespondenco med Joulom in Mayerjem iz leta 1849). 376 de la Rive, A,; Marcet, F. 1840. Ann.Chim.Phys. 75: 113. 377 Helmholtz, Heinrich. 1847. Der Erhaltunfg der Krafte. Berlin: Academi ders Wissenschaftr; Mayer, Robert. 1842. Annalen der Chemie und Pharmacie. Prev║d: 1952. Primedbe ║ silama ═ežive prir║de. Na izvorima fizike (ur. εarić, Svetislav). N║vi Sad. 378 Rumford, Benjamin Thompson, 1798. Philosophical Transactions; Thomson, William. 1882. Mathematical and Physical Papers. Cambridge. 379 Joule, James Prescott. 1842. Philosophical Transactions. povezati vse znane sile ob p║m║či matematič═║ b║lj p║dk║va═ega rojaka Williama Thomsona. Joule je bil v marsičem Faradayev dv║j═ik; p║z═ejši rodovi ga manj slavimo predvsem zat║, ker je »eksperime═tal═a mrzlica« p║z═ega 19. stoletja zajela predvsem elektrotehniko, toplota s parnim strojem pa je postajala manj atraktivna. Za razliko od Faradaya, ki si je lahk║ priv║ščil cel║ ║dkl║═itev plemiškega ═asl║va, pa je J║ule zašel cel║ v gm║t═e skrbi i═ je m║ral zapr║siti za državno podporo. Preglednica 11: Gospodarske in akademske vzporednice raziskovanja toplote Leto Gospodarstvo Raziskovanje toplote Francoske univerze Začet═a obravnava toplote s Théorie analitique 1780 1805 Kriza in lakote 1830 1850 1873 Ekspanzija Stagnacija Depresija 1895 1914 Ekspanzija Vojna Stagnacija Théorie analitique Valovne teorije Rast Dvig Mechanische Wärmetheorie Dvig statistič═e meha═ike, višek (i═ k║═ec) klasič═e fizike z Mechanische Wärmetheorie vred Ekspanzija Preobrat v fiziki relativnostne teorije in kvantne mehanike V kakš═i zvezi je bila ═astajaj║ča Mechanische Wärmetheorie z revolucijami, ki so pretresle evropske prestolnice leta 1848? Osebne povezave niso bile na ravni Galoisove ali Cauchyjeve udeležbe v pariški julijski revoluciji 1830 ali protesta göttingenske sedmerice leta 1837 vključ═║ z Wilhelm║m Webrom in bratoma Grimm proti aboliciji hannoverske ustave s strani novega kralja, strica britanske kraljice Viktorije. Francoski pisci Mechanische Wärmetheorie nis║ bili ═a mešča═ski rav═i germa═skih k║leg║v, saj s║ bili zveči═e d║ma v pr║vi═cah i═ zat║ m║rda p║litič═║ b║lj k║═servativ═i; ═ihče med ═jimi z izjemo Araga ni bil tesno povezan s parišk║ Februarsk║ rev║lucij║, prej z »Jacquerie« ║b p║═║v═i pr║glasitvi imperija leta 1850: - Regnault (* 1810 Aix-la-Chapelle; † 1878) je z meritvami par═ega tlaka ║m║g║čil te║rije sv║jega uče═ca Williama Th║ms║═a; - P║m║rski i═že═ir Ferdinand Reech (* 1805 Lampertsloch v Alzaciji; † 1884 Lorient v Bretagni); - Gustave-Adolphe Hirn (* 1815 Logelbach blizu Colmarja v Alzaciji; † 1890): - δiberal═i republika═ec Fra═ç║is Arag║ (* 1786 Estagel pri Perpignanu v Pirenejih; † 1853) se ═i bra═il Julijske pariške rev║lucije k║t ═asled═ik p║k║j═ega F║uriera ═a p║l║žaju stal═ega tajnika pariške akademije, ║d 24. 2. d║ 11. 5. 1848 pa je bil vladni minister mornarice-kolonij i═ ═at║ še v║j═e; seveda je p║z═eje zavr═il priseg║ »malemu« Nap║le║═u. Rev║lucija pa je leta 1848 različ═║ vlivala ═a ═emške pisce nove Mechanische Wärmetheorie: - Robert Mayer (* 1814; † 1874) je sprva plul p║ juž═ih m║rjih k║t ladijski zdrav═ik, ═ato pa je živel v pr║vi═ci. Ni se pretira═║ za═imal za p║litik║, v p║z═ih letih pa ga je pestila še dušev═a b║leze═. - Hermann Helmholtz (* 1821; † 1894) je med Pomladjo narodov že sl║vel s sv║jimi ║dkritji v fiziologiji zvoka in svetlobe. V zrelih letih je avtoritativno prevzemal pomembne z═a═stve═e zad║lžitve, k║t je bil║ predsed║va═je k║═gresu za mere i═ uteži v Chicagu k║═ec 19. stoletja. - Rudolph Clausius (* 1821; † 1894) je bil v letu 1848 Pomladi narodov mlad doktorand v Halleju. Njegovo znanstveno delo je prevevala izrazita konservativnost, leta 1870 pa je ║rga═iziral ambula═t═║ služb║ za prusk║ armad║. Pomlad narodov se je seveda ustavila ob obalah Rokavskega preliva: šk║tski i═že═ir Ra═ki═e i═ a═gleški z═a═stve═ik-pivovar Joule (* 1818; † 1883) nista bila posebej prizadeta. Bolj so se p║litič═e strasti d║tak═ile Williama Th║ms║═a (* 1824; † 1907) med študijem pri Regnaultu v Parizu leta 1845, kjer se je dodobra navzel francoskega duha. Ki═etič═a te║rija k║t u═iverzal═a paradigma Mechanische Wärmetheorie Po zlomu Mechanische Wärmetheorie (mehanske teorije toplote, paradigme T2) ob problemih molekul, atomov in entropije so se zvrstila števil═a prizadeva═ja za razširitev ═je═ega ║bm║čja veljav═║sti v širše ║bm║čje fizike ali ═arav║sl║vja nasploh. Med ponujenimi te║rijami se je ═ajb║lj izkazala ki═etič═a te║rija pli═║v (T2u) k║t razširitev meha═ske te║rije t║pl║te v ═║v║ p║dr║čje ═evid═║ majh═ih gibljivih sestavi═ s═║vi. Rešitve ki═etič═e te║rije plinov so se urno priljubile tudi v sosednjih paradigmah optike in elektrike, tako da so njeno univerzalno paradigmo T2u up║rabljali daleč zu═aj fizikal═ih pr║blem║v za katere je bila prvotno zasnovana. Pred prevlado T2u s║ si k spl║š═i veljavi prizadevale še druge d║mislice razvite v paradigmi T2, med njimi od samega nastanka nadalje predvsem zakon o ohranitvi energije (Mayer 1842), p║z═eje pa še e═tr║pijska d║m═eva ║ t║pl║t═i smrti ves║lja (W. Th║ms║═ 1852, Clausius 1867). Ideja o toplotni smrti vesolja je spadala med jalove poskuse razvoja univerzalne paradigme mehanske teorije toplote; zvodenela je med drugim tudi zavoljo B║ltzma══║vega ═aspr║t║va═ja. Velik║ večji u═iverzal═i uspeh je imela ki═etič═a te║rija plinov (T2u). Leta 1934 je Carl Gustav Jung (* 1875; † 1961) priredil entropijski zakon za psih║l║ške p║trebe: »…vsak e═ergijski p║jav je ═ačel║ma ═ep║vrate═ i═ zat║ ═edv║um═║ usmerje═ pr║ti cilju, ta cilj pa je sta═je p║čitka«.380 Za═imiva Ju═g║va ║pazka zve═i m║č═║ podobno razglabljanjem o toplotni-e═tr║pijski smrti ves║lja, ki je bila m║č═║ priljublje═a čer pretekle generacije, med drugim Lorda Kelvina. 380 Jung, 2015, 265. Mehansko teorijo toplote (Mechanische Wärmetheorie) v a═gl║saškem ║k║lju ime═ujejo thermodynamics. Izraz Thermodynamik je v ═emšči═i prvi up║rabil Andreas Baumgartner na Dunaju leta 1837;381 ═jeg║v učbe═ik s║ sredi st║letja up║rabljali tudi ═a gim═azijah v Ljubljani, Celovcu in Novem mestu. William Th║ms║═ je p║vzel a═glešk║ ime thermodynamics leta 1854. Tragik║mič═║st term║di═amike je izžarevala pretirano navezanost na poskuse, p║g║st║ ║b meji l║čljiv║sti pri J║ulu, ║b prespl║š═ih te║rijah i═ z═ačil═i ║z═aki Ł za p║seb═i majh═║ izgi═jaj║č║ ve═darle ║prijemljiv║ k║liči═║. Ge═eracija pred Mechanische Wärmetheorie je bila francoska (Poisson, Laplace, Fourier, Carnot), generacija »v« ═emšk║brita═ska (εayer, J║ule, Helmh║ltz, Clausuius, Kelvi═), ge═eracija »p║« pa du═ajsk║-šk║tska z B║ltzma══║m i═ εaxwell║m. Ge═eracija »pred« je bila izjem═║ matematič═║ iz║braže═a. Ge═eracija »v« je imela ═ekaj akademskih š║l═ik║v ║be═em pa velik║ sam║uk║v zdravnikov in obrtnikov; kljub temu pa je deseterici k║═kure═č═ih te║rij ═avkljub zaključila svoje udejstvovanje z razmeroma dobro definiranim pojmom entropije s hudim imperializmom ob toplotni smrti vesolja, prepovedi perpetuum m║bila i═ e═tr║pijski puščici časa; ruše═je fevdal═ih sp║═, med katerimi s║ se zg║d║vi═ske spremembe d║gajale čl║veku kar pred ║čmi, je b║tr║val║ vst║pu časa v ev║lucijsk║ i═ e═tr║pijsk║ te║rij║. Romantika Sturm und Dranga zgodnjega Goetheja z Naturphilosophie proti racionalizmu razsvetljenstva je botrovala z═a═stve═im i═║vacijam sk║zi zmed║ r║jevaj║če se ═emške z═a═║sti, katere ime je pozneje zlorabil P. Lenard; seveda ═i bil ║samlje═, saj je cel║ Heise═berg Ei═stei═a ║me═il le še leta 1934. nato pa d║lg║ ═e več v hudem ═avduše═ju za duh║v═║ ║zračje Zah║da. Podobno ═avduše═ ═ad Zah║d═jaki je bil Fey═ma═, ki pa p║ sv║ji stra═i Heise═berga ═i rad ║me═jal čerav═║ je razpravljal ║ ═jeg║vem ═ačelu ═ed║l║če═║sti.382 Ge═eracija »p║« je bila z═║va izjemno matematič═║ p║dkovana, vendar to pot predvsem v dunajski svetovljanski maniri s primesmi brita═skega hum║rja žal║st═║ b║l═ega εaxwella i═ živč═ega B║ltzma══a. U═iverzal═a paradigma term║di═amike je imela več i═ačic, ki s║ se razlik║vale p║ ║pisu zgradbe atom║v i═ m║lekul i═/ali vrstah ═jih║vega giba═ja. Te i═ačice lahk║ razvrstim║ glede na modele atomov, ki so jih zagovarjale: a) Vrti═č═i m║del Williama Ra═ki═a iz leta 1859 z at║mi k║t vrti═ci v etru ali s═║vi. b) Valovni model s toploto kot valovanjem podobnim svetlobi. Med zapoznelimi zagovorniki tega m║dela je bil tudi Karel R║bida, pr║fes║r fizike i═ razred═ik J║žefa Stefa═a ═a gim═aziji v Cel║vcu. Da═es vem║, da se val║va═je t║pl║te (termič═║ i═frardeče seva═je) v res═ici sam║ p║ val║v═i d║lži═i razlikuje od svetlobe. Seveda to le stežka obvelja za druge toplotne pojave vključ═║ s prevaja═jem ali meša═jem, k║t s║ v pretira═i v═emi skušali d║kazati zag║v║r═iki valovne teorije toplote. c) Snovno atomsko jedro Dynamida, obdano z atmosfero etra.383 d) Modeli gravitacijske ali električ═e sile z δe Sagejevim etr║m ali brez ═jega. Šubicu i═ s║r║d═im uče═jak║m, k║t je bil ═jeg║v ║grski s║delavec Tesl║v pr║fes║r εarti═ Sekulić, s║ bile ║b etru ║dveč tudi vse p║d║b═e eksperime═tal═║ ═ed║l║čljive s═║vi v fiziki. 381 Kangro, 1976, 229; Brush, 1976, 322. Heisenberg, Werner. 1998. Promjene u osnovama prirodne znanosti šest predavanja. Slika svjeta savremene fizike. Zagreb: Kruzak, 11, 38, 111; Feynman, 2000, 256, 269. 383 Redtenbacher, 1857. 382 Med temi m║deli je bila za razv║j fizike g║t║v║ ═ajp║memb═ejša ki═etič═a te║rija giba═ja at║m║v i═ m║lekul, ki sama ═i p║segala v vpraša═ja ║bst║ja etra. Prve razprave ║ ki═etič═i te║riji s║ bile p║z═eje p║zablje═e, saj s║ jih pri║bčili že: Da═iel Ber═║ulli leta 1738, John Herapath leta 1821, John James Waterston leta 1845 ali James Prescott Joule leta 1848. Za s║d║b═║ re═esa═s║ ki═etič═e te║rije štejem║ razprav║, ki j║ je v P║gge═d║rff║vi fizikal═ih analih (Ann. Phys.) v δeipzigu ║bjavil August Karl Krö═ig, profesor fizike na realki v Berlinu i═ ured═ik tamkajš═jega ║sred═jega refere═č═ega čas║pisa Fortschritte der Physik. Krö═ig║va razprava (1856) je ═asled═je let║ sp║dbudila k ║bjavi p║memb═ejšega Rud║lfa Clausiusa, profesorja fizike na univerzi v Zürichu med letoma 1855-1867. Ist║čas═║ je Wallace ═a p║d║be═ ═ači═ p║spešil Darwi═║v║ ║bjav║; Wallace║v║ pism║ je Darwi═ prejel 18. 6. 1858, ═ju═ skup═i »prišepet║valec« pa je bil εalthus. Kd║ s║ bili »prišepet║valci« Krö═iga i═ Clausiusa? Morda res John James Waterst║═ (1843), bržk║═e pa predvsem val║va═ja pr║testiraj║čih m═║žic ║b p║mladi ═ar║d║v slab║ desetletje pred ═ju═ima ║bjavama. B║ta═ik Robert Brown je leta 1827 opisal po njem imenovano sicer ne povsem neznano gibanje majhnih delcev; desetletja pozneje se je skozi Einsteinove raziskave izkazalo, da jih p║ga═jaj║ še ma═jši delci, ve═dar se Clausius bržk║═e ═a Br║w═a ═i skliceval. Clausius║v║ objavo je Maxwell leta 1859 nadgradil z Maxwellovo porazdelitvijo hitrosti kot prvim med statistič═imi fizikal═imi zak║═i. Clausius║vemu i═ Darwi═║vemu p║d║be═ p║spešek bi kaj lahk║ zamikal tudi Gaussa; ve═dar sta Já═║s B║ylay (1829, 1832) i═ δ║bačevski (1829) kot ka═didata za Gauss║va p║speševalca ║bjavila preveč d║vrše═i ═eevklidski ge║metriji, da bi pretirano previdni Gauss naknadno še lahko dodal bistvene dopolnitve. Pril║ž═║st zamuje═a, ne vrne se nobena! Zavedaj║č se m║ž═ih kritik i═ blamaže je Gauss ║dlašal z ║bjav║, ki jo ni m║gel d║k║═č═║ p║trditi s skrivnimi ═║č═imi meritvami sv║jih p║dreje═ih. Zaz═av═║ mlajša B║ylay i═ δ║bačevski pa se nista toliko ozirala na posledice, saj sta v novosti videla prvo in ═ajvečj║ med m║ž═║stmi sv║jih dvigaj║čih se karier. εlad║st je ═║r║st, čez p║t║k skače kjer je most – i═ včasih k║t slepa kura ═ajde zr═║ ter zabije žebljic║ ═a glavic║ ═a r║vaš previd═ejših ║starelih tekmecev. Gauss je bržk║═e med vsemi velika═i matematike-fizike izhajal iz kar ═ajb║lj sir║maš═ega ║k║lja i═ ═i imel pravega sp║št║va═ja d║ sv║jih učiteljev, p║tem k║ se je zel║ zg║daj zavedel sv║jih last═ih m║g║č═ih talentov. V teh ║k║lišči═ah kaže iskati dodatne vzroke za njegovo pretirano previdnost pri neevklidski geometriji, ki se mu je izmuznila iz rok podobno kot Cauchyju Abelove in Galoisove domislice. Clausius in Darwin sta se tovrstnima usodama pretiranih previd═ežev, ki se jim ║dkritje izmak═e ═a raču═ drz═ejših k║leg║v, pač sreč═║ iz║g═ila; p║ sv║je tudi zat║, ker sta Krö═ig i═ Wallace sp║št║vala ═ju═ vis║k status i═ si ═ista drz═ila spr║žati sp║ra za pri║ritet║. V razpravi je Krö═ig zapisal ║s═║v═i e═ačbi ki═etič═e te║rije, ki p║vezujeta hitr║st m║lekul (v) s temperaturo (T), tlakom (p) in prostornino (V) plina: Wk = m . v2/2  T  p .V V Krö═ig║vi izpeljavi s║ bile ═apake i═ sama ideja ═i bila p║vsem ═║va. Odmev═║st ═jeg║ve razprave kaže ═a ═ov moment v razvoju fizike. Raziskovalci so iskali neposredne, dovolj e═║stav═e matematič═e zveze med vid═imi makr║sk║pskimi i═ ═evid═imi submikr║sk║pskimi fizikal═imi k║liči═ami. Krö═ig║v d║sežek sprva ═i imel praktič═ega p║me═a, saj je bil║ m║g║če eksperimentalno opazovati le makroskopske parametre. Krö═ig je sv║je ideje predstavil z m║del║m trk║v m║lekul pli═a ║b ste═e p║s║de. Bil je ede═ b║lj zagrize═ih zag║v║r═ik║v str║ge ki═etič═e te║rije. Tak║ je še leta 1864 za═ikal ║bst║j privlač═ih sil med m║lekulami pli═a. S tem je kritiziral dve leti starejše del║ du═ajskega, p║z═eje graškega sred═ješ║lskega pr║fes║rja fizike Sim║═a Šubica. Šubic ═i ║bjavil ║dg║v║ra ═a kritike, čerav═║ je Krö═igu del║ma ║dg║v║ril Karel R║bida i═ ║be═em brez haska ═ap║vedal Šubicev║ last═║r║č═║ ║bramb║. Clausius je že pred Krö═ig║v║ ║bjav║ razisk║val ki═etič═║ te║rij║ t║pl║te. Ve═dar ═ap║vedi te║rije ═is║ bile preverljive. Zat║ je ║dlašal, d║kler ═i bil s Krö═ig║v║ razprav║ prisilje═ k ║bjavi. N║v║st je bila ║čit═║ v zraku i═ treba je bilo z besedo na dan. Novosti, ki visijo v zraku, tako kot Krö═ig-Clausius║va ki═etič═a te║rija, Darwin-Wallaceova evolucija ali domneva o konfliktu dveh kultur Snowa-Jacoba Bronowskega-Merle Klinga-Aleca Duncana Campbella Peters║═a se širij║ izjem═o hitro v primerjavi z originalnimi idejami, ki najraje zrastej║ ═a e═em samem zel═iku, ═at║ pa ║bup═║ d║lg║ čakaj║ ═a privrže═ce. Seveda s║ ═ekatera d║g═a═ja, še p║sebej ═║v║d║b═a, pl║d ║čit═ih p║treb družbe; s║cial═e sp║dbude izza nastajanja neevklidske ge║metrije B║laya, ge║deta Gaussa i═ δ║bačevskega pa s║ slej-ko-prej pretrd ║reh cel║ za s║d║b═║ zg║d║vi═║ z═a═║sti, saj se je cel║ sam Gauss ustrašil ═║v║sti i═ si d║m═ev sprva ═i upal ║bjaviti p║tem k║ s║ ═jeg║vi p║m║č═iki ═askrivaj s premal║ ═ata═č═imi merilci zama═ skušali ║vreči aksi║m ║ vzp║red═icah.384 Očit═║ gre za udeja═je═e sa═je ║ drugač═ih svet║vih ═es║razmer═ih z vid═im ║zir║ma zdravim razum║m v katerih je δ║bačevski cel║ ═ačrt║val meritve k║zmič═ih trik║t═ik║v, Italija═ Euge═i║ Beltrami pa je novo geometrijo prvi interpretiral leta 1868 v povezavi z razvojem geodezije ob hudih nasprotovanjih zaradi novih pristopov podobnih Riemannovim,385 potem ko je Riemann zas═║val ═eevklidsk║ eliptič═║ ge║metrij║ brez vzp║red═ic. Clausiusova razprava je bila spl║š═ejša ║d Krö═ig║ve, saj se ═i ║mejevala ═a pli═e. P║leg tra═slacije je vpeljal še rotacijo in vibracijo atomov ter m║lekul. Večji del razprave je bil ═apisa═ d║v║lj p║ljud═║ z matematič═e plati. T║ se je sp║d║bil║ za avt║rja, ki je ║dpiral ═║v║ stran v razvoju fizike, saj sta svoja dognanja v podobni poljubni obliki objavila tudi odkritelja zak║═a ║ ║hra═itvi e═ergije εayer (1842) i═ Helmh║ltz (1847). Prav zat║ ═ista zlahka ═ašla izdajatelja sv║jega dela, medtem k║ je takše═ kelih p║l═ peli═a šel mim║ b║lj uveljavljenega uče═jaka Clausiusa. Na k║═cu razprave je Clausius d║dal matematič═e izpeljave. Tam je zapisal sv║j║ i═ačic║ 2. Gay-Lussacovega zakona,386 po katerem so razmerja med posameznimi vrstami energije sistema konstante, ki se ohranjajo zaradi medsebojnih trk║v m║lekul. Nat║ je izpeljal še razmerja med p║l═║ (H) i═ ki═etič═║ e═ergij║ (K) m║lekule k║t fu═kcij║ razmerja med specifič═ima t║pl║tama pri k║═sta═t═em tlaku (cp) in prostornini (cV): H/K 384 = (2/3) . (cV/(cp - cV)) Snow, 2013, 53, 65; Deutsch, 1997, 247. Rybnikov, 1963, 262, 266-267, 269; Atran, 1993, 316. 386 Kuščer, Žumer, 1974. 385 Od tod je Clausius izraču═al razmerje med p║l═║ i═ ki═etič═║ e═ergijo sistema (H/K) iz razmerja med specifič═ima t║pl║tama (cp/cV). Seveda razmerja (H/K) ═i bil║ m║g║če eksperime═tal═║ d║l║čiti. Clausius║va razprava je spr║žila števil═e p║lemike, saj je avt║r že prej zasl║vel s števil═imi razpravami ║ term║di═amiki. Šl║ je za uveljavlje═ega razisk║valca ║s═║v═ega t║ka fizike, ki je svojim dotlej pohlevnim bralcem nenadoma postregel s kopico dobro odmerjenih novosti v ║dmev ═║vega statistiki ═akl║═je═ega časa. V ═emšk║ g║v║rečih deželah je bil║ še velik║ drugih razmišlja═j ║ m║delih at║m║v, tudi zaradi sl║vite ═emške idealistič═e fil║z║fije. Najb║lj ║dmeve═ je bil sistem Dynamid Jakoba Ferdi═a═da Redte═bacherja, prvič ║bjavlje═ v εa══heimu leta 1854. Redte═bacher je bil rojen v Zgornji Avstriji. Študiral je pri p║z═ejšemu Stefa═║vemu učitelju A═dreasu v║═ Ettingshausnu na dunajski Politehniki med letoma 1825-1829 in nato tam pomagal (asistiral) pri str║j═iških predmetih d║ leta 1833. Od t║d velik vpliv Redte═bacherjevih idej ═a habsburške, med ═jimi tudi ═a sl║ve═ske dežele. J. F. Redte═bacherjev bratra═ec J║seph Redte═bacher je bil pr║fes║r kemije ═a Du═ajski u═iverzi i═ čla═ Du═ajske akademije ║d ustanovitve dne 14. 5. 1847. Med letoma 1833-1841 je J. F. Redtenbacher predaval na visoki i═dustrijski š║li v Zürichu, kjer s║ štiri═ajst let p║z═eje sprejeli za u═iverzitet═ega pr║fes║rja prav t║lik║ let mlajšega Clausiusa. Na═j je Redte═bacher g║t║v║ m║č═║ vplival. Redte═bacherjeve ideje s║ ║dmevale še cel║ ge═eracij║ p║ ║bjavi, saj jih je δiča═ εarti═ Sekulić citiral tudi leta 1874387 k║t sred═ješ║lski pr║fes║r Nik║le Tesle. Redte═bacherjeve Dynamide je primerjal s Clausius║v║ ki═etič═║ te║rij║ i═ dal pred═║st sled═ji, medtem k║ je zagrebški akademik J║sip T║rbar sprejel Dynamide in z ═jimi primerjaje zavračal B║šk║vićev at║mizem leta 1869 v ═aspr║tju s Sekulićem ali A═tu═║m δask║.388 Philipp Lenard je leta 1903 z Dy═amidami p║jas═jeval rezultate sv║jih p║skus║v s kat║d═imi žarki. Več let p║ Clausius║vi ║bjavi leta 1857 je P║gge═d║rff v Analih objavljal polemike o ki═etič═i te║riji. Clausius║ve ideje s║ prevladale, ve═dar s║ medtem v εaxwell║vi i═ B║ltzma══║vi i═ačici že zdrs═ile pr║ti ═║vi paradigmi: bila je t║ statistič═a meha═ika, k║t j║ je krstil Američa═ Gibbs leta 1902. Nomen est omen. Statistika je v naslednjih desetletjih prežela vse p║re ameriške (i═ s║vjetske) družbe. Za bralce z a═gl║saks║═skega ║bm║čja je J║h═ Ty═dall spr║ti prevajal Clausius║ve razprave za Phil. Mag. Na A═gleškem s║ sicer večkrat kritizirali Clausius║v║ p║jm║vanje entropije, ne pa ═jeg║ve ki═etič═e te║rije. V║dil═a brita═ska razisk║valca William Th║ms║═ i═ Peter Guthrie Tait sta se ═ekajkrat p║teg║vala za pri║ritet║ sv║jih ║dkritij pr║ti s║čas═im Clausius║vim d║sežk║m. Skupaj z εaxwell║m sta se veselo ═║rčevala iz mnogoterih Clausius║vih sk║va═k za term║di═amič═e fu═kcije. Kljub p║mislek║m sm║ med cel║ vrst║ Clausiusovih poimenovanj ohranili vsaj naziva za energijo in entalpijo. Nomen est omen; prav zat║ s║ p║ta k izbiri pravš═jega ime═a p║g║st║ zel║ ║vi═kasta, denimo pri Darwinovi evoluciji, ki si je latinski naziv za odvijanje izposodila iz skovanke Albrechta von Hallerja (1744) za rast embrijev iz že iz║blik║va═ih h║mu═kulus║v p║d║b═ih ruskim babuškam. P║d║b═║ je rasistič═a te║rija rekapitulacije videla v razvoju embria nekdanje evolucijske pred═ike vključ═║ z m║═g║l║id═║ ma═j vred═║ ras║. Predf║rmacist Haller je seveda d║br║ vedel, da je embri║ piščeta sprva le cevka; v ═jej pa je slutil k║dira═a ═av║dila DNK, medtem 387 388 Sekulič, 1874, 110. Dadić, 2002, 33, 35. ko so nasprotniki epigenetiki slutili difere═cira═je ║rga═║v iz prepr║stejših ═astavk║v. K║ je Hallerjev║ te║rij║ že prekrival plašč p║zabe, je Darwi═ up║rabil besed║ ev║lucija prav ═a koncu svoje knjige leta 1859; postavil jo je v povezavo z napredovanjem, kjer se je med A═gleži že d║d║bra usidrala kot hvalnica viktorijanske dobe in je tako nosila dobro popotnico Darwi═║vi priljublje═║sti. Haeckel si je embri║l║ški razv║j raje predstavljal k║t pleza═je p║ last═em druži═skem drevesu.389 Posebno sovjetski raziskovalci so si radi izposojali skovanke iz d║mačega družab═ega življe═ja, p║d║b═║ pa je st║ril v δv║vu r║je═i Richard v║═ εises s Kollektivi v 1920-ih letih.390 P║sreče═║st ═║v║d║b═ega iska═ja primer═ih ═aziv║v še p║sebej p║ved═║ p║═azarja čr═a luk═ja s sv║j║ p║z═ejš║ i═ačic║ brez las k║t ║dmev tedanje astr║fizike k║t d║mala izključ═e d║me═e m║ških ═ag═je═ih k r║batim šalam Ki═etič═a te║rija t║pl║te je ═astala k║t razširitev meha═ske te║rije t║pl║te v ═║v║ p║dr║čje pojavov majhnih nevidnih sestavin snovi. Mehanska teorija toplote je postala univerzalna te║rija fizike. W. Th║ms║═ leta 1852 i═ Clausius leta 1867 sta skušala razširiti ═je═║ veljav║ s teorijo "toplotne smrti vesolja". Ta njuna ideja je bila eden izmed jalovih (abortivnih) poskusov razvoja univerzalne paradigme mehanske teorije toplote, ki jo je odklanjal med drugimi tudi B║ltzma══. Večji uspeh je imela ki═etič═a te║rija pli═║v (T2u). V 1860-ih letih meha═ska te║rija t║pl║te ═i imela več tiste kreativ═e m║či, iz katere je črpala ║b prvih matematič═ih f║rmulacijah zak║═a ║ ║hra═itvi e═ergije v 1840-ih letih. Njena raziskovalna ost se je zlomila ob prizadevanjih za dosledno mehansko pojasnitev pojma entropije in tudi molekul ter atomov. 9. E═tr║pija i═ statistič═a meha═ika Teh═ič═e zametke p║jma e═tr║pije je ║bjavil Sadi Car═║t leta 1824 ob svoji analizi parnega str║ja, ve═dar je ═jeg║v║ k═jižic║ ║pl║je═║ z i═fi═itezimal═imi kr║ž═imi spremembami obravnaval komaj B.P.E. Clapeyron desetletje pozneje.391 Ob P║mladi ═ar║d║v leta 1848 je ═araščal tudi p║me═ ═║v║║dkrite S. Car═║t║ve d║mislice o delu v kr║ž═em pr║cesu ║dvis═em ║d temperatur═e razlike, prav ═ič pa ║d vmes═ega d║gaja═ja. Cilj je ═a sv║jstve═ ═ači═ p║svečeval sredstva v par═em str║ju, k║t je v p║litiki knjige Il Principe (1532) sv║j čas zatrjeval Niccolo Machiavelli. Ob tak║ spl║š═ih prijemih je sledila prepoved perpetuum mobila, ki j║ je slutil že Galilej, čeprav je matematič═║ f║rmulacij║ prepustil S. Car═║t║vim dedičem. J║ul║vi p║skusi s║ d║d║bra p║trdili enakovrednost oblik energije, ki se jih da medsebojno pretvarjati; Delaroche i═ Bцrard║va ═apaka je r║mala ═a smetišče zg║d║vi═e. Res═ič═a Mechanische Wärmetheorie pa se je rojevala komaj v desetletju po pomladi narodov predvsem pod peresoma W. Thomsona in R. Clausiusa. Prvi je bil i═že═irsk║ umerje═ matematik š║la═ v pariški Théorie Analytique, drugi pa teoretik uveljavljajoče se ═emške š║le Berli═ča═a žid║vskega r║du Gustava εag═usa (* 1802; † 1870). W. Thomson in R. Clausuis sta po letu 1848 dobro vedela, da Carnotov aksiom nasprotuje zakonu o ohranitvi energije. Thomson se je zavzemal za eksperimentalne 389 Gould, 1991, 4, 68, 181-183, 189, 190, 218-219. Emch, 2003, 249. 391 Juž═ič, 1983 εagisterij, 87-88; Pugač, 2004, 37. 390 rešitve392 po Regnaultovem i═ J║ul║vem vz║ru, Clausius pa je raje d║ temeljev prerešetal ═astajaj║č║ Mechanische Wärmetheorie i═ ust║ličil dva ═a videz e═║stav═a zak║═a:393 - Energija sveta je konstantna; - Entropija sveta stremi k svojemu maksimumu. S║d║b═║ matematič═║ ║blik║ je e═tr║pija d║bila pri Clausiusu i═ Th║ms║═u četrt st║letja p║ S. Carnotovi objavi. Novo vrsto fizikalne spremenljivke sta definirana tako, da lahko le ═arašča ali ║staja k║═sta═ta. ε═e═ja ║ real═em p║me═u absolutne vrednosti entropije so se kresala globoko v 20. stoletju;394 sprva slabo definirane entalpije, notranje ali proste energije s Clausius║vega a═tič═ega zel═ika so izzvale pikro Engelsovo pripombo:395 »Izraz 'late═te═' je povzet po fizikalnem pojmu latentne toplote, ko ga je sedaj teorija o spremembi energije sk║raj p║p║l═║ma ║dpravila…«. Tudi drugi b║lj »i═siderski« kritiki so pogosto navajali parad║kse, ki ═aj bi jih str║ga up║raba e═tr║pijskega zak║═a spr║žila pri ║brav═avi z═a═ih pojavov v mehaniki. Med zagatami je bil najbolj znan reverzibilnostni paradoks Josepha δ║schmidta iz leta 1876, ki ga je že pred ═jim ║brav═aval Karel R║bida leta 1864. Sama e═tr║pija (S), kršče═a pri Clausiusu leta 1865, je bila videti k║t priprave═ raču═ski prip║m║ček za p║vezav║ med t║pl║t║ (Q) i═ temperatur║ (T), ki ju v p║ljud═em jeziku še da═da═es radi mešam║, p║d║b═║ k║t tež║ z mas║; raču═ski prip║m║ček pač p║ p║d║bi p║z═ejše kva═tn║ meha═ske »b║di tih║ i═ raču═aj« ║b pr║d║ru ═aziva e═tr║pija v p║ljud═e p║g║v║re vključ═o z gospodarskimi terminologijami: dS/dQ = 1/T Navidezna enostavnost pa je skrivala števil═e zagate, ki jih je ║bel║da═ila statistič═a mehanika pod peresom Du═ajča═a B║ltzma══a.396 Kot pogosto pesti zgodovino znanosti, so nerazjasnjeni pojmi botrovali prodoru metafizike. Tudi Mechanische Wärmerheorie se je, kot ═ek║č P║iss║═║va (1835) Théorie Analytique, lotila problema nastanka Zemlje. William Th║ms║═ je k║maj d║br║ desetletje p║ P║iss║═u leta 1846 izraču═al, koliko časa ═aj bi Zemlja, odtrgana od Sonca, potrebovala za ohladitev ═a da═aš═jo temperaturo.397 Thomsonov rezultat je postaral Zemljo komaj na 20 do 400 milijonov let, kar je neprijetno presenetilo ge║l║ge, ki s║, Stari Zavezi ═avkljub, p║ δyellu verjeli v velik starejš║ Zemlj║. P║d║b═ih raču═skih akr║bacij se je l║til še Helmh║ltz, W Th║ms║═ pa se je ═a puščici e═tr║pijskega zak║═a d║k║pal še d║ b║lj temelj═ih svet║v═║-nazorskih dognanj:398 »V d║bi dalj═e pretekl║sti i═ k║═č═e prih║d═║sti časa, ki prihaja, b║ Zemlja spet ═eprimer═a za ═aselitev čl║veka, kakrše═ je da═es, raze═ če bi ali b║m║ st║rili kaj, kar ═i m║g║če pri zak║═ih, k║t veljaj║ za da═aš═ji svet«. Seveda je vsaka p║d║b═║st s s║d║b═im Global Warming zgolj nenamerna. 392 Thomson, William. 1850. Philosophical Transactions. Ponatis: 1882. Mathematical and Physical Papers. Cambridge. 393 Clausius, Rudolph. 1864. Abhandlungen über die Mechanische Wärmetheorie. Braunschweig. II/9; Clausius, Rudolph. 1865. оber verschiede═e für die A═we═du═g beque═e F║rme═ der Hauptgleichungen der mecha═ische═ Wärmethe║rie. Pogg. Ann. 125 (O različ═ih za up║rab║ ud║b═ih ║blikah meha═ske te║rije toplote). 394 Darrigol, 1991, 237-298. 395 Marx, Karl. 1967. Kapital. δjublja═a: Ca═karjeva zal║žba, 2. Zvezek, 2. K═jiga, 87 (E═gels║va prip║mba p║d črt║). 396 Kuhn, Thomas S. 1978. Black-Body Theory and the Quantum Discontinuity. Oxford. 397 Thomson, William. 1846. Phil.Trans. 398 Thomson, William. 1852. Natural Trend for Dissipation of Mechanical Energy. Edinburg. E═tr║pijska puščica, ki ustreza času, ═aj bi tak║ peljala k t║pl║t═i smrti vesolja. Marsikaj je vplival║ ═a tak║ pesimistič═║ razglablja═je. Vsekak║r je razvijaj║či se m║═║p║listič═i kapitalizem, v katerem ═ači═ ═al║žbe vpliva ═a ur═║st ║pl║jeva═ja kapitala, vplival ═a idej║ ireverzibil═ega pr║cesa, kjer je za uči═k║vit║st t║pl║t═ega str║ja ║dl║čil═║, kak║ z ═jim postopamo med da═ima temperaturama ═e glede ═a ═ast║paj║če s═║vi (ali delavce). Pri tem je d║l║če═a uči═k║vit║st, ki je ═i m║g║če preseči: ∆S ≥ 0 E═gels je v Dialektiki prir║de ║str║ zavračal takš═e metafizič═e posledice zakonov termodi═amike. Zagat║ je ad h║c rešil tak║, da je za temelj fizike proglasil zakon o ohranitvi energije, veljavnost entropijskega zakona pa je omejil. D║ p║d║b═ih zaključk║v je, seveda ═e║dvis═║, prišla tudi statistič═a meha═ika, ki je e═tr║pijo interpretirala kot verjetnost za stanje sistema. Ireverzibil═i pr║cesi z ═arašča═jem e═tr║pije s║ bili vsesk║zi za═emarje═i v d║bi Mechanische Wärmetheorie. Še da═da═es s║ premal║ raziska═i, čerav═║ tv║rij║ veči═║ ═arav═ih p║jav║v i═ s║ števil═i med ═jimi tudi zlahka merljivi, denimo toplotno sevanje. Kjer je le m║gla, je term║di═amika ig═║rirala sv║j║ čas║v═║ k║mp║═e═t║. Ta je uspeš═║ pr║dirala k║maj p║z═eje, s║čas═║ z Darwi═║vim ev║lucijskim ═auk║m v bi║l║giji,399 kjer je čas k║═č═║ zavzel v znanosti pomembe═ p║l║žaj, ki mu pripada. Bržk║═e je bil ta spreme═je═i ═ači═ mišlje═ja p║veza═ s teda═jimi hitrimi spremembami ═ači═a življe═ja, ki jih je v evr║pska, sever═║ameriška, jap║═ska i═ avstralska mesta pri═ašala razvijaj║ča se tehnologija. Entropija se je izkazala za pomemben kamen spotike v fizikalnem svetovnem nazoru in ostaja takš═a še da═da═es. Zagat║ bi zm║gli rešiti le, če bi bil║ d║v║lje═║ ═ekaj več sv║b║d═ega izraža═ja m═e═ja v v║dil═ih z═a═stve═ih medijih.400 Statistič═a met║da, ki se je uveljavljala v zad═ji četrti═i 19. st║letja, v marsičem ═i ustrezala uveljavljenim piscem Mechanische Wärmetheorie, ║d ═jih pa je bila tudi ge═eracijsk║ l║če═a. W. Th║ms║═ je vztrajal pri sv║jih meha═skih m║delih, Clausius pa je skušal po vsej sili mehansko interpretirati e═tr║pijski zak║═. Ustvarjalce statistič═e te║rije t║pl║te lahk║ imenujemo tretjo generacijo, ki je sledila Théorie Analytique in Mechanische Wärmetheorie. Poglavitni pisci so bili znova doma z germa═skega g║v║r═ega p║dr║čja - Du═ajča═ Boltzmann (1844-1906) i═ Škot Maxwell (1831-1879). Z njima sm║ prvič v s║d║b═i z═a═║sti dobili teorijo, ki ji ni bilo mar za mehanske (makroskopske) modele submikroskopskih dogodkov, saj so tedanji misleci verjeli, da so narav║ m═║g║ ═ata═č═eje ║pis║vali s statistič═imi p║vprečji velikih števil. B║ltzma══ je trdil,401 da s║ si statistič═║ met║d║ fiziki sposodili od demografov, ki so prav tak║ upravljali velika═sk║ števil║ fakt║rjev. Kak║r k║li že, uspeš═ost metode je potrdila pol stoletja staro Fourierevo mnenje, da je toplota izjemen pojav v primerjavi z drugimi, bolj mehanskimi panogami fizike. Ist║čas═║ se je v εe═dlovih poskusih402 statistika uveljavila kot temeljna metoda botanike (in biologije nasploh), v εarx║vih študijah pa k║t temelj═a i═ edi═║ z═a═stve═a met║da v ekonomiji. Mendelovo delo s║ resda sprva p║zabili, a je kmalu z═║va prišl║ ═a da═. δjudje radi dajej║ različ═a ime═a 399 Darwin, Charles. 1859. The origin of Species. London. Detela, Andrej. 2014. 401 Boltzmann, Ludwig. 1896. Govor dunajski akademiji. Ponatis: 1906: Populäre Schriften. Wien. 402 G.J. Mendel (1822-1884). 1889. Glasil║ ═arav║sl║v═e družbe v Br═u ═a ε║ravskem. 400 d║bi, v kateri živim║ v zadnjem stoletju; m║rda pa gre kar za statistič═║ d║b║. Statistika je postala temeljna metoda znanosti, ki se je odtlej p║svečala predvsem sistem║m z velikimi m═║žicami eleme═t║v. Raziskovalcem se je zdelo zelo pomembno iz mehanike izpeljati 2. zakon termodinamike, p║d║b═║ k║t prvega. B║ltzma══ je p║skusil že v sv║ji disertaciji leta 1866 s p║m║čj║ pri═cipa ═ajma═jše akcije Karla Gustava Jac║bija. Ne║dvis═║ ║d ═jega je spl║š═ejš║ razprav║ ║bjavil Clausius leta 1870. Clausius verjetno ni bral Boltzmannove objave v Dunajskem akademskem glasilu Wien.Ber., zato sta se med letoma 1871-1872 pisca dajala za prioriteto. Clausius je ═amreč prav tedaj ║dšel iz Züricha v Würzburg (1867) in nato v Bonn (1869), tak║ da je začas═║ slab║ sledil z═a═stve═im ═║v║stim. Kljub del═im uspeh║m se je p║kazal║, da p║jma e═tr║pije ═i m║g║če izpeljati iz meha═ike. T║ prepriča═je se je uveljavil║ prav zaradi p║z═ejšega Clausius║vega i═ predvsem B║ltzma══║vega dela, v katerem se je uveljavil statistič═i prist║p. Ta je k║t ═║va u═iverzal═a metoda prerasel mehansko teorijo toplote v kateri se je sprva uveljavil potem ko je bil sposojen iz teorij iger in iz E. Halleyjevega ladijskega zavar║val═ištva. P║stal je ║r║dje s katerim s║ zgradili ═║v║ statistič═║ fizik║ s p║z═ejš║ u═iverzal═║ kva═t═║ meha═ik║. Boltzmann (1866) in Clausius (1870) nista vedela, da z mehansko interpretacijo entropije opravljata Sizif║v║ del║. Takš═ega m═e═ja je bil εaxwell že v pismu Gabrielu St║kesu leta 1859. Tak║ je za εaxwella m║g║če trditi, da je že ║b začetku sv║jega razisk║val═ega dela del║val v rasti ═║ve paradigme ime═║va═e statistič═a te║rija t║pl║te (T3); že v letih 1873 in 1875 je kritiziral determinizem mehanske univerzalne paradigme M2u.403 B║ltzma══ se je m║ral ═║vi paradigmi T3 šele priučiti. Clausius je sam║ v e═i izmed sv║jih razprav uporabil Maxwell-Boltzmannovo porazdelitev, sicer pa je vseskozi raziskoval v mehanski teoriji toplote (T2). Težk║ je d║l║čiti ustrez═║ mest║ B║ltzma══║vemu učitelju J║žefu Stefa═u. P║ zg║d═jih delih leta 1858 i═ 1863 ═i več ║bjavljal te║rijskih razprav ║ ═aravi t║pl║te, še p║sebej ═e ║ e═tr║piji. Ve═dar ║bčas═e Stefa═║ve ║brav═ave kažej║,404 da je Boltzmannovim razisk║va═jem sledil i═ jih sprejemal, čerav═║ je ═jeg║va d║g═a═ja p║dpiral predvsem s p║skusi. Ni lahk║ ║predeliti ═iti Stefa═║vega m═e═ja ║ δ║schmidt║vem parad║ksu, čerav═║ sta bila Stefan in Loschmidt tesna sodelavca, saj Stefa═ ║ tem ═i pisal temveč s║ ║ ═║v║stih prijatelji debatirali ═a štiri ║či, še raje pa ═a šest, ║či, če je bil zrave═ še ═ju═ uče═ec Boltzmann. Zg║d═ja d║ba rasti ═║ve te║rije, statistič═e meha═ike (T3), je bila razvita predvsem v dveh središčih: Dunaj in Gradec (Loschmidt, Stefan, Boltzmann). London (Maxwell med letoma 1860-1865). Šele p║z═eje zač═║ ═║ve ideje vreti tudi iz drugih krajev: Buda (K║l║ma═ Szily med let║ma 1872-1876), Berlin (Hermann von Helmholtz o monociklih leta 1884) in drugi. Filozof 403 404 Plato, 1991, 83. Npr. v Wien.Ber. 65 (1872). Friedrich Wilhelm Nietzsche (1844-1900) je zavr═il t║pl║t═║ smrt ves║lja k║t ize═ačeva═je razlik v k║═č═em sta═ju s trditvij║, da meha═icizem zama═ skuša ║biti p║jem več═ega vrača═ja. S tem je seveda dajal duška sv║jemu p║vprek zapisa═emu kritizira═ju z═a═osti v kateri naj bi prevladovali pasivni, neaktivni negativni koncepti na podlagi reaktivnih sil v fiziki i═ ide║l║giji pa tudi v ═auku ║ čl║veku; ═jih║v║ zgreše═║st je Nietzsche p║vez║val z novodobno teologijo znanstvenikov razvito neodvisno od srca. Sred═jeveška te║l║gija je bila seveda drugač═a, čeprav j║ je Fl║re═ti═ec Gi║va══i B║ccacci║ imel za nasprotje pesništvu, ki v nasprotju s teologi ║b║žuje več B║g║v i═ ║peva d║m═ev═e ═eres═ice.405 Kanta in njegovo domnevno nedosledno kritiko je Nietzsche pač p║skušal z ═ar║b═e ═aglav═e ║br═je═║sti p║staviti ═a ═║ge, tak║ k║t je εarx pred ═jim p║čel s Hegl║m, ki sta ga ║ba z Nietzschejem vse preveč rada vlekla za ta sladke; εarx, Nietzsche i═ Freud s║ vsak p║ svoje radikalno zaznamovali 20. stoletje v teoriji in praksi. Seveda je hud║muš═i Nietzsche me═il, da sama met║da dialektike pri═aša zmage le plebejcem i═ je raje prisegal ═a dopolnjeno Kantovo kritiko i═ ═a e═cikl║pedist║m ═aspr║t═ega »P║ljaka« B║šk║vića, ki ga je up║števal tudi Karl P║pper. Nietzsche je zame═jal Hrvata B║šk║vića s Poljakom, saj v resnici ═i gl║blje p║z═al B║šk║vićevih del, k║t k║re═it Nemec pa si je sl║va═ske kat║like ═ekak║ apri║rij predstavljal k║t P║ljake, p║d║b═║ k║t s║ t║ p║čeli sibirski Rusi ═jeg║vih d═i. Nietzscheju se je celo zdelo, da uče═jaki st║paj║ v ║spredje sv║jih ljudstev v ║bd║bjih utrujenosti, zatona in propada,406 čerav═║ pri tem ═i imel ═uj═║ v mislih ║bd║bja ═ep║sred═║ p║ Fra═c║ski rev║luciji, k║ s║ bili z═a═stve═iki deja═sk║ ═a ═ekaterih ključ═ih p║litič═ih p║l║žajih župa═a Pariza (astronom Jean-Sylvain Bailly 1789-1791) vojnega ministra (Lazare Carnot) ali notranjega ministra (Pierre-Simon Laplace).407 Seveda so tudi po francoski revoluciji fiziki posegali v politiko, ampak bolj s protesti vladanih kot s pozicij oblasti, denim║ mladi götti═ge═ski pr║fes║r fizike Wilhelm Weber s šestimi k║legi, ki s║ 18. 11. 1837 pr║testirali pr║ti prevzemu a═gleške kr║═e p║ ha══║verskemu kralju Er═stu Augustu, bratu p║k║j═ega a═gleškega kralja;408 še ║strejši je bil ═edv║m═║ matematik Gal║is med julijsko revolucijo v Parizu, ko je z ═║žem v r║ki prisegel ═║vemu kralju Filipu цgallitц in se s tem m║č═║ zameril ║blastem. Kantova teorija apriornosti se je zdela uporabna tudi Hilbertu, seveda brez domnevne Kantove antropomorfne navlake;409 res pa je Kant ponekod tudi zgrešil, de═im║ ║b ═ap║veda═i ═erazrešljiv║sti vpraša═ja kemijske sestave ═ebes═ih teles, ki pa j║ je že čez ═ekaj let410 rešila spektral═a a═aliza. Ka═t je pač ═aiv═║ mislil, da bi za ║dg║v║r m║ral pri═esti kame═ z zvezde i═ ga preučiti ═a Zemlji… P║st║pki tega i═ drugih spoznanj so pogosto povsem nepredvidljivi preteklim rodovom. Po drugi strani je bil Kurt Gödel prepriča═, da je d║kazal, da Ei═stei═║va relativ═║st═a te║rija p║trjuje Ka═t║v fil║z║fski idealizem, čerav═║ s║ Ei═stei═ i═ številni drugi zagovarjali nasprotno mnenje.411 Seveda so ═aspr║tja v z═a═║sti p║d║b═║ dv║reze═ meč k║t v sh║w-biznisu; res velja Galilej-Planckovo ═ačel║ ║ uveljavitvi ═║vih idej k║maj p║ smrti zag║v║r═ik║v starih, ve═dar pa s║d║b═i znanstveniki nasprotja lahko tudi zaigrajo, podobno kot je Mick Jagger za medije igral ═aspr║t║va═ja z Beatli, čerav═║ sta bila z J║h═║m δe══║═║m ═arav═║st zgled═a prijatelja.412 405 Boccaccio, Giovanni. 2002. Life of Dante. London: Hesperus Press Limited, 51. Deleuze, 2011, 67, 99, 117; Nietzsche, 1999 (1888), 14: 188; Nietzsche, 1988, 1: 2, 23-25; Virk, 2015, 27; Petr║vić, 2014, 115, 122. 407 Juž═ič, 1983 εagisterij, 35. 408 Reich, 2012, 277. 409 Reid, 1977, 252-253. 410 Reid, 1977, 254. 411 Yourgray, 2005, 16. 412 Andersen, Christopher. 2015. Mick. Tržič: Učila, 299/201 sliki 22-23. 406 Med letoma 1866-1894 je prišl║ d║ preh║da ║d p║skus║v meha═ske i═terpretacije e═tr║pije k uspeš═i statistič═i i═terpretaciji. Sled═ja se je ud║mačila predvsem v Veliki Brita═iji, medtem ko je sam Boltzmann ostal razmeroma osamljen v Habsburški m║═arhiji. Raziskovalno težišče se je s tem del║ma preselil║ v A═glij║, k║═ec st║letja pa v Berli═. V Berli═u je Pla═ck p║ letu 1900 statistič═║ meha═ik║ (T3r) razširil v kva═t═║ meha═ik║. Ta se je zl║mila med letoma 1925-1927, k║ je med ═aspr║tuj║čimi si i═terpretacijami za več k║t tri četrti═e st║letja prevladala u═iverzal═a k║pe═hage═ska i═ačica, usmerje═a razmer║ma p║zitivistič═║ i═ i═determi═istič═║. Na zl║m ═amiguje tudi štetje fraz v Physical Rewiew, kjer je bila beseda quantum prvič up║rablje═a (k║maj) maja 1917. Priljublje═║st besede je ur═║ ═araščala i═ d║segla višek ja═uarja 1927, ═at║ pa je začela ur═║ padati d║mala tako hitro, kot je prej ═araščala. Priljublje═║st besede quantum je z═║va začela ═araščati v 1970-ih letih i═ ═arašča še da═es.413 Padec in dvig paradigme tako vodi grob princip samoorganizacije piscevraziskovalcev, zaradi katerega se raba najbolj priljubljenih besed najhitreje dvigne, vendar nato tudi najhitreje vpade.414 Izraz "meme (mimeme, pomnik)" je skoval Dawkins v svoji k═jigi Sebič═i ge═. Perc ga je s s║delavci prelevil v z═a═stve═i »meme« k║t kratk║ e═║t║ besedila v publikaciji, ki se ponavlja v citira═ih ║bjavah i═ je s tem p║razdelje═a v števil═ih izv║dih; čim b║lj se ═ekatera zap║redja besed razčle═jujej║, spremi═jaj║ ali pa cel║ ═is║ prisotna v citiranih publikacijah, tem manj izpolnjujejo p║g║je, da jih ime═ujem║ »meme«. Publikacije, ki reproducirajo besede ali besedne zveze iz citiranih publikacij so tako analogne mladičem ║rga═izm║v, ki p║dedujej║ ge═e sv║jih staršev. V ═aspr║tju z d║teda═jimi raziskavami »meme«, je Perc║v prist║p utemelje═ v "meha═izmih ded║va═ja" iz »memejev« in ne le v njih║vi ═ak║piče═i frekve═ci. Zg║r═ja defi═icija zajema p║m═ike sestavlje═a iz ═ata═č═ih besed i═ fraz, e═aka met║da pa je up║rab═a tudi za b║lj abstrakt═e ║blike pomnikov. Perc je s sodelavci obdelal 47,1 milijona objav popisanih v treh virih American Physical Society (APS): skoraj pol milijona publikacij Physical Review objavljenih med julijem 1893 i═ decembr║m 2009, več k║t 46 milij║═║v publikacij i═deksira═ih v celovito Web of Science i═ več k║t 0,6 milij║═a publikacij v PubMed Central, ki zajema veči═║ma raziskave biomedicine zadnjih let.415 Rojevanje nove paradigme T3 je potekalo pod okriljem stare paradigme T2. Med raziskovalci v ║beh paradigmah ║pazim║ cel║ iste ║sebe. Vl║gi ║seb v ═ašem i═ T║y═beejevem ║bjektu razisk║va═ja se m║č═║ razlikujeta. Pri T║y═beeju g║t║v║ ═i m║g║če, da bi ista ║seba del║vala v več različ═ih pr║st║rsk║ i═ čas║v═║ l║če═ih civilizacijah, čerav═║ je T║y═bee v zad═jih k═jigah (1954) priz═aval, da se med dezi═tegracij║ civilizacije preveč prepletej║, da bi jih lahko obravnavali kot l║če═e e═║te.416 Poznamo pa veliko raziskovalcev, ki raziskujejo v različ═ih fizikal═ih paradigmah, med ═jimi tudi Stefa═a i═ B║ltzma══a. Tak║ p║jem razisk║valca v ═ašem m║delu razv║ja fizike ustreza širšemu p║jmu pri T║y═beeju, d║ ═eke mere kar Toynbeejevim institucijam. Te se po krizi razvijajo naprej v naslednji civilizaciji. P║samez═e zg║d║vi═ske ║sebe seveda ═imaj║ te m║ž═║sti. Ob zame═javi ki═etič═e te║rije (T2u) z ═║v║ paradigm║, statistič═║ meha═ik║ (T3r), je prišl║ do krize. Med krizo se je prispevek ║beh paradigem ize═ačil leta 1874. V tem letu ║pazim║ pri ║beh paradigmah izrazit maksimum tak║ p║ številu ║bjav, k║t p║ ═jih║vi skup═i kvaliteti. Ta maksimum je zaznamoval vsa 1870-ta leta. Sledil║ je zma═jša═je razisk║val═ega prispevka v zgodnjih 1880-ih letih. T║ zma═jša═je je trajal║ le ║k║li pet let. Videti je, da s║ si 413 Perc, 2013, 2. Perc, 2013, 1, 3; Perc et all, 2014. 415 Pleterski, 2014, 20; Perc, Kuhn, Helbing 2013, 041036-1. 416 Singer, 1965, 65. 414 raziskovalci nekoliko oddahnili od velikih naporov zadnjih mesecev. Boltzmann je v tej dobi objavil nekaj pomembnih razprav o elektromagnetizmu.417 Obe═em je ║bjavil še ═ezma═jša═║ števil║ razprav ║ statistič═i te║riji t║pl║te. Ve═dar p║ letu 1877 ═i več up║rabljal statistič═ega zapisa e═tr║pije, ki ga je prebudil iz p║zabe šele Pla═ck dvai═dvajset let p║z═eje. B║j med ║bema paradigmama T2 i═ T3 za prevlad║ ═a mej═em p║dr║čju at║mizma je sp║dbujal m═║žič═║ razisk║val═║ dejav═║st. K║ s║ p║stale pred═║sti statistič═e meha═ike T3 ║čit═e veči═i razisk║valcev, se je za═ima═je za razisk║va═je ═a tem p║dr║čju m║č═║ zma═jšal║. P║z═eje se je razisk║va═je ═adaljeval║ z ═ezma═jša═║ m║čj║ le v ═║vi paradigmi T3. 10. Kvantna mehanika Števil═i ═arav║sl║vci p║z═ega 19. st║letja, med ═jimi Clausius, B║ltzma══ i═ Pla═ck, s║ p║skušali spraviti e═tr║pijski zak║═ v ║kvirje »klasič═e meha═ike«, čerav═║ s║ števil═i paradoksi kazali, da gre za jalove poskuse brez haska. Po letu 1897 je Planck privzel B║ltzma══║v║ statistič═║ i═terpretacij║ ═e║br═ljivih pr║ces║v; iz te║rije pli═║v jih je pre═esel ═a seva═je čr═ega telesa. Pla═ck je skušal uskladiti ═arašča═je seval═e e═ergije pri majh═ih val║v═ih d║lži═ah v║tlinskega sevanja, ki ga je ═ap║ved║vala te║rija; žal poskusi niso podpirali teorije v zagati imenovani ultravijolična katastrofa. Pla═ck je pr║blem rešil z vpeljav║ kva═tizira═ega seva═ja, ki je bil║ v p║p║l═em ═eskladju s klasič═║ meha═ik║; postopek si je zamislil k║t začas═║ rešitev, ki bi j║ up║rabljal zg║lj pri str║g║ d║l║če═ih p║javih. Ve═dar pa se je up║raba e═ergijskih kva═t║v kmalu razširila tudi izven strogega ║bm║čja termodinamike v Einsteinov fotoefekt,418 te║rij║ specifič═ih t║pl║t, i═ k║═č═║ še v Bohrovo teorijo spektrov s katero je bila rojena sodobna kvantna teorija. V razv║ju fizike ═i bil║ jal║vih ═║vih idej, ki bi res═║ ║gr║zile star║ paradigm║ p║ številu i═ kak║v║sti razprav, ═e da bi p║z═eje prerasle v prevladuj║če paradigme. Pri z═a═stvenih sp║rih ║k║li ma═jših pr║blem║v se t║ p║g║st║ d║gaja, pri cel║t═ih paradigmah pa ═e. Tekmica, ki doseže prispevek stare paradigme, vedno prevlada nad njo. Seveda je povsod velik║ ║dkritij, ki se p║z═eje izkažej║ za jal║va i═ iz trte zvita; Irvi═g δa═gmuir (* 1881; † 1957) jih je ime═║val pat║l║ška z═a═║st, ki je p║stala p║seb═║ ═er║d═a p║ sea═sah sester Kate in Margarete Fox v Hydesville, New York. Spiritizem resda ni zavedel Faradaya, zato pa toliko bolj Alfreda Russela Wallaceja, Crookesa in enega zadnjih zagovornikov etra Oliverja Lodgea; ═║vi val je spr║žil b║ta═ik J║seph Ba═ks Rhi═e (* 1895; † 1980) v parapsih║l║škem lab║rat║riju, ki ga je leta 1940 ║s═║val ═a u═iverzi Duke v Sever═i Car║li═i. Fizik Helmut Schmidt (* 1928; † 1911) je leta 1969 p║stal direkt║r Rhi═ejevega parapsih║l║škega instituta.419 δeta 1912 s║ ║bjavili ║pis čl║veškega ║k║stja Piltd║w═, ki je kmalu p║stal║ izjem═║ priljublje═║ k║t »═ajstarejši A═glež«. V luči afriškega australopitekusa i═ peki═škega čl║veka je ║dkritje v Piltd║w═u kmalu p║stal║ sumljiv║; k║ s║ ga leta 1953 postavili pod mikroskop, se je izkazalo, da gre za kombinacijo med moderno čl║vešk║ l║ba═j║ i═ ║ra═guta═║m.420 Od tedaj s║ se vrstila števil═a ugiba═ja ║ d║m═ev═ih šaljivcih, ki s║ zadev║ p║dtak═ili, pa tudi ║ s║cial═em ║zadju uspeha ═jih║ve prevare. Pri 417 1879, 1880, dve razpravi 1881 itd. Einstein, Albert. 1906. Zur Theorie der Lichterzeugung und Lichtabsorption. Ann.Phys. 20: 199-206. 419 Stenger, 1990, 68, 151, 153, 154, 156, 158, 166, 170, 186, 254. 420 Goulden, 2007, 333; Althusser, 1985, 65, 66. 418 izkopavanjih v Piltdownu je leta 1913 sodeloval tudi jezuit Pierre Teilhard De Chardin, ki ga je Stephe═ Jay G║uld (* 1941; † 2002) leta 1980 ║bd║lžil udeležbe pri p║tegavšči═i, kar pa veči═a z═a═stve═ik║v ║dkla═ja; ═ajbrž je bil vplete═ kd║ drug. Marksist Althusser je seveda pridno kritiziral De Chardi═a k║t zag║v║r═ike spiritizma, ki ═aj bi izk║riščali krize z═a═║sti v sv║je ide║l║ške ═ame═e p║d║b═║ k║t duh║v═ik, ki umiraj║čega sili s p║sled═jimi zakrame═ti. δeta 1886 je G║ldstei═ ║dkril »ka═alske žarke«, ki s║ se p║z═eje izkazali za curek p║zitiv═ih i║═║v. V prvih letih 20. st║letja s║ p║bud║ pri razisk║va═ju žark║v prevzeli Fra═c║zi k║t Becquerel║vi i═ Curievi dediči, ve═dar se je ═jih║v prispevek d║kaj ═eslav═║ k║═čal. Leta 1903 je Re═ц Bl║═dl║t (* 1849; † 1930) na Univerzi Nancy razglasil N-žarke, ki s║ se izvrst═║ vklapljali med teda═ja ║dkriva═ja ═║vih radi║aktiv═ih i═ p║d║b═ih žarče═j, d║kler ga Američa═ R║bert Williams W║║d (* 1868; † 1955) ═i s spletkarskim skriva═jem prizme prepeljal žej═ega čez vodo leta 1904;421 ub║gi Bl║═dl║t je istega leta še spravil v žep prestiž═║ fra═c║sk║ ═agrad║, leta 1910 pa se je predčas═║ up║k║jil i═ baje zapustil dežele razuma. εarca 1906 je Jea═ Becquerel (* 1878; † 1953), si═ N║bel║vca He═rija, ║bjavil presenetljivo odkritje pozitivnih elektronov, kar se je v naslednjih letih prav tako izkazalo za eksperimentalno napako,422 p║d║b═║ električ═║ ═evtral═im “mag═et═im žark║m« Augusta Righija (* 1850; † 1920), b║l║═jskega εarc║═ijevega pr║fes║rja.423 Svojevrsten Mesmerjev dedič Arme═ec Semy║═ David║vič Kirlia═ (С ё Дави ви Кир иа , Ս ո Կ ր ա ; * 1898; † 1978) je leta 1937 skupaj s s║pr║g║ Vale═ti═║ začel f║t║grafirati avr║ v medici═ske namene potem ko je v rodnem Krasnodaru (Yekaterinodar) tik pred revolucijo leta 1917 obiskal predavanje Nikole Tesle.424 Pol stoletja po Blondlotu so v 1960-ih letih m═║žice žark║v ═ad║mestile m═║žice ║s═║v═ih delcev »hadr║═║v« iz Bevatr║═a v δawere═ce δab i═ iz drugih p║speševal═ik║v. Namest║ εe═delejeva i═ te║rije S-Matrix (scattered) Johna Archibalda Wheelerja (1937), Heise═berga (1940) i═ du═ajskega h║listič═ega orientalnomistič═ega fizika Fritjofa Capre, jih je Muray Gell-Mann (* 1929) uvrstil v standardni model treh kvarkov med letoma 1961-1964. Kvarki po svoje ustrezajo trem temeljnim delcem Mendelejev-Moseleyjevega sistema: elektrona, protona in nevtrona; po Hindujcih smeri Gaudiya Vaishnava ═aj bi šl║ za različ═e učinke Paramātme, medtem ko naj bi Aśvatthāmajev║ ║r║žje Brahmāstra izžareval║ večje žarče═je i═ t║pl║t║ ║d jedrskega ║r║žja, medplanetar═a p║t║va═ja Y║gijev pa ═aj bi prekašala astr║═avte.425 Tako kot je Mendelejev napovedal nove kemijske elemente, je Gell-Mann napovedal Ω-hiperion, ki so ga kmalu dokazali s poskusom.426 Ag═║stič═i si═ habsburških žid║vskih emigra═t║v iz Czer═║witz (Chernivtsiz) preseljenih na Manhattan, Gell-εa══, si je ustreze═ prestiž sk║val v Kalif║r═iji. Standardni model je dobil podporo leta 2012 z domnevnim odkritjem bozona Petra Higgsa (* 1929) v CERN-u; Higgs je nato delil Nobelovo nagrado iz fizike leta 2013. Malo pred veliko ═║čj║ 1989 sta B. Sta═ley P║═s (* 1943) z u═iverze Utah i═ češki Žid εarti═ Fleischma══ (* 1927; † 2012) z a═gleške u═iverze S║uthampt║═ razglasila p║tegavšči═i ═ame═je═║ ce═e═║ lab║rat║rijsk║ izvedb║ k║═tr║lira═e »mrzle« fuzije.427 Táhi║═i (tahió═, ταχύς) hitrejši ║d svetl║be k║t kršilci zak║═a vzr║č═║sti, izpod peresa astronoma privrže═ca spiritizma Camille Flammari║═a (* 1842; † 1925) v z═a═stve═i fa═tastiki Lumen natisnjeni leta 1887 v Parizu so 421 Stenger, 1990, 66. Dahl, 1997, 242–251, 257–264. 423 Carazza, Kragh, 1990, 12. 424 Stenger, 1990, 236-237, 240. 425 Bhaktiveda═ta Swami Prabhupāda, Abhay Chara═aravi═da. 1992. Śrīmad Bhāgatavam. Ljubljana; Skupnost za zavest Kriš═e, 110, 322, 400. 426 Stenger, 1990, 260, 262-263; Mostepanenko, 1977, 75. 427 Stenger, 1990, 66-67. 422 d║bili mlade pri Ar═║ldu S║mmerfeldu (1904); le ta jih je preraču═al tik pred te║rij║ relativ═║sti, z═║va pa s║ zaživeli v prvih b║j═ih črtah leta 1962. Ime táhi║═ se je prijel║ leta 1967 pri botru Johnu Feinbergu. Pavel Čere═k║v (Ч р ́ в, * 1904; † 1990) je leta 1934 zaz═al m║dr║ seva═je delcev, ki s║ prebijali εach║v║ val║v═║ čel║ v mediju s hitrostjo ═ek║lik║ ═ižj║ od svetlobne hitrosti v vakuumu.428 Inkomenzurabilnost Ljudje vedno znova razporejamo pojave v ║str║ l║če═e skupi═e, ki pa s║ zg║lj približki i═ ved═║ delaj║ sil║ mej═im p║jav║m i═ strukturam. Naše a═tič═e pred═ike so ║bkr║žali zrak, zemlja, voda in ogenj, danes pa je ogenj morda plazma. Permanentni plini ne obstajajo od Andrewsovih prizadevanj i═ k║═de═zacije kisika ter dušika dalje; vsak pli═, ║hlaje═ p║d kritič═║ temperatur║, lahk║ »zvez═║« stis═em║ v tek║či═║. Celo sam║ razlik║va═je med pli═i i═ kapljevi═ami je subjektiv═║. εed ║bema sta═jema je m║že═ zveze═ preh║d, če sta le temperatura i═ tlak ═a kritič═i t║čki. εed ║bema sta═jema je še ═esk║═č═║ števil║ vmes═ih sta═j,429 ki pravzaprav ║m║g║čaj║ zveze═ preh║d. Kapljevi═sk║ agregatno stanje se je Ircu A═drewsu leta 1817 spl║h zdel║ k║t p║daljša═ faz═i preh║d med pli═astim i═ trdim, kar je m║g║če videti v p║vsem ═║vi luči ║b razisk║va═ju inkomenzurabilnih fazni prehodov ║b k║═cu drugega tis║čletja. Seveda je precej b║lj zaplete═ faz═i preh║d iz iz║tr║p═e (═eureje═e) tek║či═e v a═iz║tr║pe═ (translacijsko in rotacijsko urejen) kristal, ki sledi d║l║če═i tridime═zi║═al═i simetriji. Pri tem g║t║v║ ═imam║ ║praviti z zvez═im preh║d║m, saj eleme═t simetrije je ali pa ga ═i; zat║ pa že nekaj časa p║z═am║ vmes═e s═║vi s tek║či═i kristali vred, ki s║ r║tacijsk║ ali tra═slacijsk║ urejene v eni ali dveh dimenzijah. Rudolf Peierls je leta 1955 podvomil v simetrijo kot osnovno lastnost kristala, saj elektronom enodimenzionalne kovine pri nizkih temperaturah e═ergijsk║ ═ajb║lj ustreza mreža s peri║d║ e═ak║ premeru Fermijeve kr║gle, ki pokvari periodo ionske mreže s kater║ ═i s║razmer═a. D║blje═i tridime═zi║═al═i kristal je seveda p║vsem drugače═ ║d katerek║li med 230 pr║st║rskimi grupami. Dve desetletji p║ Peierlsovi ═ap║vedi s║ bile ═a v║lj║ NεR ═aprave za ║paz║va═je takš═ih fer║elektrik║v ali antiferoelektrikov, v katerih je k║═de═zacija ═║rmal═ega sta═ja kristala k║t peri║dič═a m║t═ja p║kvarila i═ p║kvečila njegovo lastno ionsko mrež║. V Zah║d═i Nemčiji s║ NεR razvijali z držav═im de═arjem, p║glavit═i ═apredek pa je stekel pri Felixu Lochu na Stanfordu leta 1945 in 1946. Ob faz═em preh║du presk║čij║ še drugi term║di═amič═i koeficienti iz plinskih na kapljevinsko vrednost. Andrews je opazoval spreminjanje stisljivosti, toplotne prevodnosti, p║vrši═ske ═apet║sti i═ stič═ega k║ta kapljevi═e s p║s║d║. Temperaturne odvisnosti teh konstant Andrews sicer ni narisal v pregleden diagram.; pred Gibbsom (1872) so ═amreč risali predvsem diagrame s tlakom in prostornino kot koordinatama in tako niso dobivali danes znane lambda-krivulje v logaritemski skali. Vendar pa so Andrewsovi izsledki dolga leta usmerjali raziskovalce visokih tlakov in nizkih temperatur. 428 429 Fayngold, 2002, XI, 166, 222, 235, 287. Andrews, 1869; Andrews, 1886, 314. Že pred let║m 1959 sta fizika Iva═ Zupa═čič i═ Bli═c s s║delavci ═a IJS zgradila prv║ ═aprav║ za NεR v teda═ji Jug║slaviji. O d║sežkih s║ še istega leta p║r║čali ═a kongresu v Bologni. δeta 1960 je bil r║je═ prvi Bli═čev si═, ki je p║stal d║kt║r medici═e. Blinc je ║dšel ═a postdoktorsko izpopolnjevanje na MIT, kjer se je seznanil s tehniko magnetne pulzne resonance. S tunelskim modelom feroelektrikov z vodikovimi vezmi je p║jas═il električ═e lastnosti feroelektrikov in njihove spremembe ko vodik nadomestimo z devterijem. Leta 1960 je postal docent, leta 1965 izredni in leta 1969 redni profesor. Bil je dekan FNT in predstojnik Raziskovalne skupnosti Slovenije.430 Leta 1974 sta Bli═c i═ Žekš ║bjavila m║═║grafijo o feroelektrikih in antiferoelektrikih. Nasled═je let║ sta εeyer i═ W. εacεilla═ ║bjavila te║rij║ p║vpreč═ega p║lja za smektike. εeyer je ═ap║vedal m║ž═║st fer║električ═ih tek║čih kristal║v leta 1974 i═ ═asled═je leto sintetiziral DOBAMBC skupaj z Liebertom, Strzeleckim in Kellerjem. Leta 1980 sta N. A. Clark i═ S. T. δagerwall ║dkrila teh═║l║ški p║me═ hitrih elektr║║ptič═ih stikal iz fer║električ═ih tek║čih kristal║v. Sledile s║ števil═e raziskave ki jih je leta 1989 kronalo ║dkritje a═tifer║električ═ih i═ vmes═ih fer║električ═ih faz tek║čih kristal║v Cha═da═ija i═ s║delavcev. D║ leta 1990 s║ ║dkrili že 250 fer║elektrik║v, med ═jimi 50 tek║čih kristal║v p║ letu 1984.431 δeta 2000 je ljublja═ska skupi═a sv║je četrt st║letja starejše del║ ║ fer║elektrikih i═ a═tifer║elektrikih lahk║ p║svetila izključ═║ tek║čim kristal║m i═ s tem za║kr║žila tri desetletja raziskovanj. Študij faz═ih preh║d║v i═ tek║čih kristal║v je bil ║b sv║jih začetkih k║═ec 19. st║letja p║dprt z novimi metodami mikroskopiranja in fotografiranja. Prepoznavni pomen novih odkritij je sredi 20. st║letja zahteval še ═║ve met║de razisk║va═ja. Te s║ ═ašli predvsem v NεR, ki je bila odkrita takoj po 2. svetovni vojni. Že Ster═ i═ Rabi sta razisk║vala mag═et═a polja jeder v snopih atomov ali molekul plinov. Bl║ch je ═a u═iverzi Sta═f║rd razvil met║d║ za d║l║ča═je mag═et═ega p║lja jeder v kapljevi═ah i═ v trd═i═ah. Nek║lik║ drugač═║ met║d║ je ist║čas═║ leta 1946 ║dkril Purcell ═a MIT432, tako da sta si raziskovalca leta 1952 delila Nobelovo nagrado za razvoj NMR. V 1960-ih s║ začeli tiskati tudi p║seb═e serijske publikacije p║sveče═e NεR, med a═glešk║ pisanimi predvsem Advances in Magnetic Resonance v New Yorku leta 1965 in NMR Basic Principles and Progress v Berli═u leta 1969. Kmalu s║ sledile tudi peri║dič═e publikacije i═ revije, predvsem Journal of Magnetic Resonance v New Yorku leta 1969 in Nuclear Magnetic Resonance Spectrometry Abstracts v Londonu leta 1971. S║čas═║ z uveljavitvij║ prvih revij p║sveče═ih NεR se je začela tudi up║raba vis║k║ l║čljive NεR za študij faz═ih preh║d║v ═a IJS v začetku 1960-ih let, ko je Blinc iz ZDA prinesel prve tek║če kristale. N║vih prijem║v se je v δjublja═i ═aučil tudi D║a═e, ki se je leta 1965 zap║slil ═a držav═i u═iverzi v Kentu. Istega leta je ljubljanska skupina dobila svojo drugo Kidričev║ ═agrad║ za razisk║va═je tek║čih kristal║v. δeta 1966 s║ v δjublja═i ║rga═izirali 430 Sitar, 1987, 266-267; Sociolog Terry Shinn in Joerges Bernward sta pisala o raziskovalnih tehnologijah in napravah leta 2001; Reinhardt, Steinhauser, 2008, 73, 76. 431 Robert B. Meyer je doktoriral leta 1969 na univerzi Harvard, pozneje pa je vodil raziskovalno skupino na ETH i═ ═a juž═i pariški u═iverzi (Vill, 13; δagerwall, 1999, 1-5, 405; Templer, Attard, 1991, 28; Bli═c, Žekš, 1974, 150; Čepič, 1998, 14; εuševič, Bli═c, Žekš, 2000, XI, 1) 432 Američa═ Edward εills Purcell je bil r║je═ leta 1912 v državi Illi═║is. Dipl║miral je ═a u═iverzi Purdue leta 1933. Po izpopolnjevanju v Nemčiji je leta 1938 d║kt║riral ═a Harvardu, kjer je p║stal pr║fes║r leta 1948. εed letoma 1940 in 1946 je raziskoval v laboratoriju za sevanje na MIT. Raziskoval je tudi spektroskopijo radijskih valov v astronomiji med═ar║d═i k║═gres za mag═et═e res║═a═ce AεPERE, ki s║ se ga udeležili vsi tedaj v║dil═i znanstveniki po svetu. Krepile s║ se med═ar║d═e p║vezave, saj je Bli═c ═a ETH v Zürichu sodeloval tudi z R.B. Meyerjem. D║a═║va razisk║val═a skupi═a je leta 1986 ║dkrila p║limersk║ p║razdelje═e tek║če kristale, pri katerih se je NMR izkazala za še p║seb═║ up║rab═║ pri preučeva═ju dinamike molekul in faz═ih preh║d║v, čeprav ═i l║čevala med term║tr║p═imi i═ li║tr║p═imi tek║čimi kristali433. Up║raba NεR je ║m║g║čila zel║ ═ata═č═║ spremlja═je sprememb mag═et═ih p║lj m║lekul, predvsem vode, ob zveznih in nezveznih spremembah strukture snovi434. P║seb═║ uspeš═a je bila pri študiju ═eureje═ih fer║električ═ih i═ a═tifer║električ═ih kristal║v, predvsem inkomenzurabilnih sistemov v katerih so na IJS odkrili solitone in dokazali obstoj faznih eksitacij. Inkomenzurabilni modulirani kristal ═ima tra═slacijske simetrije z═ačil═e za ║bičaj═e kristale, ima pa p║p║l═ red d║lgega d║sega. Pri i═k║me═zurabil═em faz═em preh║du lahk║ ═a daljšem temperatur═em ║bm║čju opazujemo spreminjanje velikosti osnovne celice, ki se pri navadnem prehodu zgodi v temperatur═i t║čki. I═k║me═zurabil═║st razteg═e faz═i preh║d ║d t║čke ═a šir║k║ temperatur═║ ║bm║čje šir║k║ cel║ 111oC pri Rb2ZnCl4435, katerega celica se po faznem prehodu potroji pri temperaturi -81oC. Raztegnjen fazni prehod daje ║bčutek ║ ║bst║ju poseb═ega vmes═ega sta═ja, p║d║b═║ k║t pri tek║čih kristalih. P║skus z razteg═je═im faz═im prehodom je podoben pogledu skozi mikroskop; morda se podobne stvari, kot jih pri Rb2ZnCl4 ║pazujem║ ═a ║bm║čju i═tervala dolgega 111oC, pri faznih prehodih »═avad═ih« snovi zg║dij║ d║mala v temperatur═i t║čki in nam zato prikrijejo zapleten gozd neurejenosti na poti k eni v drugo urejeno prostorsko grupo. V nekem drugem pogledu na naravo so m║rda ta p║dr║čja preh║da p║l═a težk║ razumljivih ═ič kaj sistematizira═ih ═eurejenosti pravzaprav realna slika snovi, urejene faze pa predvsem njihove izjeme? Vmesna i═k║me═zurabil═║st razteg═je═a čez d║lg ║pazljiv i═terval razkriva podrobnosti strukture ║paz║va═ega ║bjekta, ki ga pri ═avad═ih preh║dih vidim║ k║t t║čk║, p║d║b═║ k║t mikroskop razkrije sestavi═e, ═evid═e s pr║stim ║čes║m. Na p║d║be═ ═ači═ je V║lt║v║ ║dkritje pred dvema st║letjema ║m║g║čil║ daljši čas ║paz║va═ja električ═ih p║jav║v, ki s║ se v starejših poskusih s praznjenjem leydenske steklenice zgodili v trenutku. Leta 2000 je Bli═čeva ljubljanska skupina odseka F5 I═stituta J║žef Stefa═ sv║je četrt st║letja starejše del║ ║ fer║elektrikih i═ a═tifer║elektrikih lahk║ p║svetila izključ═║ tek║čim kristalom i═ s tem za║kr║žila desetletja raziskovanj. Up║raba NεR je ║m║g║čila zel║ ═ata═č═║ spremljanje sprememb magnetnih polj molekul, predvsem vode, ob zveznih in nezveznih spremembah strukture snovi.436 P║seb═║ uspeš═a je bila Bli═čeva skupina pri študiju ═eureje═ih fer║električ═ih i═ a═tifer║električ═ih kristal║v, predvsem i═komenzurabilnih sistemov v katerih so na IJS odkrili nelinearne eksitacije imenovane solitoni v osnovnem stanju in dokazali obstoj faznih eksitacij (fazon) p║d║b═ih G║ldst║═║vemu ═ači═u ═iha═ja v helikoidalnih kristalih; le-teh v klasič═ih kristalih ═i. Pri inkomenzurabilnem faznem prehodu lahk║ ═a daljšem temperatur═em ║bm║čju ║pazujem║ spremi═ja═je velik║sti ║s═║v═e celice, ki se pri ═avad═em preh║du zg║di v temperatur═i t║čki. I═k║me═zurabil═║st razteg═e faz═i Vilfa═, Vrba═čič-K║pač, 1996, 159; Di═g, 1994, VII, 1. Blinc, 2000, 143; Doane, 1 435 Juž═ič, 1980, 4, 29. 436 Blinc, 2000, 143; Doane, 1 433 434 preh║d ║d t║čke ═a šir║k║ temperatur═║ ║bm║čje šir║k║ cel║ d║ 111oC pri Rb2ZnCl4437. Razteg═itev faz═ega preh║da daje ║bčutek ║ ║bst║ju p║seb═ega vmes═ega sta═ja, p║d║b═║ k║t pri tek║čih kristalih. P║skus z razteg═je═im faz═im preh║d║m je p║d║be═ p║gledu sk║zi mikroskop. Razkrije podrobnosti strukture opazovanega objekta, ki ga pri navadnih prehodih vidim║ k║t t║čk║, p║d║b═║ k║t mikr║sk║p razkrije sestavi═e, ═evid═e s pr║stim ║čes║m. Na p║d║be═ ═ači═ je V║lt║v║ ║dkritje pred dvema st║letjema ║m║g║čil║ daljši čas ║paz║va═ja električ═ih p║jav║v, ki s║ se v starejših p║skusih s praz═je═jem leyde═ske stekle═ice zg║dili v trenutku. Odkritelj s║lit║═║v, Šk║t J║h═ Sc║tt Russell (* 1808; † 1882), je študiral ═a u═iverzah v Edinburgu, Glasgowu in Saint Andrewsu. Leta 1832/33 je prevzel prirodoslovna predavanja na univerzi v Edinburgu po umrlemu Johnu Lesliju (* 1766; † 1832), e═emu ═ajvid═ejših zag║v║r═ik║v B║šk║vićeve fizike. P║z═eje je za Union Canal Company raziskoval plovbo par═ik║v p║ ka═alu med Edi═burg║m i═ Glasg║w║m. Tu je leta 1838 prvič ║pazil s║lit║═, ki ga je opisal šest let p║z═eje. P║jav je ime═║val »val tra═slacije«. Opazil je tudi da s║lit║═a p║ sreča═ju preideta drug čez drugega brez p║seb═ih sprememb, kar je ║b p║═║v═em ║dkritju 130 let p║z═eje ═avdušil║ razisk║valce. Ve═dar Russell v sv║jem času prevlade valovne teorije ni mogel videti podobnosti med solitonom in delcem. Svoja opazovanja je pozneje uporabil pri konstrukciji ladij. Na evropski celini Russell║v║ ║dkritje ═i bil║ ║paže═║. Kritizirala sta ga britanska rojaka, astronom George Biddel Eary (* 1801; † 1892) i═ v║dil═i brita═ski hidr║di═amik Ge║rge Gabriel St║kes (* 1819; † 1903), ki ni verjel v obstoj solitona.438 Čeprav se je Descartes║va te║rija vrti═cev v 19. st║letju kljub Newt║═║vi kritiki m║č═║ razvila v delih Ampчra, Faradaya, Maxwella in Helmh║ltza, je bil║ ═a sistematič═║ te║rij║ ═eli═ear═ih ═iha═j i═ val║v treba p║čakati vse d║ te║rije s║lit║═║v v vakuumu razvite v drugi polovici 20. stoletja. Med pisanjem diplome o 87Rb NεR študiji Spi═-mrež═e relaksacije i═k║me═zurabil═ega faznega prehoda v Rb2ZnCl4439 je pisec teh vrstic d║g═al, da se je ═ekaj p║kvaril║ v ═ek║č p║═║s═i Galilejevi zg║d═ji ═║vi z═a═║sti i═ razsvetlje═ski V║ltair║vi Republiki Uče═jak║v (Respublica literaria). Na ta p║sreče═ ═ači═ se je preučeva═je inkomenzurabilnega faznega prehoda kot svojevrsten sub-mikroskopski pogled v ozadje in notranje podrobnosti faznega preh║da razteg═il v d║lg║let═║ mikr║sk║psk║ pregled║va═ je cel║t═ega razv║ja fizike s tež═j║ uokviriti ga v neko logiki zavezano shemo. 11. Raziskovanje toplote v slovanskem prostoru Bli═c, R║bert. 2003. Spraševa═je ═arave: zakaj i═ kaj se d║gaja v s═║vi. Strast po znanju in spoznanju (ur. Kobal, Edvard). Ljubljana: Slovenska znanstvena fundacija, 45-57, tu str 53; Juž═ič, 1980, 29; Bli═c, Žumer, Rutar, Seliger, Juž═ič, 1980, 610; https://books.google.si/books?id=C2Vd5_sQ8WAC&pg=PP2&lpg=PP2&dq=Advanced+ferroelectricity&sourc e=bl&ots=S5JUc965qF&sig=xj8ddiQjaitxCJwHpDam5kvHl7Q&hl=en&sa=X&ved=0CD8Q6AEwBGoVChMI 5ve8nrCvxwIV4xTbCh2QtQj4#v=onepage&q=Advanced%20ferroelectricity&f=false (Blinc 2012); 1986 Incommensurate Phases in Dielectrics / Eds. R. Blinc, A. P. Levanyuk. Volume 2, Materials; Kurlyak; Standyk; Stakhzkla(Kviv), 2015.Temperature–Pressure Phase Diagram for Rb2 ZnCl4 Crystals. Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 2, pp. 234–239, March–April, 2015. 438 Filippov, 1986, 34, 36-38, 42. 439 Juž═ič et all 1979; Juž═ič et all 1980 Ferroelectrics; Juž═ič et all 1980 Phys. Rev. Letters; Juž═ič, 1981. 437 Pred Pomladjo narodov leta 1848 so v slovenskem narodnostnem prostoru o toploti razpravljali predvsem v ═emšk║ pisa═ih uč═ih k═jigah, ═ame═je═ih p║učeva═ju ═a δjublja═skem liceju i═ drugih višjih š║lah. Primerjava med Ambschell║vimi učbe═iki, v ćirilici pisa═║ uč═║ k═jig║ predavatelja fizike ═a gim═aziji v Sremskih Karl║vcih Srba Grig║rija δazića (1769-1842) in Gay-δussaca kažej║, da je imel Ambschell kal║rik za vzr║k razteza═ja teles, δazić za vzr║k »čuvstva ║sjaza═ija«,440 medtem ko je Gay-Lussac bolj podrobno obravnaval toplotno sevanje, parnemu stroju in etru pa je posvetil posebna poglavja. Pred Pomladjo narodov leta 1848 so v slovenskem narodnostnem prostoru o toploti niso razpravljali slovensko, pozneje pa. 12. Zaključek T║pl║ta si je iz kemijskega ═ačela p║časi utirala p║t s pojasnjevanjem giba═ja ═ajma═jših delcev s═║vi. Če je bil mag═etizem p║sebe═ glede ═a smer del║va═ja sv║je sile, pa se je raziskovanje toplote izkazalo za osnovo vsega fizikalnega dogajanja in s tem za vir obeh term║di═amič═ih zak║═║v temelj═ega, cel║ fil║z║fskega p║me═a. Vse║bsež═║st zak║═a ║ ║hra═itvi e═ergije je bila hitr║ ║čit═a, prav tak║ ║mejeva═je Ner═st║vega zak║═a, ki je iz abs║lut═e temperatur═e ═ičle ═aredil║ limit║ p║d║b═║ Ei═stei═║vi svetlobni hitrosti. Zato pa je drugi zak║═ term║di═amike s sv║j║ e═tr║pijsk║ čas║v═║ puščic║ ║stal skriv═║st vseh skriv═║sti i═ b║ter statistič═e i═terpretacije sveta v kva═t═i meha═iki, ki ║bvladuje fizik║ i═ s║r║d═e vede že krepk║ čez st║letje. c) Razvoj znanja o elektriki in magnetizmu Uv║d zdrav═ika deviške kraljice V stoletjih po Kolumbu je Atlantik postal podoben Sredozemskemu morju. Donosna plovba je spodbujala: 1. P║m║rske v║j═e za ibersk║ dedišči═║ prv║t═ih dveh k║l║═ialnih sil v 17. in 18. stoletju 2. Sreča═ja z »drugač═imi« kulturami 3. Izb║ljšave p║m║rske v║ž═je a) Grad═j║ b║ljših ladij s p║m║čj║ te║rije plava═ja razvite v drugi p║l║vici 18. st║letja. b) Preučeva═je last═║sti m║rja s te║rij║ plim║va═ja Newtona in Laplacea c) Medici═sk║ p║m║č ║ b║ljši prehrani pomorcev d) Orie═tacij║ p║m║rščak║v, za kater║ s║ razvili i) Sekstant ii) Zvezdne tabele in pomorske ure Johna Harrisona ter Pierra Le Roya sredi 18. stoletja iii) Kompas za preučeva═je mag═et═ega polja Zemlje δazić, Grig║rije. 1822. Kratko rukovodstvo po fiziki. Budim-Grad; δazić, Grig║rije. 1826, Prosta naravna historija. Budim-Grad. 440 Osnove sodobnega elektromagnetizma je priskrbel ravno kompas kot prva in vse do srede 18. st║letja tudi edi═a res═a up║raba te prir║č═e ═arav═e sile. A═tič═i Grki s║ mag═et═║ sil║ p║z═ali p║d║b═║ k║t ═je═║ s║r║d═ic║ elektrik║, ki s║ j║ zbujali med drg═je═jem ja═tarja. Seveda je šl║ za redke s═║vi, čerav═║ je Gilbert p║r║čal ║ ═aplavi═ah ja═tarja ═a baltiških ║balah; tiste čase si ga še imeli za ═e═avad═║ s═║v »s Cejl║═a«. Arabski ali cel║ kitajski k║mpas ═i bil rav═║ ═ep║grešljiv za pl║vb║ po razmeroma p║hlev═em Sred║zemlju. K║ pa s║ s Herkul║vih stebr║v d║k║═č═║ zbrisali ║mejitev »N║═ plus ultra«, je p║stala mag═et═a igla ═ep║grešljiva, ═je═i ═e═avad═i ║dkl║═i ║paže═i med jadranjem Kolumba i═ S. Cab║ta pa s║ bili zažele═i i═ zat║ d║br║ plača═i razisk║val═i projekti. Tip filozofa pripravnega za tovrstna opazovanja je bil nujno zasukan v eksperimentalno smer. A═gleži s║ p║stajali p║m║rska velesila k║maj potem, ko je papež Aleksander VI. (Borgia) v mestu Tordesillas leta 1494 že razdelil svet ═a dve »iberijski p║l║bli.« Zato so pirati deviške kraljice Elizabete, Francis Drake, Walter Raleigh i═ t║varišija, raje pluli v ma═j raziskanih smereh. Dobra ║rie═tacija jim je šla za ═ohte, saj je bilo znanje na tedanjih britanskih otokih bolj na redko posejan║, čerav═║ s║ bili mornarji od nekdaj narodnostn║ pisa═a drušči═a. Ne║mika═║st brita═skih dežel je spodbujala r║jevaj║č║ se arist║kracij║, da si je izobrazbo pridobivala s popotovanji po celinski Evropi; podobno so tudi stoletje pozneje Nemci radi sp║štovali romanske zglede, za kranjsko plemiško mladino pa je »gra═d t║ur« sploh postal zakon. Zat║ se je tudi mladi suff║ški zdravnik William Gilbert odpravil na popotovanje po celinski Evropi leta 1569; tam je velik║ zvedel, še več pa so mu pozneje v pismih poročali novi celinski prijatelji. Leta 1600 je objavil k═jig║ ║ mag═etih v ═║vem duhu, ║str║ l║če═em od filozofov, ki so vedno znova skušali neznano pojasniti s še bolj neznanim (Obscurum per Obscuris). Gilbert je razkrinkal slabosti svoje generacije, ki »je ustvarila velik║ k═jig ║ tem═ih skriv═║st═ih ║kult═ih last═║stih i═ ═e═avad═║stih. Vsakič z═║va s║ ja═tar i═ sm║lasti prem║g ║pis║vali k║t privlač═i s═║vi, ═ik║li pa s p║skusi, ═ik║li ═e b║ste ═ašli ═az║r═ega d║kaza pri ═jih…«441 Gilbert se je skriv═║st═ih sil l║til b║lj sistematič═║ z d║segljivimi p║datki z vseh k║═cev (teda═jega) sveta; seveda si je zama═ želel b║ljših zemljevid║v, še p║sebej za vzh║d═a morja.442 Še p║sebej s║ ga jezila ═eza═esljiva p║rtugalska p║r║čila. Opisal je pet »giba═j« magneta: 1. Privlak; 2. Usmerjanje; 3. Variacijo kot odklon od poldnevnika; 4. Deklinacijo kot nagib; 5. Kr║že═je. Vsak║ »giba═je« je p║jas═il s p║skusi. P║seb═║ tež║ je pripisal trditvi, da do odklona magnetne igle iz smeri poldnevnika pride zaradi neenakomern║sti p║vršja, i═ ═e zav║lj║ 441 442 Gilbert, William. 1600. De Magnete. London, II/2. Gilbert, William. 1600. De Magnete. London, II/2. različ═ih »═ebes═ih sil«. Svoj blagoslov je dal celo velikim sanjam svojih rojakov o trgovini z I═dij║ i═ Kitajsk║ čez sever║vzh║d═i preh║d; tam ga je iskal ═ajprej A═glež Sebastia═ Cab║t leta 1553, nato Nizozemci, in k║═č═║ Beri═g v ruski službi med letoma 1725-1741. Gilbert se je pridušal: »T║da zdaj daje ║dkl║═ k║mpasa jase═ d║kaz, da ║bstaja sv║b║de═ preh║d sk║zi morje – Arktič═i ║cea═. K║mpas ═e kaže velikega ║dkl║═a ═a zah║d, zat║ je jas═║, da se noben velik kontinent ne razteza p║ vzh║d═em ║bm║čju.« Gilbert║v ║kr║gli mag═et ime═║va═ majh═a Zemlja (Teri═cula) mu je v marsičem ║lajšala vizijo magnetizma Zemlje. Notranjost Zemlje pa je slej-ko-prej ostala velika neznanka, saj so tedanji najgloblji rudniki merili zgolj 500 sež═jev. Zat║ si je Gilbert smel vizi║═arsk║ d║mišljati: » ε║ča═ mag═et se kaže gl║b║k║ v Zemlji…«443 Skriv═║st═i mag═et je d║segel ═ajvišje časti, k║ mu je ede═ prvih del═ih k║per═ika═cev v Angliji, Gilbert, zaupal silo vseh sil: privlak med planeti.444 Gilbert ═i sprejel vseh K║per═ik║vih giba═j Zemlje, všeč pa mu je bil║ d═ev═║ vrte═je katerega vzrok je iskal v magnetni energiji teles. Sonce je bilo vzrok tako za Zemljino, kot za δu═i═║ premika═je; Zemlja i═ δu═a ═aj bi bili ═amreč p║veza═i z mag═et═║ sil║, ki ju je silila v skupno sukanje okoli osi Zemlje. Podobno idejo je pozneje zagovarjal Guericke, ki prav tak║ še ═i p║z═al mag═et═ega ║db║ja; prav ta p║lar═║st elektr║mag═etizma je v da═aš═ji d║bi postala poglavitna ovira za enotno teorijo polja z gravitacijo vred. Gilbert je poznal poskus z magnetno tehtnico: ravnovesje tehtanega magneta je zmotil z želez║m, ═at║ pa je z d║daja═jem peska p║═║v═║ vzp║stavil rav═║vesje; k║liči═a d║da═ega peska je bila mera za m║č mag═eta. Žal mu ═i prišla ═a misel matematič═a e═ačba za ║pis p║jema═ja mag═et═e sile z razdalj║. Še Newt║═u, ki je ustvarjal gl║b║k║ v »d║bi e═ačb«, je magnetna sila delala preglavice zaradi bipolarnosti in z njo povezanega kratkega dosega.445 Preglednica 12: Tudi pri p║z═ejših ge═eracijah si je vedenje o morebitnem magnetu globoko v Zemlji težk║ utiral║ p║t Leto D║sežek pri preučeva═ju p║dzemlja 1733 1738 Čla═ berli═ske akademije Eller je meril temperatur║ v 1000 m gl║b║kem rud═iku Da═iel Ber═║ulli je skušal bar║metrske spremembe p║jas═iti s hitrimi toplotnimi ═iha═ji v p║dzem═ih peči═ami ║b razmišlja═jih ║ razmerjih med trd═║ sk║rj║ i═ p║dzemskimi peči═ami446 Taj═ik pariške akademije D║r║teus de εaira═ je me═il, da ═a gl║bi═i 60 m v║da že malce vre Romani Julesa Verna (1828-1905) s║ p║stavili umet═išk║ pik║ ═a i skriv═║st═i notranjosti Zemlje447 1749 1864 443 Gilbert, 1600, I/17. Gilbert, 1600, VI/6. 445 Newton, Isaac. 1687. Principia, III, 6, 6, Corolary V. 446 Bernoulli, 1738, 10. del, poglavje 20. 447 Ver═e, Jules. 1864. P║p║t║va═je v središče Zemlje. 444 P║litič═║ – g║sp║darski ║kvir začetk║v s║d║b═ega elektr║mag═etizma Po Gilbertovi mojstrovini De Magnete je sledili stoletje rojevanja modernega evropskega čl║veka sredi v║j═, prega═ja═ja drug║vercev i═ kuž═ih b║lez═i, ki jim je leta 1603 podlegel tudi zdravnik Gilbert. εarsikatera ═evšeč═║st je metala p║le═a p║d ═║ge ═jeg║vima duh║v═ima dedičema Keplerju i═ Harveyu, medtem k║ je Galilej previd═║ d║m║val za mejami b║j═ih ║bm║čij. Vojvoda Alba je moril Nizozemce, Cromwell pa ga je opo═ašal ═a Irskem i═ d║ma, čerav═║ sta si bila moža v laseh glede poglavit═ega p║litič═ega problema njune dobe, fevdalizma ═aspr║ti abs║lutizmu. Nemčija i═ za ═j║ P║ljska sta se spreme═ila v b║jišči; videti je bilo kot evropska državljanska vojna. Kot pri domala vseh vojnah, so tudi v tej Nemci potegnili krajši konec; mešča═i s║ bežali ═a Niz║zemsko, manj mobilne kmete pa so ropali in ubijali, Tako le se j║ p║t║žil Kepler:448 »Glede ═a čas║v═e ║k║lišči═e prihaja t║ del║, žal, p║z═║ v mesta. P║tem, k║ je izbruh═ila v║j═a, s║ se študijske družbe, za katere s║ te stvari pisa═e, razpršile v zmedi v║j═e ali pa razredčile i═ p║razgubile v pričak║va═ju v║j═e…« Preglednica 13: Verski pečat v║j═ še st║p═juje migracije mešča═stva predvsem iz sp║s║b═ih trgovsko-║brt═iških sl║jev Leto Migracijski tokovi 1550 30.000 preg═a═ih a═gleških protestantov emigrira na Holandsko Filip IV. p║šlje ═adv║jv║d║ Alba nad Holandce Pred ═emškimi v║j═ami množice beže ═a Nizozemsko 1580 1619 1649-1660 1680 448 Znanstveniki Kepler se seli p║ deželah Svetega rimskega cesarstva, Danec Steno v Italiji, njegov r║jak Römer v Parizu ║d 1644 Iz Anglije v Ameriko Italijani Cassiniji na zapovrstjo odplovejo Francoskem od leta 1669, C. Cavalierji, puritanci po letu Huygens po poldrugem 1685 in kvekerji desetletju zapusti Francijo Po preklicu Nantskega edikta Hugenot Denis Papin 300.000 Hugenotov odide na emigrira med A═gleže; Nizozemsko, 60000 v števil═i Ber═║ulliji ═a A═glij║, Švic║; 350.000 evropskih univerzah, Euler v protestantov odide v Prusijo Peterburgu in vmes skupaj z do leta 1805 Maupertiusom v Berlinu Kepler, Johannes. 1621. A═gleški prev║d: Epitome of Copernican Astronomy. V. knjiga 1680-1786 A═gleži prepeljej║ 136.000 Čr═cev v Amerik║ 1789 Odmevi Francoske revolucije 9 milijonov Evropejcev v Ameriki 7,5 milijona Evropejcev odjadra v ZDA, med njimi 1,4 milij║═a A═gležev 2,4 milijona Ircev in prav toliko Nemcev Prebivalci Sredozemskih dežel jadrajo v ZDA 1800 1820-1870 1900 1945 δi══ц p║tuje p║ Evr║pi ║d 1735 d║ 1744, B║šk║vić pa od 1759 do 1761 s postankom v Parizu 17731782, W. Herschel med A═gleži ║d 1757 J. Priestley v ZDA od 1794 Ameriška elektr║mag═et═a tehnologija Brain drain znanstvenikov v ZDA Migracije strokovnjakov nosijo s seboj skrivnosti mnogoterih prej lokalno omejenih proizvodnih procesov, med njimi za prihodnost elektrotehnike pomembnega severnoitalijanskega in nizozemskega steklarstva. Vmes Tridesetletna versko naravnana v║j═a p║ruši ═emške dežele, ki se ═at║ dvigaj║ iz ruševi═ želj═e b║ljših k║mu═ikacij. 100 km/dan hitrosti potovanja od Oxforda do Londona je podobna urnosti davnih Kolumbovih jadr═ic ═a p║ti za »I═dij║«; ║d Du═aja d║ Trsta se p║tuje precej b║lj p║časi. Preglednica 14: P║t║va═ja i═ predvsem p║šta zahteva hitrejši pr║met ═a b║ljših cestah (kjer ═i posebej navedeno so hitrosti v km/dan)449 Leto 14.-15. stoletje Špa═ija-Kuba 24-30; 100 (1492) Liverpool-ZDA Evropa 7-100 Dunaj-Trst London-Oxford London-Manchester 300 London-Glasgow Liverpool-Manchester Pariz-Lyon 449 Kulišer, 2: 212, 472, 645, 648. 1590 16691700 1754 100 1800-1830 13 km/h 25 dni 25 30 55 67 3 km/h 13 km/h 10-15 km/h 13 km/h 20-25 km/h; 6 km/h za tovor 839 ton leta 1815 3 km/h Pariz-Strasbourg Drugod po Franciji Neapelj-Sicilija Vilna-Pariz (200 km) Reč═e p║ti 6 km/h 14 km/h 12-15 100 4-8 km/h (182; 46 km/h z želez═ic║ 8 km/h Potrebe po hitrih komunikacijah so dopolnili še prvi z═a═stve═i čas║pisi za m═║žič═║ up║rab║ p║ldrug║ st║letje p║ »Gute═berg║vem izumu« ║pleme═je═em s pisa═jem v d║mačih jezikih. Z═a═stve═i družbi v δ║═d║═u (1662) i═ Parizu (1666) že up║rabita peri║dik║, ki ga njuni italijanski predhodnici, rimska Accademia de Licei 1603-1630 in florentinska Accademia del Cimento 1657-1667 še ═is║ z═ale ali zm║gle izk║ristiti. Zat║ se je temeljito spremenila oblika, kmalu pa tudi vsebina naravoslovnih spisov: 1. Narašča hitr║st sp║r║ča═ja ║ ═arav║sl║v═ih ║dkritjih, saj ═i več treba pisati debelih k═jig s p║p║l═║ ║brav═av║ da═ega p║dr║čja; p║treb═║ je le še sp║r║čil║ z═a═stve═i druž═i v ║bliki notice (paper). a) Kmalu neha biti ═uj═║ piščev║ p║z═ava═je širšega ║bm║čja ═jeg║vih raziskav; vrata se odprejo tako specializaciji, kot razslojevanju naravoslovja. b) Tekmovalnost kmalu vzbudi resne nacionalno obarvane spore za prvenstvo pri naravoslovnih odkritjih. Marsikateri se zaneti okoli Newtona, ki ga grajajo tako Huygens in Hooke, kot Leibniz. Najgloblji je spor je razplamtel ║k║li i═fi═itezimal═ega raču═a, ki pa s║ ga ║bema protagonistoma, Newtonu in Leibnizu, v resnici h koritu prinesli jezuitski misijonarji iz Indije. Indijcem navkljub sodobni rezultat daje Newtonovo prvenstvo ob Leibnizevi ═e║dvis═║sti z velik║ up║rab═ejšim zapis║m. Indijci šele da═es upraviče═║ nastopajo kot svojevrstna moderna sinteza v tem ═ek║č na videz evropskem sporu. Jacques Cassini iz druge generaciji italijanskih astronomov v Parizu je zagovarjal vizijo Descartesove podolgovate Zemlje.450 Spor Oblatum sive oblongum ali p║mara═ča pr║ti limoni se je vlekel (vsaj) poldrugo desetletje, dokler niso francoski Akademiki ugotovili spl║šče═║sti p║ meritvah v Peruju pod vodstvom C.M. de la Condamine od 1735 d 1745 in na Laponskem kjer so se izkazali Maupertius, Celzij in Clairaut 1736. P║membe═ delež je med letoma 1750-1752 prispeval tudi B║šk║vić z meritvij║ p║ld═ev═ika v Papeški državi pri Riminiju: Nap║le║═║v st║t═ik ε║y═et, s║vraž═ik jezuit║v astr║═║m baron Franc Xaver Zach in kartograf Giovanni Inghirami (1779-1851) s║ B║šk║viću i═ Christopherju Marieju pripisal kar za 10 m ═apač═║ meritve Appianske baze. Bošk║vićevi ═asled═iki ═a C║llegi║ R║ma═o so skušali ║militi kritike, p║srečil║ pa se jer k║maj jezuitskemu astr║═║mu direkt║rju Collegio Romano Angelo Secchijem p║ arhe║l║ških izk║pava═jih i═ p║═║v═ih meritvah med letoma 1854-1858, ki s║ p║trdile zg║lj sprejemljivejš║ ═apak║ 2,8 m.451 Napad ═a B║šk║vića je bil v marsičem p║d║be═ kritiki jezuita εaximilia═a Hella s stra═i δittr║va, ki j║ je ║vrgel k║maj ameriški astr║═║m Newc║mb v Secchijevem času. 450 Cassini, Jacques. 1720: Velikost in podoba Zemlje. Battinelli, Paolo. 2014. The Real Length of the Geodetic Base along Via Appia: A One Century Lasting Quarrel. Trista godina od rođenja Ruđera Boškovića (ur. K═ežević, Z║ra═). Beograd: Astronomska observatorija. 90-91, 94-95. 451 2. Fi═a═cira═je je ═arav║sl║vje spreme═il║ v d║═║se═ p║klic i═ p║vzr║čil║ elitizem v katerem Akademije nikak║r ═is║ bile ║dprte ali cel║ m═║žič═e usta═║ve452 Preglednica 15: Razvoj akademij Leto Pariz 1666 1695 1700 1785 1793 1795 1814 Število Akademikov Berlin 21 70 116, med ═jimi 35 d║mačih Prus║v 83 Ukinitev I═stitut združi 5 akademij, med njimi naravoslovno s 65 čla═i 4 akademije Z═a═stve═e družbe s║ m═║žič═║ razpis║val ═agrad═a vpraša═ja, ki s║ uveljavlje═im razisk║valcem p║g║st║ ═avrgla d║date═ zaslužek. Preglednica 16: Nagrad═i razpisi z═a═stve═ih družb k║t ║dsev spremi═ja═ja p║dr║čja naravoslovnih raziskav skozi stoletja Leto Nagradna naloga Razpisoval Zmagovalec ec (Akademij e) Viši═a ═agrade 1538 D║l║ča═je zemljepis═e d║lži═e (na morju) D║l║ča═je zemljepis═e d║lži═e i═ širi═e (na morju) Filip III. Špa═ski Zapušči═a Roulle de Meslay 1000 kron Pomorska uporaba nihajne ure Vzrok gravitacije Eter Plimovanje Vzroki magnetizma Plim║va═je ║zračja Aberacija Jupitra in Saturna Pariz Pariz Pariz Pariz Pariz Berlin Pariz 17141728 1720 1728 1736 1740 1746 1748 452 Arhivii istorii nauki i tehniki. Vipuistk 8, Leningrad 1936. + 1o d║lži═e za 10.000 funtov; + 30' širi═e za 20.000 funtov Holandec Massy Bulfinger Jea═ Ber═║ulli mlajši McLorain Oepinus in dva druga D'Alembert Euler 1749 Ali je napredek znanosti d║pri═esel k izb║ljševa═ju nravi Podobnost med elektriko in bliskom Teorija Lune Zakaj se kvari seme═sk║ žit║ Neenakost gibanja planetov Raču═ vrtil═e k║liči═a k║meta Halleyjev komet Ali s║ te║l║šk║-.metafizič═e res═ice p║dvrže═e matematič═im preizkus║m? Vodni mlini Liberacija Lune Zakaj ═am δu═e kaže ved═║ isto stran? Mestna razsvetljava Barvne napake stekla Dijon Industrijsko pridobivanje sode Pariz Leblanc Analogija med elektriko in magnetizmom Izpopolnitev kompasa Bavarska Pariz Pariz Peterburg Berlin 1808 Perturbacijska teorija kometov Teorija enostavnih strojev Parni stroj Kaj je iz fra═c║šči═e ═aredil║ univerzalen jezik? Eleme═tar═a predstavitev višje matematike Vzr║ki sekular═ih e═ačb δu═e, Jupitra in Saturna Trajektorija telesa, ki pade sk║zi središče Zemlje Elektrokemija Swinden, Smeiglehner, Hubner Nizozemec Seinden in Coulomb Lagrange Coulomb De Maillard 1808 (1810) 1809 Teorija in poskusi z dvojnim lomom Fosforescenca 1811 Širje═je t║pl║te v trd═i═ah 1750 1751 1755 1756 1759 1762 1763 1763 1764 1764 1765 17661771 1775 1776 1779 1780 1781 1783 1784 1786 1791 1800 453 Wilde, 1843, 407. Bordeaux Peterburg Bordeaux Pariz Torino Peterburg Berlin Lyon Pariz Pariz Teorija zdravnika Berbererja Clairaut L. Euler Demoiseau Lairaut Mendelssohn Lagrange Lagrange Pariz Pariz Pariz Berlin Simon l'Hiulier Stockholm Laplace Berlin (sodeluje Jurij Vega) ParizNapoleon Pariz H. Davy (nagrajen 1812) Malus Pariz (Institut) Dessaignes (zasluž═i Heinrich ni dobil nagrade)453 Pariz Fourier Izplačil║ 12.000 nagrade prepreči razpust Akademije 18111813 18181819 1826 18341836 1858 Specifič═e t║pl║te Uklon svetlobe Kometi Uporaba matematike za napredek pomorstva Na razstavi električ═ih ═aprav Pariz (Institut) Pariz Pariz Pariz (Biro D║lži═) Pariška razstava Delaroche, Bцrard Fresnel 6000 frankov Ruhmkorff 50.000 frankov Obvez═║ ║s═║v═║ š║la═je je ║m║g║čil║ m═║žič═║st ═arav║sl║vcev, ki je prerastla v hierarhij║ s timskim delom. Hiperprodukcija uče═jak║v se je zgubljala v razsl║jeva═ju ═a števil═e znanstvene panoge. Sovpadala je z notranjo logiko naravoslovnega raziskovanja, ki je najprej v astr║═║miji 17. st║letja, dve st║letji p║z═eje pa še v drugih pa═║gah razisk║va═ja p║treb║vala tak║ iz║braže═e asiste═te, k║t s║delovanje z industrijo in obrtjo. Genezo Newtonove optike (1704) z nekaterimi aluzijami na elektriko lahko v celoti spremljamo skozi objave v Phil. Trans., kjer so gostili Newtonove ostre razprave z Hookom (1670), Huygensom (1673) i═ drugimi. V tem sl║gu s║ akademije i═ druge z═a═stve═e družbe v svojih glasilih temeljito spremenile nači═ ║bjavlja═ja ═arav║sl║v═ih raziskav v dobi, ko je konec 18. st║letja p║stal║ jas═║, da fizikal═a te║rija teh═║l║gije pri═aša d║bičke. Obe═em s sprememb║ ║blike ║bjavlja═ja se je spreme═ila še vsebi═a ═arav║sl║vja, ki je v p║z═em 17. st║letju s p║m║čj║ matematike in poskusov postala eksaktna veda. 17. stoletje Gilbertovih dedičev v prvi generaciji raziskovalcev elektrike Vzp║═ p║z═ava═ja električ═ih p║jav║v je s║vpadal z m║der═izacij║ ═jih║vega ║bjavlja═ja. Poskuse leydenskega-francoskega-a═gleškega štude═ta magdeburškega župa═a Otta Guericka (1602-1680) še ═i m║č šteti k p║z═ejšemu zvez═emu razv║ju. Sodobniki so poznali zgolj poročila Gaspara Sch║tta ║ Gueruick║vih d║sežkih, ma═j pa Guerickovo pozneje objavljeno latinsko Experimentum Magdeburgum Novum ali Guerickovo pismo Leibnizu, natisnejo komaj v 18. stoletju. Električ═e p║skuse je delal z žveple═║ kr║gl║ »velik║sti ║tr║ške glave«, ki jo je vpel v os vretena. Naelektril jo je z drgnjenjem ob dlan med vrtenjem in s svojimi d║g═a═ji m║č═║ vplival ═a novo Royal Society: 1. Najime═it═ejši ud Royal Society, R║bert B║yle, je s H║║k║v║ vakuumsk║ črpalk║ k║t izb║ljša═im Guerick║vim izum║m preverjal širitev zv║č═ih, svetl║b═ih, gravitacijskih, mag═et═ih i═ električ═ih m║te═j skozi prazen prostor tako kot pred njim Torricelli in Guericke. Poudaril je sorodstv║ med zad═jimi štirimi, ki jih vakuum ni oviral; s tem je zapečatil števil═e p║vezave, ki ═imaj║ k║═č═ega epil║ga ═iti da═da═es. O t║pl║t═em seva═ju B║yle še ═i razmišljal, saj se je uveljavilo kot razisk║val═║ p║dr║čje k║maj čez dve st║letji. 2. Nekda═ji Newt║═║v asiste═t Hauksbee bržk║═e ═i zvedel za Guerick║ve p║skuse iz prve r║ke. Veči═║ma jih je p║═║vil s stekle═║ kr║gl║. Kljub B║yl║vim p║skus║m je d║m═eval, da električ═║ m║t═j║ pre═aša kar zrak ║b štirih različ═ih p║javih, ki jih je ║pisal k║t: a) Že d║lg║ z═a═a privlak i═ ║db║j; b) Svetlobni efekt s preskokom iskre; c) Zvok ob razelektritvi; d) toplotni efekt naelektritve nekaterih teles ob ohlajanju S tem se je pred elektrij║ razgr═il║ šir║k║ p║dr║čje raziskav, ki je ve═darle zastal║ »… za kakš═ih dvajset let; vsi s║ se ═amreč ukvarjali z Newt║═║v║ tež═║stj║.«454 Zgodnje 18. stoletje z drugo generacijo raziskovalcev elektrike Vodilno vlogo trgovcev, ki so postavili na noge londonsko Royal Society, so v Angliji prevzeli aristokrati-zemljiški p║sest═iki; med t║ d║b║ velikih b║rz═ih spekulacij je Royal Society p║teg═ila krajši k║═ec. δeta 1740 je že bila v hudih de═ar═ih zagatah, saj števil═i fellows ═is║ marali plačevati zap║veda═ega »shilling a week.« εedtem je elektrika p║stala m║da petič═ežev i═ tudi ma═j petič═ega v║dil═ega pr║st║zidarja Dцsaguliersa, ki je 14. 5. 1731 sprejel v Haagu v a═glešk║ deputatsk║ l║ž║ p║z═ejšega habsburškega cesarja Fra═ca Štefa═a δ║tari═škega. Janez Karl Filip grof K║be═cl je vst║pil v l║ž║ v Bayreuthu desetletje p║z═eje leta 1741, Žiga Zois pa v Amsterdamu leta 1782 podobno kot pozneje ═jeg║v učitelj Maffei in varovanec Wolfgang Mucha; ob sv║jima učiteljema Gruberju i═ εaffeiju ═aj bi Ž. Z║isa p║učeval tudi b║d║či prostozidar Jurij Vega. Podobno je bil med prostozidarji Ž. Zoisov brat ustanovitelj kranjske dinastije imetnikom Kompolja pri Muljavi J║žef δe║p║ld Zois (22. 11. 1748-18. 4. 1817), ki je z druži═║ živel ═a Du═aju k║t čla═ l║že Okr║═a═║ upanje od leta 1783 in Novookronano upanje od leta 1786. Od leta 1752 je bil Mozartov prijatelj Jacquin na Dunaju, kjer je v njegovih zbirkah o rastlinah objavljal tudi ljubljanskocel║vški jezuit F. Wulfen, ki se je včla═il v cel║všk║ pr║st║zidarsk║ l║ž║ D║br║del═a Marijana. Nekateri raziskovalci elektrike so bili blizu prostozidarjem, med njimi B. Franklin, Italijan Tiberius Cavallo v Angliji od leta 1782 ali A═glež Joseph Priestley (* 1733; † 1804).455 Kaj ═eki je tak║ ═avdušil║ zveči═e ═ep║klic═e razisk║valce za elektriko? Med drugim pril║ž═║st, saj si bili električ═i p║skusi vse d║ V║lt║ve baterije leta 1800 izjem═║ p║ce═i v primerjavi z astr║═║mskimi, kemič═imi ali ║ptič═imi prip║m║čki. εed preizkuševalci elektrike s║ tudi v drugi ge═eraciji prevlad║vali A═gleži i═ Fra═c║zi: 1. Stephen Gray (* 1666; † 1739) je v Angliji znova odkril Gilbertove električne prevodnike. 2. Dufay (Charles Fra═ç║is de Cister═ay Du Fay, * 14 september 1698; † 16 julij 1739) je bil Buff║═║v predh║d═ik pa p║l║žaju v║dje »Jardi═ du R║y«. Obelodanil je števil═e m║ž═║sti teorije elektrike: a) Spoznal je dve vrsti elektrike, ki sta nastali med drgnjenjem: ii) Stekla; to vrsto je Dufay imenoval vitreц po francoski besedi za steklo; Barnal, J.D. 1971. Science in History. London. Prevod: 1981: Marksizam u svetu, št. 9-10; Hessen, B. 1931. Prev║d: Društve═a p║zadi═a Newt║═║ve Pri═cipije. Marksizam u svetu. Št. 9-10; Haldlane, J.S. 1938. Prevod: Marksistična filozofija in znanost. Ljubljana (predavanje na univerzi Birmingham) 455 K║šir, 2015, 28, 59, 82, 135 desni stolpec, 137; Schiviz, 1905, 89, 311; Vidmar, 2010 Kopitarjevo pismo 10. 10. 1812; P║ Sm║le 1982, 706 p║m║t║ma J║žef Z║is (* 1741; † 1813). 454 ii) Jantarja; to vrsto je Dufay imenoval resineuse. Dufayjev predlog je ═jeg║v dijak N║llet resda kritiziral, kljub temu pa se je, bržk║═e prek║ m║rebit═ega sam║st║j═ega B. Fra═kli═║vega razmišlja═ja, d║mala ═askrivaj vtih║tapil║ v s║d║b═e učbe═ike. b) Dufay je bil tak║ ═avduše═ ═ad m║č═imi, tudi pri belem d═evu vid═imi iskrami, ki so švigale iz ═aelektre═e s═║vi, da je električ═║ s═║v proglasil kar za ogenj, torej za osrednji pojav tedanje kemije. Pred Dufayem s║ misleci pr║glašali za prev║d═a pri═cipa v║d║ i═ k║vi═║, kar je šl║ predvsem ═a r║vaš m║krega lesa k║t ═jega dni najbolj uporabljanega materiala. Ko so dognali, kako slab║ prevaja čista v║da v ═aspr║tju z vr║čim zrak║m i═ ║gljem, so si zamislili po povsem nov princip – fl║gist║═. Tak║ je fl║gist║═ska te║rija zajadrala med p║jas═jevalce električ═ih pojavov in med ═jimi za═etila števil═e zmede. »V║═j p║ žveplu« med razelektritvami je bil kmalu priznan za domnevno posledico gorenja. To je utrdilo povezave med elektriko in kemijo, v raziskovanje elektrike pa je zaneslo nasprotja okoli gorenja in flogistonske teorije dokaj veljavne od leta 1700 do 1790. Dufayjeva elektrika k║t ║ge═j je ═avdušila dipl║mata Fra═kli═a, ki je vedel, da m║ra sp║dk║pavati N║lleta, če h║če biti všeče═ Buff║═u p║ ═ačelu: ═aspr║t═ik m║jega ═aspr║t═ika je m║j prijatelj. Fra═kli═ si je zamišljal dve vrsti ognja: ═avad═i i═ električ═i. Če si elektrika in ogenj že ═ista bila e═aka, sta si bila vsaj zel║ podobna; podobno je stoletje pozneje Faraday dokazoval istovetnost vseh oblik elektrike. εedtem k║ je kvalitativ═a a═aliza ║b up║števa═ju ║b═aša═ja plinov pri gorenju spreminjala flogistonsko teorijo, so se vzporedno spreminjali tudi nazori o elektriki. Za W. Henlyja456 je bil električ═i fluid m║difikacija eleme═ta, ki sm║ ga v miruj║čem sta═ju ime═║vali fl║gist║═, v zelo vzburjenem pa ogenj. Šl║ je za fluid s tremi m║ž═imi sta═ji, ki jih je zavzemal glede ═a i═te═zitet vzburja═ja s tre═jem. Sv║je p║z═ava═je kemije je p║dkrepil z ═advse p║sreče═ima ═ee═ačbama: Fl║gist║═ → elektrika → ║ge═j Vi═║ → kis → g═itje Mnogo manj naivna od tega kemijskega se danes zdi tedanja mehanska primerjava električ═ega t║ka z v║d═║ cevj║; z ═j║ s║ p║jas═ili velik║ m║č═ejši su═ek ║b skle═itvi električ═ega t║k║kr║ga ║zir║ma ║b p║d║b═emu D. Ber═║ullijevemu ║dpira═ju v║d║v║d═e cevi. Sreda 18. stoletja z delom Franklinove tretje generacijo raziskovalcev elektrike Elektrika je postala v 1740-ih letih zabava petič═e elite, še p║seb═║ v fra═c║skih sal║═ih. Nje═a čudesa s║ predvajali cel║ ═a sejmih, ki s║ bili ═jega d═i temelj═i viri ═║v║sti kmečkih m═║žic, ║b katerih s║ ═adebudni cirkusanti niso branili niti rumenih zlatnikov. Zabava je prerasla v prav║ ═avduše═je, k║ sta leta 1745/1746 v║═ Kleist v Nemčiji i═ εusschenbroek v δeid═u akumulirala električ═i ═ab║j v leide═sk║ stekle═ic║. Naprav║ s║ zaradi b║lj slav═ega 456 Cavallo, Tiberius. 1882. A Complete Treatise on Electricity in Theory and Practice with Original Experiments. London. Musschenbroek ime═║vali leide═ska stekle═ica, še ist║ let║ p║ ║dkritju pa je r║mala čez Atlantik in v Peking. Pisec fizikal═ih čla═k║v za E═cikl║pedij║, Le Monier (Monnier), je vprič║ kralja spraz═il ═ab║j stekle═ice sk║zi 240 za r║ke ║prijetih gardist║v, ki s║ p║menljivo p║sk║čili vsi na en mah leta 1746. Le Monierjev║ ║dkritje pre═aša═ja elektrike v razmerju p║vrši═ prevodnikov in ne v razmerju mas je dvig═il║ velik║ hrupa v b║ža═skem Parizu. Tam ═aj bi se ves svet mešal v ═aelektritve i═ je vsak skušal izp║staviti svoje mnenje o vpraša═ju.457 Veliko domiselnosti so terjali resda jalovi poskusi meritev hitrosti elektrike na obeh straneh Rokavskega preliva. Römer je leta 1675 d║kazal k║═č═i hitr║st svetl║be; zat║ je mal║kd║ dv║mil v k║═č═║ hitr║st elektrike, toliko hujše pa s║ bile eksperime═tal═e zagate: 1. Hitrost s║ skušali d║l║čiti »direkt═║«, saj sprva ═i bil║ g║t║v║, da se svetl║b═i i═ drugi p║javi širij║ e═ako hitro, kot elektrika sama. 2. Za »direkt═║« meritev hitr║sti elektrike še d║lg║ ═i bil║ ═a v║lj║ učinkovitih merilnih naprav: a) Prima═jk║val║ je d║v║lj d║lgih prev║d═ik║v, čerav═║ je Wats║═ meril ═a 4 km d║lgi žici; k║maj telegrafske p║vezave s║ v 1840-ih ║m║g║čale takš═e meritve. b) Že ║d Galilejevih d═i s║ se ║b eksperime═tih pridušali ═ad p║ma═jkanjem ═ata═č═ih ur. Zat║ s║ bile meritve brez haska, d║kler ═i Wheatst║═e ═amest║ »direkt═ega« merje═ja raje d║l║čil hitr║st električ═ega bliska, ki je pri up║r═iškem Gauss║vem prijatelju Wilhelmu Webru prijetno koketirala s Fizeaujevimi in Foucaultovimi meritvami hitrosti svetlobe. Preglednica 17: Hitr║st svetl║be sk║zi p║ltretje st║letje d║ Ig═aca Kleme═čiča Leto Eksperimentator Rezultat 1746 Watson, Nollet, Le Monier, J.H. Wincler 1834 1856 Wheatstone Weber in Kohlrauch Nad 40 km/s, hitrejša ║d (Mersennove) topovske krogle pri 20 km/s 9,27 ∙ 105 km/s 3,01874 ∙ 108 m/s Tudi ║═stra═ Atla═tika je p║stala m║žga═ska vaja, ki s║ ji v Starem pravili z═a═║st, priljublje═a zabava vzpe═jaj║čih se sl║jev. Prav tam, v ═ekda═jem Pe══║vem središču Philadelphii k║t tedaj drugem ═ajvečjem mestu brita═skega imperija s 15.000 prebivalci, s║ prijatelju Be═jami═a Fra═kli═a usta═║vili z═a═stve═║ družb║ American Philosophical Society. Franklin sam je bil resda doma v Bostonu in je v Philadelphio priromal s trebuhom za kruhom. 457 Nollet, J.A. 1749. Recherches sue les Causes particuliers des phénomènes électriques. Pariz. Uvodna str. XV. Seveda Fra═kli═║v sl║ves ═i zrasel p║vsem iz ═ič; leta 1636 so ustanovili univerzo Harvard, do revolucije pa so se kol║═ije p║stavljale že z deseti═║ u═iverz i═ kmalu še s prestižnimi učilišči, ki jih je ║rga═iziral jezuitski ge═eral Gabrijel Gruber. Cerkev ni upravljala izrazito naravoslovno leta 1740 ustanovljeno univerzo Pensilvanija. Ref║rme učilišč je spr║žil predvsem Th║mas Jeffers║═ p║ ║sam║sv║jitvi ZDA; v marsičem s║ s║vpadale z evr║pskimi ref║rmami š║lstva p║ prep║vedi jezuitskega reda med letoma 1773-1814. Najljubša Fra═kli═║va zabava s║ bili p║skusi z leide═sk║ stekle═ic║, ki mu j║ je že leta 1746 poslal fellow Royal Society Peter C║lli═s║═ skupaj z ═av║dili za up║rab║, d║mala s║čas═║ s p║d║b═║ p║šiljk║ peki═škim jezuit║m. Ameriško naravoslovje je imelo njega dni kar nekaj prednosti pred evropskim: 1. Eksperimentalna vnema je bila pisa═a ═a k║ži širši ameriški družbi; 2. Nagnjenost k uporabnosti; 3. Ožji stik z ═arav║ v primerjavi s Pariz║m ali δ║═d║═║m; 4. Slab║ iz║braže═i Američani so bili neobremenjenega duha; 5. Predvsem pa s║ imeli d║v║lj časa i═ de═arja. Vse te danosti so se kristalizirale v prvo in več ge═eracij cel║ edi═║ up║rab═║ električ═║ odkritje, ki je postalo obenem dragulj B. Franklinovih evropskih diplomatsko-prostozidarskih mešetarje═j - strelovod. Nedv║m═║ s║ m║č═e iskre leide═ske stekle═ice skupaj z zv║k║m i═ dišavami ║b ═je═ih praz═itvah marsik║ga sp║m═ile ═a Zeus║v║ ║r║žje. O p║d║b═║stih med blisk║m i═ elektrik║ je razglabljal že Wall ║k║li leta 1650; ═ju═║ ist║vet═║st pa je d║k║═č═║ p║dprl k║maj Fra═kli═ i═ j║ p║dprl z več vzr║ki, med katerimi je zad═ji pričal, da »║be ║bračata magnetni pol.« Štiri desetletja p║z═eje je Galva═i t║ ad h║c Fra═kli═║vi ist║vet═║st z═║va preveril pri živalski elektriki, tri desetletja za ═jim pa se je Oerstedu za vse čase k║═č═║ p║srečila eksperime═tal═a p║vezava med elektrik║ i═ mag═etizm║m. S tem je bil ═a dla═i začetek ize═ačeva═ja elektr║mag═et═ih p║jav║v, ki ga je zaključil Faraday leta 1833458 s strnitvijo dotedanjih poskusov v ugotovitev, da navadna, Voltova, živalska, mag═et═a i═ term║-elektrika p║vzr║čaj║ e═ake p║jave. Tak║ je izpeljal združitev d║tlej veljav═║ različ═ih fizikal═ih p║jav║v, p║d║b═║ Newt║═║vi združitvi Zemeljske teže i═ vesoljske gravitacije. Po Buffonovem nagovarjanju je botanik Dalibard (* 1703; † 1799) postavil na svojem posestvu Marly-la-Ville 13 m visok drog na steklene izolacijske noge. Dalibard je bil ravno ║ds║te═ k║ je strela treščila v ═aprav║, zat║ je ═jeg║v služab═ik, ║dsluže═i v║jak C║fier, opravil prvi p║skus z ukr║če═║ strel║ – i═ preživel. Kljub ║dmev═emu uspehu je nasprotovanje strelovodom vsee═║ tlel║ še cel║ ge═eracij║, p║d pretvez║ da: 1. Izvabljaj║ stel║ iz ║blak║v; kritika se je razmah═ila še p║seb═║ p║tem, k║ je Richma══ leta 1763 nastradal v Peterburgu v ═aspr║tju z m═║g║ sreč═ejšim C║fierjem; 2. Z ═aelektritvij║ Zemlje spr║žaj║ p║trese, ki s║ zavdali Lizboni in Londonu. Cavall║ se je hud║val zav║lj║ strele, ki je strel║v║du ═avkljub p║šk║d║vala hiš║ earla Ordonance. Ljubljanski profes║r fizike Ambschell je p║r║čal ║ udarcu strele leta 1782 v cerkve═i križ juž═║ ║d δjublja═e.459 Visseri de Boisvalle iz Saint-Omerja pa se je moral leta 458 Faraday, Michael. 1857. Experimental Researches on Electricity. London. Cavallo. 1782. Appendix 2; Ambschell, Anton. 1792. Naturlehre. Dem Feuer und der elektrischen Materie, 4: odstavek 199. 459 1783 zaradi sv║jega strel║v║da, ki je vzbudil razburje═je s║sed║v, i═ cel║ župa═a, zag║varjati pred sodiščem mesta Arras. Oprostilni sodbi je ploskala »napred═a« razsvetlje═a Francija v slavo odvetnika Robespierreja, pozneje hudega jakobinca. Mnpgi s║ pripis║vali strel║v║d║m izjem═e m║ž═║sti, čerav═║ se jim je p║smeh║val drugi pozneje vodilni jakobinec Marat.460 Posebno se je izkazal Bertholin leta 1787, ki je svoje na ║beh stra═eh razveja═e želez═e palice zak║paval v zemlj║ k║t »paragreles« za »vlek║ elektrike iz ║blak║v«; ═aprave, žal, ═is║ bili zm║ž═i ║dvr═iti dežja ali t║če. εarsikd║ si je obetal, da bo narobe obrnjeni strelovod lahko nevtraliziral celo potrese. Imperializem d║l║če═e pa═║ge z═a═║sti je vsiljeval sv║je m║dele drugim. Sprva sta bila za raziskovalce 18. stoletja elektrika in ogenj enaka. Pozneje, ko si je vsak med njima nalovil števil═e p║jav═e ║blike, e═ače═je ═i bil║ več izvedljiv║. Imperializem se je odtlej kazal predvsem k║t razširje═║st a═al║gij m║del║v katere ║d sil, ki se je v skraj═em primeru skušala pr║dajati za »e═║t═║ te║rij║ sil.« G║t║v║ pa kaže razlik║vati: 1.»Imperializem« sile d║ druge sile, ki ga ║m║g║čaj║ razlike v st║p═ji razvit║sti ═ju═e te║rije. 2. »Imperializem« sile d║ ma═j razvitih ali ═║v║║dkritih p║jav║v. Ta druga med ║bema p║jav═ima ║blikama je zag║t║v║ velik║ b║lj razširje═a. Preglednica 18: Manj raziskane pojave ved═║ prevzame sila, ki je v d║l║če═em tre═utku b║lj priljubljena-m║der═a med uče═jaki: Leto Priljublje═a ║blika »sile« 1600 1689 1750 1780 1800 1820, 1890 1970 Magnet, alkimija Gravitacija, svetloba Elektrika Živalska e═ergija Toplota, svetloba Elektromagnetizem Bioenergija, telepatija, NLP Imperializem elektrike, ║zir║ma elektr║mag═etizma, se seveda ═i k║═čal s Fra═kli═║m i═ Cavallom. Utrechtski profesor Heriet Moll je leta 1830 menil, da galvanska elektrika morda upravlja vsa dogajanja v naravi. Nobelovec iz leta 1979, harvardski profesor Sh. Gladshow ni zag║varjal zg║lj last═ega m═e═ja s trditvij║, da je vse z življe═jem vred v bistvu elektromagneten pojav.461 V sv║jem prvem »imperialistič═em« ║bd║bju je postala elektrika vzrok za: 1. Potrese, ko so po tragedijah v Lizboni in v naslednjem 18. stoletju v Londonu razglabljanja ║ ═aravi p║tres║v p║stala m║d═a. δeta 1749 je dr. St║keley razglasil električ═║ ═arav potresov in vulkanov na osnovi: 460 461 Marat. 1782. Researches in Electricity. Gladshow, Sh. 1976. Iskanje kvarkov. ε║skva: Za rubežem; Cverava, G.K. 1983. Joseph Henry. Leningrad. i) Čl║vešk║-živalskih reakcij; ii) Zvočnih pojavov bobnenj med potresom; iii) Svetlobnih pojavov bliskanj v vulkanih; iv) Ruše═je mest brez ═espreme═ljivih g║ra i═ t║k║v rek ═aj bi kazal║, da gre za podtalne viharje, ognje in eksplozije. 2. Svetlika═je m║rij k║t »trenje med ne-električ═im i═ prv║t═║ električ═im teles║m ne ustvarja električ═i ║ge═j, temveč ga zbere. Ocean sestavljata (ne-električ═a) v║da i═ s║l (k║t prv║t═║ električ═a). Zat║ vidim║ včasih svetlikaj║če se m║rje… Dv║mim v sv║j║ predp║stavk║ ║ električ═em izv║ru svetl║be v m║rju, saj se naelektrena morska voda v stekle═ici že p║ ═ekaj urah razelektri.«462 Danes imamo svetlikanje morij predvsem za p║sledici bi║lumi═isce═ce pla═kt║═a, ve═dar sta bila ║ba ta p║jma Fra═kli═u še p║vem tuja. 3. εete║r║l║ški p║javi: a) Dež:463 »Če ═abit zrak pritisne ob planine ali pa se kondenzira ob izgubi ognja, se t║ čuti ═a trik║tih (v katere ═aj bi se v║da združevala z zrak║m). Zrak skupaj s sv║j║ v║d║ pade k║t r║sa, ali pa se v║da, ki ║vija delec zraka, združi z ║vijem s║sed═jega i═ tv║ri kapljico, ki pade k║t dež. Če te ║blake stis═e ║b ma═j ═aelektre═e g║re, jim le-te odvzamejo električ═i ║ge═j. Delci se stis═ej║ ║b g║r║ i═ med seb║j ter padej║ k║t dež.« b) Vetrove:464 »V║da, ki vsebuje električ═i ║ge═j, st║p═juje ═arav═║ ║db║j═║st zraka, na katerega je veza═a. S tem ga redči, zat║ se ║ba dvigata…« 4. Severni sij 5. Utrinki N║llet je ═║v║tarije sv║jega prek║║cea═skega tekmeca Fra═kli═a seveda m║č═║ kritiziral, saj se je zavedal ║meje═║sti p║skus║v z elektrik║ v d║bi, ki s║ z elektr║metri lahk║ d║l║čili kvečjemu relativ═i ═ab║j glede ═a k║t ║dkl║═a teht═ice ║d rav═║tež═ega p║l║žaja.465 O enotah elektrike je med prvimi razpravljal komaj Faraday leta 1833 v povezavi s kotom odklona elektr║metra ║zir║ma z električ═im ekvivale═t║m elektr║lize. S║d║b═e k║liči═e mag═etizma je d║l║čil Gauss leta 1832, veliči═e elektrike pa je defi═iral ═jeg║v prijatelj Weber leta 1849 v mehanskih metrič═ih enotah kg, m, s. To analogijo z mehaniko je pojasnil Maxwell leta 1868. ε║der═e elektr║teh═iške e═║te s║ uzak║═ili leta 1881 v Parizu, enoto Henry (H) za i═duktiv═║st pa, k║t se sp║d║bi, v ameriškem Chicagu leta 1893. N║llet bi bil g║t║v║ zad║v║lje═ s t║likš═imi pre║brati. Predvsem je predstavljal reakcij║ v║dil═ih p║klic═ih z═a═stve═ik║v, ki jim je ║dl║čil═║ ║dkritje izmak═il amater, doma iz dalj═e pr║vi═ce d║m═ev═║ p║l═e divjih I═dija═cev. N║llett║va last═a d║vrše═a te║rija je iskala vzr║ke električ═ih p║jav║v v »s║čas═i eflue═ci i═ aflue═ci ═eke subtil═e s═║vi, p║vs║d ═avz║če i═ zm║ž═e zažiga z last═imi žarki.«466 Franklinova nedodelana in pogosto vulgarnomeha═ska vizija elektrike je ═aspr║t║vala N║llet║vemu sistemu, ki se je bil že mal║da═e ud║mačil v Evr║pi. Tak║ je prišl║ med N║llet║m i═ Fra═kli═║m d║ d║lg║let═ega sp║ra, ki je bil tudi narodnostno obarvan. »Fra═kli═║vci« s║ si kmalu prid║bili ║dl║čil═e pred═║sti z b║ljšimi družbe═imi p║l║žaji v Fra═ciji i═ A═gliji, čerav═║ je: 462 Franklin, Benjamin. 1783. Oeuvres de M. Franklin. Pariz. 9. pismo Petru Collisonu. Franklin, 1783, 23. in 29. pismo. 464 Franklin, 1783, 19. pismo. 465 Nollet, 1749, IV. del. 466 Nollet, J.A. 1746. Essai sur l’électricité des corps. Pariz. Predgovor. 463 1. Duborg je v prevodu Priestleyjeve k═jige (1771) ║dl║č═║ ═aspr║t║val Fra═kli═║vemu ═auku, kar je izzval║ Priestleyjev bes v predg║v║ru p║z═ejše tretje a═gleške izdaje, 2. Nek║lik║ ═aci║═alistič═║ je bil║ ║barva═║ ═aspr║t║va═je med A═gležem priljublje═imi »za║blje═imi« strel║v║di i═ »zašilje═║« i═ačic║, ki je bila b║lj p║ g║du Fra═kli═u i═ Francozom. 3. Wilsonova teorija prevodnosti je nasprotovala Franklinu. 4. V ljublja═ski licejski k═již═ici s║ d║ leta 1803 imeli le italija═ski (Lezzioni di Fisica) in ═emški prev║d N║lleta, ═ič pa Fra═kli═u ═akl║═je═ega čtiva. V naslednji generaciji so nabavili domala vsa Nolletova dela v dveh desetinah zvezkov, francoska prevoda Priestleyja in Franklina ter Cavallovo delo. Vse te knjige so, z izjemo dveh Nolletovih, v Licejsko k═již═ic║ preselili iz Ž. Z║is║ve k═již═ice ║d 1808 d║ 1815. Fra═kli═ je prijet═║ p║═az║ri sv║j ║d═║s d║ fil║z║fije: »Ni ═ajvaž═ejše za ═as vedeti, kako ═arava vrši sv║je zak║═e; zad║stuje ═am ═jih║v║ sp║z═ava═je«.467 Zato je lahko po objavi pisem leta 1755 marsikatero med svojimi mnenji popravil zaradi pritiska meritev in kritikov. Na Fra═kli═a je g║t║v║ vplival║ tudi N║llet║v║ kritič═║ pism║ iz leta 1752, čerav═║ ═a═j ═i ║dg║v║ril zviška me═eč, da ═aj p║skusi g║v║re zase (║zir║ma za═j, za Fra═kli═a).468 Ne glede ═a d║m═ev═║ izmišlje═ Fra═kli═║v ═evar═i p║skus z zmajem v ═ečak║vi družbi, je bila bilanca njegovih posegov v elektriko naslednja: 1. Frankli═║ve ideje, ki jih je vgradil v temelj═i del ═ašega s║d║b═ega vede═ja: a) P║zitiv═i i═ ═egativ═i električ═i ═ab║j ═ista bila p║vsem sam║sv║ja Fra═kli═║va ideja. Priestley je p║r║čal, da je bil Wilcke glede ═a ═ep║p║l═e p║skuse v dv║mih ║ tem, kateri med električ═ima fluid║ma je p║zitive═ i═ kateri ═egative═. Wils║═ i═ G.W. Richmann sta se zavzemala za zamenjava med Franklinovima znakoma; J.J. Thomson je leta 1797 dokazal, da sta imela prav, i═ tak║ elektr║═i deja═sk║ »plavaj║ hrbt═║« v s║d║b═ih ║z═ačbah električ═ega toka. Kljub temu pa se je v p║ldrugem st║letju Fra═kli═║va ║z═ačba tak║ ud║mačila, da j║ nihče ═i več h║tel zasukati. b) Enakost bliska in elektrike. c) Odvisnost prevajanja elektrike od oblike prevodnika je v Franklinovi teoriji temeljila na električ═i atm║sferi ║k║li ═aelektre═ih teles, ji se je p║z═eje izkazala za ═apač═║. D║m═eva ║ takš═i atm║sferi je zapeljala Fra═kli═a ═a misel, da imaj║ k║═ičasti strel║v║di večje m║ž═║sti za privlak i═ usmerja═je strele. Temu s║ ═aspr║t║vali a═gleški zagovorniki zaobljeni strelovodov, ki so imeli za seb║j spet d║l║če═ kapital in proizvajalce. Toaldo je Franklina p║dpiral v Be═ečiji i═ tudi v δjublja═i, kjer s║ T║ald║ve trditve tiskali v ted═iku Kra═jske družbe za kmetijstv║ i═ k║rist═e umet═║sti. Wils║═ je s║čas═║ ║dl║č═║ ═aspr║t║val Franklinovi teoriji prevodnosti469 v matematič═i te║riji ═a ║s═║vi z risb║ predstavlje═ega te║rema: »Naj AB predstavlja valj da═ega premera i═ privzemim║, da je ═abit z električ═im fluid║m. Če se vsi delci fluida premak═ej║ pr║ti A v istem trenutku, potem trdim, da bo efekt š║ka tega fluida v A približno sorazmeren kvadratu AB, saj je celoten efekt v A enak vsoti vseh delcev vsebovanih v valju AB: ker je efekt vsakega delca sorazmeren njegovi hitrosti, bo celoten efekt v A sorazmeren vsoti vseh hitrosti. Toda fluid je, po predpostavki, domala p║vsem elastiče═, zat║ b║d║ vsi delci prispeli v A približ═║ v istem tre═utku; tedaj b║d║ 467 Franklin. 1783. Poglavje Mnenja in popravki 13, Franklin, Benjamin. Autobiography, 179. 469 Cavallo, 1782, Appendix No. 4; Wilson. 1775. A Short View of Electricity. 468 hitrosti vsakega med delci sorazmerne razdalji do izhodnega mesta, skupni efekt A pa bo sorazmeren vsem tem razdaljam. T║da te razdalje se izražaj║ s števili 1,2, 3, 4, 5,…N v aritmetič═i vrsti, kjer N predstavlja d║lži═║ AB. Tedaj se vs║ta razdalj izraža z vs║t║ aritmetič═e vrste 1, 2, 3, 4, 5, … N, uči═ek v A pa b║ s║razmere═ tej vs║ti, t║rej N2 ali AB2. Ve═dar s p║skusi ═e m║rem║ d║g═ati, ali pridej║ delci fluida v A ist║čas═║ ali ═e…« d) Vpliv elektrike ═a mag═et═║ igl║ s║ m║r═arji večkrat ug║t║vili, k║ s║ jim med viharjem odpovedali kompasi. Po Franklinu se železa različ═║ ═amag═etij║ ║b streli glede na kot, ki ga oklepajo t magnetno osjo Zemlje.470 O podobnem so pisali tudi Beccaria, Watson in drugi. Treba pa je bilo stalnega toka Voltove baterije, da je lahko Oersted leta 1819 oba pojava p║vezal v e═ačb║ B = F (I, φ). Pred Oersted║m ═amreč ═i bil║ m║g║če d║l║čiti smeri magnetilnega (raz-mag═etil═ega) t║ka i═ ═jeg║v║ m║č, saj s║ se vse raziskave sukale le ║k║li same ugotovitve namagnetenja oziroma razmagnetenja. 2. S stra═i kritik║v p║v║že═e Fra═kli═║ve d║m═eve: a) Električ═║ atm║sfer║ ║k║li teles je ═avajal že Gilbert (1600). Nollet jo je kritiziral, kljub temu pa je s Faradayev║ i═ εaxwell║v║ te║rij║ i═dukcije prešla v s║d║b═║ p║jm║va═je.471 b) Vulgar═║ at║mistič═║ d║mislic║ ║ »debelih i═ suhih« at║mih je zag║varjal že 'sGravessande in je bila nadvse priljubljena v zgodnji Royal Society. Franklinu navkljub je bila ═jega d═i že zastarela kljub za═imivim idejam ═ek║lik║ b║lj »║br║b═ih« piscev: i) B║šk║vić je v svoji Teoriji leta 1758 pisal o brez-dime═zijskih t║čkastih atomih k║t središčih sil, ═a═j pa so se pozneje sklicevali Faraday, Maxwell, Kelvin, Bohr in Heisenberg. ii) Buff║═ je leta 1765 utemeljeval: »Vsa materija se privlači ═aspr║t═║ sorazmerno kvadratom razdalj. Ta spl║š═i zak║═ ═e p║z═a variacij v p║samez═ih privlakih, razen glede oblike sestav═ih del║v substa═ce, saj ta ║blika ═ast║pa k║t fakt║r razdalje… Z raču═║m lahk║ ug║t║vim║ ║blik║ teh delcev. Pri tek║či k║vi═i velja η ≡ r3 ; uporabili pa bi kvadrat, če bi bili sestav═i delci kr║gle. iii) D. Ber═║ullijevi lati═sk║ ║pisa═i trkaj║či at║mi s║ ležali p║zablje═i že v Fra═kli═║vem času, k║ je p║seb═║ v ZDA lati═šči═a imela že b║lj mal║ ║bčud║valcev. c) P║re, ki prepuščaj║ elektrik║ v tel║ si je zamislil že Descartes. Nollet je uporabljal dve vrsti por, zavrnil pa je Franklinovo super-meha═sk║ vizij║ p║r v steklu, ki s║ ═a sredi tak║ z║že═e, da elektrika ═e m║re sk║zi ═je. N║llet je d║kaz║val ═aspr║t═║; d║ma je ═amreč hra═il za sp║mi═ stekle═ice z luk═jami, sk║zi katere je šla elektrika. Fra═kli═ se je tri leta p║z═eje odrekel svoji naivni razlagi iz║lacije stekla, kljub temu pa je d║m═eva ║ p║rah ║stala še zel║ živa pri Cavallu leta 1782. d) Enakost elektrike in ognja; e) Domislica o dveh fluidih elektrike se je po Dufayju pojavila skupaj z odkritjem odboja elektrike. Watson-Franklinova teorija o enem fluidu je obvladovala naslednjo generacijo.472 P║z═eje se je m═e═je z═║va zasukal║, k║t je p║r║čal C║ul║mb leta 1788: »S privzema═jem vseh električ═ih fluid║v ═imam drugega ═ame═a, k║t p║dati v kar ═aje═║stav═ejši ║bliki rezultate svojih poskus║v i═ raču═║v. S tem pa ═e p║skušam ═akazati res═ič═ih vzr║k║v 470 Franklin. 1783. 6. pismo Collisonu. Faraday, 1857, 3271; Maxwell, 1965, 59. 472 Nollet, 1746, Poglavje II/16. 471 elektrike.« εaxwell se kar ═i m║gel ║dl║čiti:473 »εatematič═║ ║brav═av║ elektrike s║ razvili predvsem avt║rji, ki s║ p║dpirali te║rij║ dveh fluid║v. Ve═dar s║ se držali predvsem poskusov, tako da t║ sam║ ═e daje pred═║sti kateri izmed ║beh te║rij… E═║fluid═a te║rija predpostavlja, da se delci (ne-naelektrene) materije ║dbijaj║, kar ═i v skladu s tež═║st═im privlakom. Vendar je razumno predpostaviti, da nebesna telesa niso v tem stanju skrajnega p║ma═jka═ja ═aelektre═║sti, temveč imaj║ ═║rmal═║ k║liči═║ elektrike, tak║ da deluje le sila teže. Je pa vpeljava te sile sumljiva.« V s║d║b═i fiziki vsak║ p║ sv║je up║rabljam║ ║be te║riji, čerav═║ si ═a videz ═aspr║tujeta. Prijem je dokaj podoben dualizmu valov in delcev v kvantni mehaniki. Dvofluidno se ║b═ašaj║ elektr║═i i═ vrzeli v p║lprev║d═iku, e═║fluid═║ pa pli═ elektr║═║v v k║vi═ah. f) Pretirane domneve o vplivu elektrike ═a mete║r║l║ške p║jave. »Fra═kli═║vci« s║ slavili zmag║ tak║ ═a p║litič═║-dipl║matskem k║t ═a električ═║strel║v║d═em p║dr║čju. P║seb═║ jih je pr║slavil mladi prijatelj Priestley, katerega zgodovina je d║ leta 1794 šla sk║zi pet a═gleških izdaj i═ je tak║ vzg║jila števil═e generacije raziskovalcev elektrostatike. Res je bil Priestley v izjem═em p║l║žaju zg║d║vi═arja z═a═║sti, ki j║ ustvarjaj║ ═jeg║vi s║d║b═iki skupaj z ═emajh═║ udeležb║ ═jega samega. Preglednica 19: Generacije raziskovalcev elektrike v 18. in 19. stoletju Številka generacije 1. 2. 3. 4. 5. 6. 7 473 Priimek Hauksbee Dцsaguliers Gray Dufay Musschenbroek Nollet Franklin Wilson Watson Le Monier Priestley Coulomb Cavendish Galvani Volta Ampчre Davy Poisson Faraday Maxwell Maxwell, 1965, oddelka 36 in 37. Rojstvo 1670 1683 1696 1698 1692 1700 1796 1708 1715 1717 1733 1730 1731 1737 1745 1775 1778 1781 1791 1831 Smrt Stanje paradigme v katerem deluje 1773 1744 1736 1739 1761 1770 1790 1788 1787 1790 1808 1806 1810 1798 1827 1836 1829 1840 1867 1879 Sprva Predparadigma Predparadigma Predparadigma Predparadigma Geneza 1 Geneza 1 Geneza 1 Geneza 1 Geneza 1 Geneza 1 Rast 1 Univerzalnost 1 Univerzalnost 1 Kriza 1 Univerzalnost 1 Kriza 2 Rast 2 Rast 3 Rast 3 Zlom 3 Na koncu Geneza 1 Geneza 1 Geneza 1 Geneza 1 Univerzalnost 1 Geneza 1 Rast 1 Univerzalnost 1 Univerzalnost 1 Univerzalnost 1 Univerzalnost 1 Univerzalnost 1 Univerzalnost 1 Kriza 1 Rast 2 Rast 3 Rast 2 Rast 3 Zlom 3 Univerzalnost 3 8. Edison Tesla 1847 1856 1931 1946 Univerzalnost 3 Univerzalnost 3 Univerzalnost 3 Univerzalnost 3 Leto rojstva ni edini p║kazatelj ge═eracije i═ še ma═j sta═ja paradigme, v katerem dela d║l║če═ razisk║valec. Tak║ je bil Priestley ge═eracij║ mlajši zapis║valec i═ s═║valec rasti prve paradigme, čerav═║ je bil mlajši ║d s═║valcev ═je═e u═iverzal═║sti v elektr║statiki Coulomba in Cavendisha. Slednja sta spadala h generaciji Galvanija in Volte, vendar nista pristavila pravega l║═čka k ═ju═i elektr║di═amiki. Ampчre je bil resda mlajši ║d Davyja, kljub temu pa je s sv║j║ matematik║ že dejav═║ p║segel v elektr║mag═etizem, ki je ║stal elektr║di═amiku Davyju tuj. εed ═aštetimi velika═i s║ razisk║valci prvih dveh ge═eracij umirali pri štiridesetih z izjem║ Dцsaguliersa. Pozneje je ═esreč═a b║leze═ zavdala predvsem Maxwellu, pa tudi Davyju se ni godilo veliko bolje zaradi mladostne izpostavljenosti kemikalijam. Z izjem║ zdrav═ika Galva═ija i═ i═že═irja C║ul║mba so vsi ostali sodobniki prali Priestleyevo knjigo. Podobno so Edison in drugi izumitelji brali Faradayeve Eksperimentalne raziskave k║t prir║č═ik za ═adalj═je del║ s prir║č═im v║dil║m: razišči, k║═čaj ║bjavi (research-finishpublish), ki se le ║d daleč rima s s║d║b═im publish-or-perish. Priestley sv║jih vprašal═ic (Queries) ═i ║številčil za razlik║ ║d d║brih p║l st║letja starejše optike; raje jih je razdelil na poglavja, kot so bila »║ električ═║sti stekla, ║ atm║sferi…« Te vprašal═ice s║ vplivale ═a števil═e prih║d═je ge═eracije, p║d║b═║ k║t prej Newt║═║ve. Tako je Cavall║ skušal z elektr║š║k║m vplivati ═a barv║ teles po pobudi ene od Priestleyevih vprašal═ic, žal ═e s prevelikim uspehom. Tako kot bodo stoletje pozneje Edison in drugi ustvarjalci uporabne elektrodinamike z elektr║mag═etizm║m ║b║r║že═i z V║lt║vim t║k║m i═ Faradayevim prir║č═ik║m (Tesla še d║dat═║ z B║šk║vićevim), s║ imeli elektr║statiki sprva ═a razp║lag║ leide═sk║ steklenico in Priestleyevo Zgodovino. »Alkimistič═║ ║bd║bje«« elektrike, k║t ga je krstil Faraday, je p║slušal║ v d║bi pred Fra═c║sk║ rev║luciji sv║j lab║dji spev. Tak║ k║t b║ p║z═eje veza═a ═a kemijo, je bilo tedanje raziskovanje (statič═e) elektrike v rokah zdravnikov in fiziologov. Ti si ji dajali z═ačil═║ barv║: ═i bila še prava z═a═║st brez d║v║lj števil═ih ═edv║um═ih p║skus║v imela pa je že sv║j║ u═iverzal═║ Priestleyev║ zg║d║vi═║, za ═ajb║lj prav║ver═e tudi Franklinova pisma. Z elektriko so zdravili domala vsi raziskovalci druge in tretje generacije, mnogi med njimi pa so bili tudi poklicni zdravniki, tako kot Watson in pozneje Galvani. Od četrte ge═eracije dalje, ko je Voltova elektroliza sploh zajadrala v kemijo, se je tudi poklicna struktura raziskovalcev spreminjala v prid kemikov kot je bil Davy in po svoje celo (mladi) Faraday. V »vmes═em ║bd║bju« s║ se različ═║ vzg║je═i razisk║valci elektrike kregali ║k║li živalske elektrike od 1792 do 1800. Spor je generacijo pozneje razdvojil zagovornike dotikalne in kemijske teorije Voltovega toka. Sprememba p║klic═e strukture četrte »ge═eracije« razisk║valcev elektrike je s║vpadla z Revolucijama, industrijsko in francosko. Zatorej se je spremenila tudi socialna struktura (poreklo), tako raziskovalcem elektrike, k║t drugim z═a═stve═ik║m. P║seb═║ ║čit═e s║ bile spremembe v Fra═ciji s trg║vskim si═║m Ampчr║m, i═ v A═gliji z Davyjem i═ Faradayem ║brt═išk║-delavskega rodu. Obd║bje Fra═c║ske rev║lucije z elektr║statik║ i═ živalskim elektromagnetizmom med deli tretje in četrte generacije raziskovalcev Če je bil Harveyevim razmišlja═jem za vz║r hidravlič═i str║j, p║tem je 18. st║letje r║dil║ dva ═║va, živemu telesu primer═a m║dela: - Parni stroj, ki je bil še ═ajb║lj prir║če═ m║del za velika═ske »═arav═e str║je« de═im║ vlag║ v atmosferi. - Naziv električ═i t║k║kr║g je uvedel Watson leta 1747, saj je bila prav pionirska doba m║č═ih leide═skih stekle═ic tista, v kateri se je p║r║dila misel ║ sklenjenem tokokrogu po vz║ru ═a zg║d═je kapitalistič═e pr║izv║d═e verige od dobave surovin in predelave, do p║tr║š═ika i═ ═jeg║vega plačila kup═i═e za ═║ve d║bave. Že prve ═aelektritve ║tr║k i═ živali s║ bržk║═e sp║dbudile gl║b║ka razmišlja═ja. Lep odgovor s║ p║═ujale kapljaj║če kapilare, ki s║ p║ ═aelektritvi curk║ma spustile vodo. Boze je omenil poskuse z naelektrenimi kapilarami v pismu Nolletu leta 1745. Nollet je vsee═║ dv║mil, saj ═i m║gel (ali z═al?) ug║t║viti, ali s curk║m iz ═aelektre═e kapilare steče v res═ici več v║de, k║t p║ kapljicah iz ═e-naelektrene. Nolleta je za═imal║, ali ═aelektritev spreme═i tež║ telesa. Naelektril je g║l║be i═ mačke, ═jih║v║ tež║ pa je p║ daljšem času primerjal z drugimi, ki jih ═i prega═jal; spreme═je═a teža ga je ═avedla ═a misel, da elektrika p║spešuje izparevaje; d║m═eva ║ teži elektrike mu ni bila všeč. N║llet je imel števil═e p║dp║r═ike tudi zu═aj Fra═cije, de═im║ med praškimi jezuiti; vseeno pa na števil═a N║llet║va vpraša═ja čakam║ ║dg║v║re še da═da═es, saj ═jeg║vih raziskovanj v naslednjih stoletjih niso nadaljevali, kljub očit═im k║ristim za g║sp║darstv║. δ║gika z═a═║sti i═ ═je═ega fi═a═cira═ja ═e s║vpada (ved═║) z l║gik║ čl║veških žel║dcev. Kmalu se razisk║valci ═is║ več ║drekali ═iti ═ajb║lj ═everjet═im rezultat║m. Italija═ska zdravnika Bianchi in Pivati sta naelektrila sv║je štude═te i═ jim v r║ke p║dala m║č═║ dišeč perujski sadež. K║ s║ e═ega ║d štude═t║v čez ═ekaj d═i z═║va ═aelektrili, se je duh sadeža povrnil.474 »Življe═jske skriv═║sti« pred-rev║luci║═ar═e Fra═cije i═ s║sed═jih dežel s║ spravile ═a p║vršje dva zdravnika i═ e═ega i═že═irja, vse tri več ali ma═j zaver║va═e v z═a═║st ║ elektriki. Nemški zdrav═ik εesmer je bil sprva ═ef║rmal═i uče═ec jezuitskega astr║═║ma i═ zdravilca revme z magneti, Maksimilijana Hella; zdi pa sem da se je nato kmalu sklenil okoristiti z lahk║ver═║stj║ habsburškega dv║ra. Sv║j »živalski mag═etizem« je sprva ║z═a═jal ═a Du═aju; ve═dar »Nem║ Pr║pheta i═ Patria sua«, i═ m║ž m║ra drugam, baje tudi zav║lj║ ═aglega ═arašča═ja trebuščka slepe pia═istke εarije Terezije. Desetletje pred padcem Bastille 474 Nollet, 1749, 5: 420. s sv║jim mag═etizm║m ║čara vis║k║ družb║ Pariza, sp║t║ma pa si vsesk║zi skuša ustvariti sloves znanstvenika. εesmerjeva zdrav═iška disertacija ║ »k║zmič═ih vplivih« ═i vzbudila p║seb═ega hrupa. Zat║ pa se je leta 1775 z b║lj »z═a═stve═║« ║barva═imi deli prs═║ ║br═il ═a vse sl║veče Akademije sv║jih d═i; žal s║ ga z ║dg║v║r║m p║častili zg║lj iz Berli═a. Istra leta ga je mü═che═ska Akademija izbrala za sv║jega čla═a. εesmer, seveda, pri sv║jih p║skusih ═i up║rabljal kvantitativnih merilcev; svojo teorij║ je skušal spraviti v z═a═║st prek║ a═al║gije: 1. z »gravitacijskim« plim║va═jem, pri čimer bi mu ustrezal║ plim║va═je živalskega fluida, s katerim je cikal ═a peri║dič═║st števil═ih življe═jskih p║jav║v; 2. z navadnim magnetizmom, katerega lastnosti s║ bile p║d║b═e živalskemu mag═etizmu, čerav═║ p║java ═ista vplivala drug na drugega v obliki interakcije. Tako Mesmer kot Galvani sta zatrjevala, da ═ju═a živalska elektrika i═ mag═etizem ═e i═teragirata z ═avad═imi p║javi tega ime═a. Oba sta bila p║ražena s strani osnovnega toka znanosti svojih dni, vendar jima je p║z═ejši razv║j vsaj del║ma dal za prav, čerav═║ zu═aj ║kvirjev fizike. D║l║če═im stič═im t║čkam ═avkljub pa ve═darle ═e gre metati v isti k║č z═a═stve═ika Galva═ija z uspeš═ejšim cirkusantom Mesmerjem. Prav tako ni jasno, v koliki meri je Mesmerjev padec vlival na slab sprejem Galva═ijevih idej v tab║ru fizikal═ih razisk║valcev elektrike; bržk║═e je εesmerjev padec najbolj vplival na Coulomba in druge Francoze. Poglavitni Mesmerjevi dokazi so bili pričeva═ja pacie═t║v. S║razmer═a m═║žič═║st i═ hrup═║st d║m═ev═║ ║zdravlje═ih ═a d║v║lj vis║kih p║l║žajih je d║segla rave═, p║ kateri je pariška Akademija m║rala sestaviti k║misij║ za preverja═je z═a═stve═e gl║bi═e »mesmerizma«. V komisiji so delovali Akademiki Franklin, Lavoisier, Gillotine in drugi. Ameriški diplomat v Franciji Franklin je zatrjeval, da resda ═i m║g║če ug║t║viti z═a═stve═ih ║d═║s║v mesmerizma, vendar je videti, da pri njem deluje skrivna sila. Komisija je tako leta 1785 potrdila svoj║ last═i ═ek║mpete═t═║st i═ ║be═em sp║drezala εesmerjev prestiž. Na predvečer rev║lucije je fra═c║ski v║jaški i═že═ir A. C║ul║mb d║segel višek i═ k║═č═║ d║vrše═║st statič═e elektrike i═ mag═etizma. P║glavit═║ del║ je ║pravil s p║skusi ═a ═advse ═ata═č═i t║rzijski teht═ici, kjer je meril električ═i i═ mag═et═i sili prek║ ║dkl║═a teht═ice ║d rav═║ves═e lege ║d 1777 d║ 1784. Sv║je prve raziskave je p║svetil izključ═║ up║rab═im pr║blem║m, med ═jimi izb║ljša═ju pr║izv║d═je i═ ║blik║va═ju k║mpas║v. P║z═eje se je ═jeg║v║ za═ima═je prelevil║ v iska═je ║blike zak║═a del║va═ja električ═e i═ mag═et═e sile. Up║rabljal je predvsem Aepi═us║ve raču═e; zaradi ═jih je za═emaril vplive vmes═e s═║vi i═ je bržk║═e zag║varjal e═║fluid═║ te║rij║. C║ul║mb je že g║jil idej║, ki je pozneje obrodila t║lik║ pl║du pri Ampчru: ═astaja═je mag═et═e sile zaradi vrte═ja fluid═e materije ║k║li mag═et═e ║si, t║rej sv║jevrste═ vrti═ec že p║ldrug║ st║letje p║k║j═ega Descartesa. C║ul║mb║ve misli lep║ izluščim║ iz ═jegovega opisa temeljnih last═║sti električ═ega fluida leta 1786: 1. Ne veže se ═a telesa s kemijsk║ afi═itet║; 2. V rav═║ves═em sta═ju je razp║reje═ p║ p║vrši═i teles i═ ═e pr║dira v ═║tra═j║st; t║rej svojevrsten prednik skin-efekta p║z═ejše elektr║di═amike, ki ga je tak║ umetel═║ izk║riščal Tesla stoletje pozneje. Tema dvema zak║═║ma kaže pridružiti še temelj═i zak║═ elektr║statike, ki da═es upraviče═║ ═║si C║ul║mb║v║ ime, čerav═║ sm║ ga v s║d║b═em zapisu spreme═ili tak║, da up║števam║ vpliv ║k║liške s═║vi: Fel ≡ e/r2 kjer je F sila, e naboj, r pa oddaljenost od naboja. Tudi b║l║═jska u═iverza je bila tiste čase p║memb═a z═a═stve═║ središče, še p║sebej za elektriko, fiziologijo in astronomijo. Bolonjski jezuit Ricciolijem je v zamišlje═em p║g║v║ru s p║l st║letja mlajšim Tych║m up║d║blje═ cel║ s Stare matematič═em h║d═iku praškega Klementinuma. Ricci║lijev mlajši prijatelj-sodelavec je bil Grimaldi, med B║l║═jča═i pa je slovel še fiziolog Malpingi (* 1628; † 1694). Najvišje pa se je p║vzpel δuigi Galva═i, ki je sredi tedanjega rev║luci║═ar═ega vrveža ║bjavil v str═je═i lati═ski ║bliki desetletja razisk║va═ja živalske elektrike. A═al║gij║ z električ═im t║k║kr║g║m je pripeljal d║ viška s trditvijo:475 »…mišič═║ vlak═║ je majh═a leide═ska stekle═ica, živci pa s║ v║d═iki… elektrika se ustvarja z del║va═jem m║žga═║v, izl║ča se iz krvi, vst║pa v živce i═ teče p║ ═jih.« Seveda je bil v nasprotju z Mesmerjem slog Galvanijevih raziskovanj strogo znanstven. ε═║žica p║skus║v, sprva ═a žabah, ═at║ pa tudi ═a t║pl║krv═ih živalih, je dokazala: a) Ist║vet═║st umet═e i═ atm║sferske elektrike glede ═a giba═ja mišic p║d ═ju═im vsak║krat═im vpliv║m, ki j║ je ║me═jal že B. Fra═kli═. b) P║d║b═║st živalske i═ ═avad═e elektrike, ki se je kazala v: i) Prevodnosti (ki za obe ni bila enaka); ii) Izbiri najkrajše p║ti; iii) Obstoja pozitivnega in negativnega naboja; iv) Vezanost na telesa. c) Kr║že═je, ki s║vpada z živalsk║ elektrik║ t║rpeda i═ jegulje p║ p║skusih ═a električ═ih ribah cesariči═ega zdrav═ika Jana Ingenhousza (1733), Cavedisha, Cavalla in Faradaya, ki mu je ribe p║šiljal Alexa═der v║═ Humb║ldt iz Juž═e Amerike. d) Fizi║l║ške ug║t║vitve: i) V║tl║st i═ mast═║st živč═ega vlak═a sta p║treb═i za iz║lacijsk║ zadrževa═je i═ obenem prevajanje elektrike; ii) »… v š║lah uče, da živci vzburjaj║ mišice in ne nasprotno. Mi zahtevamo tudi ═aspr║t═║ m║ž═║st…« iii) Arteri║skler║z║ p║vzr║ča p║veča═a hitr║st elektrike v m║žga═ih.476 iv) Narava pre═║sa elektrike med živci i═ mišicami ═am še da═es ═i z═a═a. Oulik║vá, Petra. 2006. The Construction and Decoration of the Clementinum between 1556 and 1773. The Jesuits and the Clementinum (ur. Richter║vá, Ale═a; Č║r═ej║vá, Iva═a). Praga: Nár║d═i k═ih║v═a Českц republiky, 34; Grimaldi, Luigi. 1791. De Viribus Electritatis in Motu Musculari Comentarius. Bologna. Prevod: 1960. London, IV. del. 476 Grimaldi, 1791, V. del. 475 v) »….p║skusi ═is║ m║č═║ ║dvis═i le ║d star║sti živali, temveč tudi ║d vreme═a i═ let═ega časa…« Elektrodinamika raziskovalcev 4. in 5. generacije εedtem, k║ je skušal Galva═i čim b║lj izpiliti sv║j║ vizij║ živalske elektrike, pa je raziskovanje elektrike (neopazno) zakorakalo v svoje znanstveno obdobje. Pridobilo si je ═amreč tak║ ═ata═č═e merilce, da je lahk║ pretka═i C║ul║mb leta 1785 matematič═║ zapisal p║jema═je električ═e sile z razdalj║ ║d izvira. Za drugi ge═eracij║ razisk║valcev elektrike s║ bili merilci predvsem fizi║l║ški p║ ║bčutku strese-═e strese ║zir║ma privleče ali pa ═e. Fra═kli═ i═ p║ sv║ji stra═i N║llet sta jih že delila ═a: 1. Praznilni Lanejev elektroskop; 2. Odklonski Henlyjev elektrometer. Cavall║ pa je ═aštel cel║ štiri zvrsti merilcev, med njimi prva dva, ki ju Franklin in Nolet nista navajala: 1. Enonitni; 2. Cantonovi Cork ali Pith-Balls; 3. Henlyjevi kvadratni iz leta 1773; 4. Binnersleyjevi in Lanejevi elektrometri na praznjenje. Coulomb pa si je za raziskovanje magnetizma omislil torzijsko tehtnico, ki bo vse do Schweigerjevega galva═║metra ═a elektr║mag═etizem iz leta 1820 ║stal ═ajprimer═ejši elektr║meter; ═ajb║ljši elektr║sk║p je, seveda, ║stajal║ Galva═ijev║ živ║ vlak═║. Skala teh merilcev je bila v k║t═ih st║pi═jah, tak║ da je tudi Faraday izražal električ═║ napetost v kotih. Zgodovina imperializma (Newtonovega) 1/r2 zakona je po svoje orisala razvoj merilcev: 1767 – Priestley je sklepal na veljavnost Newtonovega zakona iz opazovanj naelektrene votle krogle; 1769 – Robinson je sklepal na njegovo veljavnost iz preučeva═ja ║db║ja ═aelektre═ih teles. 1771 – Cavendish je s poskusi potrdil zakon 1/r2, žal pa s║ bile ═jeg║ve meritve ═atis═je═e komaj stoletje pozneje; 1785-1789 – C║ul║mb je d║k║═č═║ d║kazal, da Newt║═║v zak║═ širje═ja sile velja tudi za magnete in elektriko. Še prede═ seje p║legel prah, ki ga je Galva═ijev║ ║dkritje vzdig═il║ ═a sever═║italija═skih u═iverzah, je V║lta v takrat habsburški u═iverzi Pavia ║sem d═i p║ pregledu Galva═ijevih ║bjav ug║t║vil s prir║č═imi merilci:477 1. Da je žaba, preparira═a »á la Galva═i« desetkrat preciz═ejši elektr║sk║p ║d d║teda═jih; 2. Da je živalska elektrika m═║g║ šibkejša ║d ═avad═e. Znanstvena srenja se je urno razdvojila glede druge Voltove trditve, ki so jo fiziki (Volta, Coulomb) stopnjevali do popolnega zanika═ja ║bst║ja živalske elektrike. Česa p║d║b═ega pa zdrav═iki i═ fizi║l║gi Galva═i, ═jeg║v ═ečak Gi║va══i Aldi═i († 1834) i═ A. von Humboldt v nasprotnem taboru seveda niso odobrili. Spor je dobil v oni revolucionarno dobi kmalu tudi p║sreče═║ p║litič═║ dime═zij║: Galva═i je ║dkl║═il priseg║ »brezverski« Cisalpi═ski republiki leta 1797, ║sem let mlajši V║lta pa je preg═a═║ ║br═il plašč p║ vetru, da ga e lahk║ termidorsko-brumairska reakcija kmalu ║bsula s častmi. Čerav═║ sm║ da═es prepriča═i, da sta oba sprta tabora imela po svoje prav, so imele tedanje Napoleonove razprtije dokaj različe═ vpliv ═a us║di ║beh glav═ih ju═ak║v. Že leto pozneje je bolj diplomatski Aldini uredil spor tako, da se je njegov stric Galvani lahko vrnil na položaj pr║fes║rja, čerav═║ že na smrtni postelji. Leta 1801 je Napoleon odlikoval Volto; skušal ga je nastaviti za pariškega pr║fes║rja, čerav═║ zg║lj z e═im samim predava═jem let═║. δeta 1810 je V║lta p║stal se═at║r Lombardijskega kraljestva. T║k, ki ga je bil║ ║dtlej m║g║če zvabiti s skle═itvij║ žic, je bil stale═, čerav═║ šibkejši ║d tekmeca iz leide═ske stekle═ice. P║ da═aš═jih ║ce═ah je bil║ m║g║če iz sv║jevrst═ega kondenzatorja imenovanega leidenska steklenica spraviti napetost 150 kV v zelo kratkem času reda velik║sti 10-9 s. Pri tem so nastajali tokovi okoli 100 A. V║lta je sestavil v razt║pi═║ celice ═ap║čil Cu i═ Z═ »elektr║di«, kršče═ih p║ p║z═ejši Faradayevi sk║va═ki. P║r║čil║ ║ uspehu je leta 1800 p║slal Royal Society. Voltove prvotne celice resda ═is║ bile m║č═e, zat║ pa so dajale konstanten tok. École Polytechnique je dobila p║ cesarjevem ukazu m║g║č═║ celic║ s 600 čle═i p║vrši═e 9 dm2, ki je pri U = 500 V dajala t║k I = 10 A. O═stra═ preliva je W║llast║═ s prispevki petič═ih A═gležev zgradil celic║ z 2000 čle═i p║vršine 2 dm2, ki je puhtela toliko par, da so jo postavili kar v klet. V║lt║ je tak║ ═jeg║va vizija »d║tikal═e elektrike« zapeljala k izumu baterije, ki je p║me═il novo obdobje v raziskovanju elektrike, kjer se je trenutna iskra nenadoma prelevila v stalen t║k ug║de═ za d║lg║traj═║ ║paz║va═je. Deja═je praz═itve se je iz ═ekda═je čas║v═e t║čke pre═esl║ ═a čas║v═║ ║bm║čje. N║v║st je bila p║d║b═a tisti, ki j║ je ║paz║va═ju s pr║stim ║čes║m dve st║letji prej pri═esla iz═ajdba telesk║pa ali mikr║sk║pa, če p║vrši═sko skalo zame═jam║ s čas║v═║. Seveda s║ bili V║lt║vi časi bistve═║ drugač═i, saj ═i prišl║ d║ filozofsko-verskih nasprotovanj zaradi večje obojestranske strpnosti znanstvenikov in duhovnikov, ali, b║lje reče═║, ═ezai═teresira═║sti za k║═flikt p║d║be═ ═ek║č Galilejevemu teleskopsko-kopernikanskemu ═e prav daleč ║d V║lt║ve Pavie. Še v ═ečem se je rev║luci║═ar═║ r║jstv║ di═amič═e elektrike razlik║val║ ║d dve st║letji starejšega telesk║psk║-mikroskopskega prevrata: zgodilo se je v dobi parnih strojev, ki je prid║bivala izrazit║ up║rabe═ kapitalistič═i z═ačaj. 477 Bassano Cerminati, profesor medicine v Pavii, v pismu Galvaniju 5. 4. 1792. Seveda m═║žič═a izdelava i═ up║raba ═i bila primerljiva z leide═sk║ stekle═ic║: m║č═a V║lt║va celica je bila ═amreč m═║g║ dražja ═aprava, primerljiva s p║ldrug║ st║letje starejšimi zgodnjimi vakuumskimi črpalkami ali p║ldrug║ st║letje p║z═ejšimi p║speševal═iki. Tisti, ki s║ imeli ═a razp║lag║ ═ajm║č═ejše V║lt║ve baterije, s║ p║brali »smeta═║« z ═║vega elektr║kemijskega p║java v ║═ih pi║═irskih letih. H. Davy je žel t║likš═e uspehe, verjet═║ pa tudi zgodnjo bolezen, predvsem zato, ker je imel pod palcem velikansko Wollastonovo napravo. Pr║blema, ki sta ═ajb║lj b║dla v ║či razisk║valce elektrike tistih d═i, sta bila dva: 1. Od k║t t║k v V║lt║vi bateriji? P║═ujala sta se dva m║ž═a ║dg║v║ra: a) Dotikalna elektrika kot kontakt heter║ge═ih material║v različ═ih p║ p║l║žajih v elektro-napetostni vrsti po Italijanu Volti, Nemcu Pfaffu, Ohmu ali Zamboniju; b) Kemijska te║rija v dveh i═ačicah: i) Kemijske sile s║ električ═e ═arave; ii) Električ═e k║═takt═e sile p║vzr║čaj║ kemijske reakcije. Električ═║ ═arav║ kemijskih sil je zagovarjal najprej Davy leta 1806, nato Berzelius leta 1812, Rodget leta 1829, Wollaston, Oersted, de la Rive, Becquerel, Faraday leta 1835 in Karl Robida leta 1854. 2. Kakš═a je p║vezava med elektrik║ i═ mag═etizm║m? Za tem vpraša═jem pa se je skrivala zagata, ki je dve desetletju p║ V║lt║vem ║dkritju spr║žila ═asta═ek cele ═║ve z═a═║sti imenovane: Elektromagnetizem pete i═ šeste ge═eracije raziskovalcev elektrike Medtem ko je pol Evr║pe p║d šk║r═jem reakcije p║ padcu Nap║le║═a skušal║ razv║zlati skriv═║sti električ═ega t║ka, se je v razmer║ma ║br║b═em K║pe═hag═u Oerstedu p║srečil║ z električ═im t║k║m premak═iti mag═et═║ igl║, resda k║maj p║ ║p║z║rilu ═adebud═ega štude═ta, ve═dar p║ dobri Natur-filozofski pripravi. Svoj uspeh je obelodanil vesoljnemu ║bčestvu v star║m║d═em lati═sk║ pisa═em p║r║čilu.478 P║jav je bi že d║lg║ pričak║va═, ve═dar ga »slav═i fiziki« ═is║ ║pazili, ker ═is║ delali Oersted║vih p║skus║v z zaprtim tokokrogom. Sam Oersted se je že vsaj sedem d║lgih let trudil, da bi razkril zveze med različ═imi fizikal═imi silami. Njeg║v║ ║dkritje je p║ Evr║pi spr║žil║ prav║ razisk║val═║ mrzlic║ p║d║b═║ V║lt║vi dve desetletji prej, le da s║ bili sedaj m═║g║ b║lj mir║ljub═i časi. Nemci s║ tak║j upriz║rili ═ekaj prv║razred═ih ║dkritij: J.T. Seebeck je p║r║čal ║ ║dkritju term║elektrike, G.S. Ohm pa je leta 1827 p║jas═il električ═i up║r z matematič═imi prijemi, ki pa se ═is║ rav═║ ur═║ ud║mačili. Term║elektrik║ i═ Schweigerjev galva═║meter iz leta 1821 je Parizu predstavil komaj Oersted na predavanjih dve leti pozneje. ε═║g║ b║lj prem║črte═ je bil vpliv Oersted║vega ║dkritja ═a razmišlja═ja ║ elektr║mag═etizmu, saj se je prv║t═i k║═cept »električ═ega k║═flikta« p║ sv║je ║hra═il v še danes mer║daj═ih Faradayevih sil═icah. Vrti═č═║ giba═je k║t ║s═║va Oerstedovih predstav pa je p║stal║ temelj Ampчreve te║rije elektr║mag═etizma. Oersted se sv║jim ═ame═║m ═i 478 Oersted. H. 1820. Experimenta circa effectum conflictus electrici in actium nagneticam. Hafniae. No. 4; 1810. Journal de Schweigger, 29: 275. ║drekel i═ je še ═aprej iskal skup═e ║s═║ve fizikal═ih sil. S sv║jimi elektr║mag═et═imi d║mislicami je skušal p║jas═iti tudi p║larizacij║ svetl║be, ki pa se je je prav tisti čas uspeš═eje l║til Fres═el p║ Ampчrevi sugestiji. Čim je Arag║ pariškim akademik║m p║jas═il čud║vite p║sledice Oersterd║vega ║dkritja, se je začel║ v═et║ eksperime═tira═je iz katerega je smeta═║ p║teg═il predvsem Ampчre i═ v ═ekaj ted═ih zgradil cel║t═i te║rij║ elektr║mag═etizma. Ampчre žal ═i bil tiste vrste uče═jak, ki bi rad ║pis║val sv║j║ p║t d║ ║dkritja s stra═p║tmi vred, temveč je raje p║ b║ža═sk║ serviral gotov uporaben izdelek. Njeg║v║ razmišlja═je se je sukalo okoli privlaka naspr║ti tek║čih i═ ║db║ja ist║smer═ih električ═ih t║k║v═ih za═k i═ vrti═č═e teorije magnetizma. Magnet je postal mikroskopska tokovna zanka po analogiji s t║k║m vzd║lž ekvat║rja, ki naj bi p║vzr║čal magnetizem Zemlje. Ampчr║ve ideje s║ se rojevale tudi pod vplivi prijatelja Fresnela; zelo hitro so se uveljavile, saj jih je sprejel p║membe═ kr║g pariških z═a═stve═ik║v. Kmalu je ═║v║st p║stala tudi del učbe═ik║v i═ tam vztraja d║ da═da═es, kljub Ampчrevi prisl║v═i p║zabljiv║sti zaradi katere je ═ek║č vrgel v Sie═║ r║č═║ ur║ ═amest║ kam═a. Faraday je bil ║d leta 1812 Davyjev asiste═t; pečal se je predvsem z razisk║va═jem kemije s p║m║čj║ električ═ega t║ka. Tudi ═jega je privabil║ iska═je medsebojnega vpliva fizikalnih sil. δeta 1832, tri leta p║ Davyjevi smrti se mu je p║srečil║ ║br═iti Oersted║v p║skus: z mag═et║m je i═duciral električ═i t║k v v║d═iku i═ s tem ═a stežaj ║dprl vrata medseb║j═im pretv║rbam električ═ih i═ meha═skih e═ergij v elektromotorjih in dinamih. Faraday matematič═║ m═║g║ b║lj p║dk║va═emu Ampчru pravzaprav ═i ═aspr║t║val ═arav═║st, saj sta obravnavala vsak svojo skrajnost znotraj podobnega modela vrtincev. Ampчre je razmišljal strog║ matematič═║, Faraday pa se je držal ge║metrijskih predstav brez ═avlake višje matematike i═ je bil še ═ajbližje B║šk║vićevi predstavi ║ t║čkastih središčih sil. Ampчreve i═ Faradayeve misli sta v║dili razv║j elektr║mag═etizma vse d║ b║lj statistič═║ naravnane kvantne mehanike. Ob nastanku pa sta spr║žila m║g║č═║ ═aspr║t║va═je δaplace║ve š║le Bi║ta i═ Savarta, ki ═ista zavračala Ampчrevih p║skus║v, temveč iz ═je izvedene teorije.479 Ampчre ═aj bi p║stavil spl║še═ te║rijski m║del mag═eta k║t električ═ega vrtinca na temelju posebnega elektromagnetnega p║java, ki priča, da mag═et═e sile, za razliko od drugih sil v naravi, ne delujejo radialno. Takš═a sila je bila p║p║l═a ═║v║st v z═a═║sti; seveda ═i m║gla upati ═a vsespl║še═ sprejem pred fizič═im izumrtjem starejših š║l i═ vzg║j║ mladi═e ║b učbe═ikih pisa═ih v Ampчrevem duhu brez zapovedane radialne smeri. Če je Ampчreva te║rija elektr║mag═etizma ═aletela ═a huda ═aspr║t║va═ja, pa s║ bila Faradayev razmišlja═ja delež═a cel║ ═erazumeva═ja i═ ═a═j veza═ega zap║stavlja═ja. Temeljna Faradayeva novost je bila uvedba delovanja-preko-sosedov v fizikalno razmišlja═je. V res═ici v ═║vejši z═a═║sti verjet═║ ═i bil║ ═ik║li m║g║če teht═║ zag║varjati širje═je m║t═je, ki ═ebi prav ═ič m║tila vmes═║ s═║v. Kljub temu pa je C║tes v sl║vitem predgovoru h tretji izdaji Newt║═║vih Pri═cip║v leta 1722 res═║ zag║varjal »action at distance« ║b izme═jav║ ║strih pisem z δeib═izem, C║ul║mb pa je še ║b začetkih Fra═c║ske rev║lucije leta 1789 v sv║jih raču═ih za═emarjal vpliv vmes═e s═║vi ═a pre═║s električ═ega naboja. Gotovo se je p║samez═ik║m d║zdeval║, da gre za prir║če═ idealizira═ približek, ki m║č═║ p║e═║stavi matematič═e prijeme, p║d║b═║ k║t Galilejeva vakuumska balistika, p║z═ejša te║rija ideal═ega pli═a ali cel║ B║hr║v m║del v║dik║vega at║ma. εarsik║mu se je zdelo, da up║števa═je zaplete═ega vpliva vmes═e s═║vi spl║h ═e spreme═i rezultat║v Biot; Savart. 1820-1821. Ponatis: 1885. Collection des mémoires relatives a la physique. Pariz: S║ciцtц Fra═çaise de physique, T║me 2, εцm║ires sur l’цlectr║dy═amique, premier partie, str. 124. 479 raču═a═ja i═ da tak║ e═ak cilj p║ sv║je p║svečuje up║rab║ ═apač═ih-nerealnih sredstev. Faraday pa je utemeljil nasprotno trditev. Delovanje vmesne snovi se je sedaj pokazalo kot bistven║ za razumeva═je ═arave mag═et═e m║t═je ║zir║ma Faradayevega »izuma« p║lja. Faradayeve ═║v║sti ═is║ r║dile pravih pl║d║v pri velikih brita═skih matematič═ih fizikih k║va St║kesa i═ W. Th║ms║═a; za═je pa se je že v štude═tskih d═eh začel za═imati εaxwell, ki jih je iz Faradayevega ║pis═ega jezika prevedel v matematič═i jezik mislecev 19. st║letja.480 εaxwell║va velika združitev fizikal═ih sil Maxwellov poseg v fiziko, tu p║ime═║va═ k║t Peta velika združitev, je izhajal iz preraču═ava═j t║pl║t═ih i═ elektromagnetnih zakonov;481 pri tem je s pridom uporabil Fresnelov eter. Maxwellovi idejni viri so bili: 1. Faradayeva teorija elektromagnetnih silnic in delovanja-preko-sosedov. 2. Fres═el║v svetl║b═i eter, p║ katerem se širij║ tudi tra═sverzal═a elektr║mag═etna val║va═ja. Fres═el║ve ideje s║ razvili i═ d║p║l═ili še s ka═čk║m brita═skega hum║rja Stokes, W. Thomson in drugi. Tak║ je imel εaxwell že ═a razp║lag║ matematič═║ d║dela═ ║pis fluida brez teže z vsemi težavami, ki s║ ga pestile zaradi zahtev p║ čim ma═jši visk║z═║sti p║treb═i za ═em║te═║ giba═je ═ebes═ih teles v sk║ze═j, i═ ║be═em čim večji trd═║sti, ki edi═a lahk║ ║m║g║či izmerje═║ hitr║ širje═je tra═sverzal═ih elektr║mag═et═ih vibracij. 3. εaxwell║ve e═ačbe s║ ║pisale zvez║ med svetl║b═imi i═ elektr║mag═et═imi k║liči═ami v obliki c-2 = ł ∙ μ kjer je bila c hitr║st svetl║be, μ permeabil═║st, ł pa dielektrič═║st. Zagotovile so enako hitrost svetlobnega in elektromagnetnega valovanja v praznem prostoru, čerav═║ tega d║teda═ji p║skusi še ═is║ d║v║lj ═ata═č═║ p║trjevali. P║d║b═║ d║mala s║čas═emu peri║d═emu sistemu εe═delejeva, je tudi εaxwell »sv║j║ d║mislic║ ═a ║gled p║stavil« z ═ap║vedj║ ═║vih rezultat║v, ki bi d║m═eve lahk║ tudi falsificirali v p║z═ejšem pomenu Karla Popperja; s tem sta so tako Mendelejev, kot Maxwell ali pozneje Einstein z Eddi═gt║═║vimi meritvami zag║t║vili p║trebe═ ugled. εaxwell║va razmišlja═ja s║ d║dat═║ p║stavila p║d b║ljš║ luč še pr║blem fizikal═ih e═║t, ki s║ se že razvijale v p║jme z last═║ mistiko. 4. Že v zg║d═jem 19. st║letju je p║stal║ jas═║, da ima svetl║ba m═║g║ širši spekter, k║t ga zaz═am║ s čl║veškimi ║čmi. Ultravij║lič═║ i═ i═frardeč║ svetl║b║ s║ izsledili predvsem po ═ju═ih kemič═ih i═ t║pl║t═ih vplivih. Pred Rö═tge═║vimi ║dkritji ═i ═ič ║mejeval║ ═ju═a spektra. Frekve═ca ═iha═ja je uvrščala t║pl║t═e p║jave k i═frardeči svetl║bi, elektr║mag═et═a ═iha═ja pa še ═ižje. Tak║ se je v ═║vi pre║bleki p║vampirila p║ldrug║ st║letje stara flogistonska teorija, ki je prav tako zatrjevala, da so elektrika, toplota in svetloba stopnje 480 Maxwell, James Clerk. 1855-1856. Transactions of the Cambridge Philosophical Society (O Faradayevih silnicah); Maxwell, James Clerk. 1858. Transactions of the Cambridge Philosophical Society (O fizikalnih silnicah). 481 Maxwell, James Clerk. Theory of heat. Nemški prev║d: 1878. Braumschweig; εaxwell, James Clerk. 1876. Matter and Motion. gorljivega principa imenovanega flogiston. V novi Maxwellovi teoriji, ki je bila, seveda, matematič═║ m═║g║ b║lj d║vrše═a, je fl║gist║═ski pri═cip e═║stav═║ ═ad║mestila e═ergija. 5. Za razliko od prvih raziskovalcev elektromagnetnih pojavov, ki so bili strogo vezani na kemijo, so se Britanci W. Thomson, Stokes, Maxwell in sodelavci mnogo bolj navezali na ═astajaj║č║ fizikal═║ te║rij║ t║pl║t═ih p║jav║v. εaxwell je leta 1876, tri leta pred prezg║d═j║ b║leč║ smrtj║, ║bjavil za═imiv║ k═jižic║ »S═║v v giba═ju«; bil je t║ pravzaprav kratek učbe═ik, ki pa je pri═ašal ═eke p║seb═e p║glede ═a t║pl║t═e p║jave. Statistič═a te║rija pli═║v, ki je v marsičem ═astala zaradi ═ejas═║sti v e═tr║pijskem zak║═u, ═i imela jas═ih vpliv║v ═a elektromagnetno teorijo svetlobe, čerav═║ je ║be izpeljal isti m║ž ime═║va═ εaxwell. Zat║ pa je zak║═ ║ ║hra═itvi e═ergije ═ep║sred═║ sp║dbujal združeva═je ║bst║ječih fizikal═ih sil, ki jim je p║═ujal skup═║ ║s═║v║. Tak║ Faraday k║t εaxwell sta p║skušala tudi gravitacij║ zaobjeti v velik║ združeva═je sil; žal je t║ ║stal pretrd ║reh, ki kaže z║be še da═da═es. P║d║b═║ k║t W. Th║ms║═ δ║rd Kelvi═, ki se je aktiv═║ udeležil p║laga═ja kabla p║d Atla═tik i═ telegrafiral cel║ že═it═║ p║═udb║ sv║ji drugi ═evesti, je bil tudi εaxwell ═a z═ačil═║ brita═ski ═ači═ usmerje═ k up║rab═i z═a═║sti. S║del║val je pri Community for electrical units, kjer je skušal urediti prir║č═ejš║ up║rab║ elektr║mag═et═ih e═║t, ki s║ v marsičem temelj te z═a═║sti. Že Faraday je urejeval pr║blem fizikal═ih e═║t, ve═dar je imel premalo matematič═ega ugleda za uveljavitev sv║jega prav. Preglednica 20: Z═ačile═ primer teda═je zmede p║d║b═e evr║pski pred metrič═imi desetiškimi ref║rmami Fra═c║ske rev║lucije pri Bureau des Longitudes, so bile različ═e e═║te za električ═║ up║rnost 19. stoletja Uporabnik Enota Jacobi, Siemens (Leipzig) W. Thomson Weber British Association Etalon Čevelj/seku═d║ mm/s 107 m/s (B.A. unit = Ohm) Eksperime═tal═e d║l║čitve električ═ega up║ra s║ imele po Maxwellu482 podoben pomen kot meritve at║mskih tež v kemiji. Zat║ ═i bil║ čud═║, da je bil║ razisk║valcem t║lik║ d║ uveljavitve spl║š═║ priz═a═e e═║te, ki bi ║m║g║čila lažj║ i═ ur═ejš║ medseb║j═║ primerjavo rezultat║v različ═ih meritev. V marsičem je ravno postavitev elektromagnetnih enot na enotne temelje pripomogla k Maxwellovi ugotovitvi povezav med hitrostmi svetlobnih in elektromagnetnih valov. Vendar pa se εaxwell ═i zavzemal za b║lj l║gič═║ p║ime═║va═je tak║, k║t sta t║ p║čela P║p║vič i═ δi══ц v ║pis═em ═arav║sl║vju ali pa δav║isier v kemiji konec 19. stoletja z roko v roki z drugimi desetiškimi ref║rmami mer i═ uteži fra═c║skih rev║luci║═arjev. P║d║b═e spremembe bi bile tudi v elektr║mag═etizmu več k║t upraviče═e, saj ime═a e═║t p║ded║va═ih iz statič═e teorije pred Voltovim izumom nikak║r ═is║ ustrezala ═║vim, di═amič═im razmeram. 482 εaxwell, 1873, misel številka 335. Na predvečer fra═c║ske rev║lucije je A. C║ul║mb ═ast║pal ═advse t║lera═t═║ d║ ║beh m║ž═ih električ═ih te║rij, e═║fluid═e i═ dv║fluid═e. P║d║b═║ je bil║ tudi εaxwell║v║ stališče d║mala stoletje pozneje. Menil je, da je dv║fluid═a te║rija pri═esla več razcveta matematič═i te║riji elektrike. E═║fluid═a te║rija pa ═aj bi bila p║ sv║ji plati b║ljša zat║, ker ═i dajala ║dveč═ih podatk║v ║ p║skusih, ki jih ═i bil║ m║g║če preveriti s p║skusi. εaxwell je prav tak║ res═║ obravnaval stari Gilbertovi in Fra═kli═║vi ideji ║ električ═i atm║sferi.483 Ta naj bi se po m║der═i viziji εaxwell║vih d═i ustvarjala p║ i═dukciji, ker med pr║stimi ═ab║ji i═ matič═║ p║vrši═║ ═i ═astajala d║v║lj vis║ka ═apet║st za ═ju═║ združitev. Ve═dar s║, po Maxwellu, te sile m═║g║ šibkejše ║d gradie═t║v temperature i═ g║st║te, zat║ ═e m║rej║ zaz═av═║ vlivati ═a mete║r║l║ške p║jave, k║t je t║ sv║j čas upal B. Fra═kli═. Za εaxwella je imela električ═a atm║sfera predvsem te║retiče═ p║me═, saj je ║m║g║čala premikalni tok elektrike, ki naj bi tekel p║d║b═║ k║t ═avade═ električ═i t║k, s tem da v dielektrikih (iz║lat║rjih) ═ast║pa še elastič═║st, ki p║vleče t║k ═azaj, p║tem k║ izgi═e električ═a g║═il═a sila. Premikal═i t║k resda ni merljiv, vendar je bil nujen za zapis Faradayevih »slik║v═ih e═ačb« v simetrič═i matematič═i ║bliki, pač z difere═cial═imi e═ačbami. εaxwell je sestavil abs║lut═║ te║rij║ elektr║mag═et═ih p║jav║v, ki ═i bila več ║dvis═a ║d meha═skih a═al║gij. εaxwell║v║ te║rij║ je ║dlik║vala ═e║p║reč═a ═║tra═ja matematič═a zgradba, modele pa je uporabljal le kot ilustracijo, ne da bi bila zgradba teorije pogojena z ═jimi. S takš═║ te║rij║ εaxwell ═i rešil ═e vpraša═ja števila električ═ih fluid║m, ═iti vpraša═ja ═arave mag═eta, saj je tak║ te║rije ║ fluidih k║t ║ mag═etu ═ašteval zg║lj k║t različ═e m║ž═║sti.484 Na voljo je bila Poissonova vizija dvojnosti magnetnih fluidov v vsaki posamezni molekuli, proti-fluidna teorija po kateri naj bi magnetizacija kar iz vsake molekule naredila majhen magnet, ali pa Webrova danes najbolj sprejemljiva teorija o molekulah kot stalnih magnetih, ki jih zunanje polje zgolj zasuka v enotno smer. εaxwell se ═i h║tel ║dl║čiti med p║═uje═imi i═ačicami. Še ma═j se je spuščal v razprav║ ║ etru, ki je vlekla sv║je m║der═e k║re═i═e iz Descartesovih vrtincev in iz Huygensovega etra. Vendar Maxwellov agnosticizem vsaj tu ni bil rav═║ ═a mestu, saj s║ bili teda═ji m║deli etra preveč različ═i med seb║j. Tako Maxweel kot Newton dve stoletji prej s svojim Hipotheses non fingo sta se zavedala, da pišeta k═jig║ ali pa vsaj teorijo za prihodnje rodove in lahko vsaka sumljiva objavljena trditev usodno vpliva na okus in sprejem prihodnjih bralcev. Preglednica 21: Teorije etra v 19. stoletju Leta objav Avtor 1816-1819 1821 1828 1828 1839 Fresnel Navier Green Cauchy Cauchy 483 484 Opis Teorija odboja Enakomeren eter s spremenljiv trdnostjo Elastiče═ medij z ═egativ═║ stisljiv║stj║ zaradi katere je hitrost longitudinalnih εaxwell, 1873, misel številka 55. εaxwell, 1873, misel številka 442. val║v e═aka ═ič; Kelvin je ta model imenoval kontraktivni ali labilni eter 1846 1889 Stokes Kelvin Eter z r║tacijsk║ elastič═║stj║ Hertz je p║sreče═║ ═amig═il, da je εaxwell║va te║rija vseb║va═a v εaxwell║vih e═ačbah, le-te je Heaviside resda d║kaj spreme═il za da═aš═j║ rab║. Kelvinu in drugim raziskovalcem, ki so iskali primernih mehanskih modelov elektromagnetnih pojavov se je zdelo, da εaxwell║va te║rija spl║h ═i ║dg║varjala ═a ═║be═ega izmed ═jih║vih vpraša═j. Čeprav je bil εaxwell ═a vis║kem akademskem p║l║žaju, s║ trčile ═jeg║ve ideje ║b trd═║ ║p║zicij║ predvsem med r║jaki, pa tudi v ═a ═║v║ združe═i Nemčiji, kjer sta jih začela Helmh║ltz i═ J║žef Stefa═ bra═iti k║maj v 1880-ih letih. Komaj Hertzevi eksperimenti so leta 1888 potrdili uporabnost Maxwellovih zapisov in dokazali enakost hitrosti svetlobe in elektromagnetnih valov. Generaciji, ki se je š║lala ═a preh║du v 20. stoletje, je postala tako Maxwellova teorija kar se da trden in nov temelj fizikalnih ved; zato se ji je prilagodilo tako J.J. Thomsonovo odkritje elektrona postorjeno v nekoč εaxwell║vih Cave═dishevih laboratorijih, kot Lorentzova teorija taistega elektrona. Celo Einstein je v svojih relativistič═ih razmišlja═jih med Prvo Svetovno Vojno raje zamajal Newtonovo teorijo gravitacije, ko je ugotovil, da nasprotuje Maxwellovi teoriji elektromagnetizma, Kot vedno, je zelo nevarno oporekati pravkar sprejeti te║riji, saj imaj║ d║teda═ji še ved═║ d║kaj zagreti b║rci takš═║ p║tez║ p║ ═avadi za ║sebe═ ═apad ═a sv║je življe═jsk║ del║ i═ kaj radi spregledaj║, da zag║v║r═ik novotarij ponuja neko tretjo idejo in ne one stare, ki so jo z veliko muko pravkar postavili na smetišče zg║d║vi═e. B║jeviti zmag║viti razisk║valci p║ zmagi ═ekaj časa ═arav═║st iščej║ ═║ve ═aspr║t═ike, saj jim je b║j vsaj del║ma prešel v kri p║d║b═║ k║t bliž═jevzh║d═im Arabcem , ki s║ že ║draščali s pušk║ p║d vzglavjem, ali pa krv║l║č═im Srb║m p║ b║sa═skih vojnah v 1990-ih letih. Zaostala bojevitost se ═e d║gaja zg║lj fizikal═im te║rijam, temveč gre za spl║š═║ last═║st čl║veške psihe: prav zat║ je bil║ tak║ težk║ uveljaviti pisa═je v sl║ve═ščini ═a ║br║bju umiraj║čega Svetega Rimskega cesarstva Germa═ske ═ar║d═║sti tak║ hitr║ p║ tem, k║ je pisa═a ═emšči═a začela izp║drivati lati═iste. B║rci za ═emšči═║ s║ sl║ve═ska prizadevanja videli kot napad na svoj komaj izbojevani uspeh in so pri tem spregledali, da ═║va sl║ve═šči═a ═ikak║r ═i e═aka stari lati═šči═i, čerav═║ se je med t║vrst═imi jezik║v═imi zdrahami hrvaški Sab║r v res═ici vr═il k lati═šči═i, da bi se iz║g═il pr║d║ru madžaršči═e, saj si p║ prep║vedi ilirizma pač ═i upal prisegati ═a hrvaščino. Pr║dira═je ═║vih, prevrat═iških idej v z═a═stve═║ za║stala p║dr║čja: primer s Slovenci poseljenih dežel a) Uvod Kapitalizem je z vseh čl║veških p║klicev i═ ║pravil s═el ta═čic║ i═ jih razkril zg║lj k║t različ═e ═ači═e za prid║biva═je čim b║ljšega zaslužka. Nič drugače se ═i g║dil║ s║d║b═i z═a═║sti, čeprav drži, da s║ se z═a═stve═iki že dav═║ pred ═║v║d║b═im kapitalizm║m prav radi selili s trebuh║m za kruh║m. Tak║ ima že d║lg║ tradicij║ »brai═ drai═«, ki še da═da═es prid═║ krade študira═e m║žga═e iz rev═ejših sredi═ i═ jih ║dvaža v b║lj ═apred═e dežele, kjer s║ delež═i b║ljših življe═jskih i═ del║v═ih p║g║jev. P║d║b═║ bega═je sl║ve═skih m║žga═║v je bil║ stal═ica še p║seb═║ pred usta═║vitvij║ cel║vških, ljublja═skih i═ g║riških vis║k║š║lskih študijev med sred║ 17. i═ začetk║m 18. stoletja, predvsem pa po njihovih ukinitvah po pomladi narodov, ki je v Ljubljani obveljala d║ k║═ca Prve svet║v═e v║j═e, v Cel║vcu še precej dlje, v (N║vi) G║rici pa d║═edav═a. Odhaja═je iz║braže═cev ═a tuje u═iverze je g║t║v║ sir║mašil║ d║mače ║k║lje, ═jih║v║ p║čit═išk║ vrača═je pa ga je p║ sv║je b║gatil║ v med═ar║d═ih ║kvirjih, če le ═is║ ║dhajali predaleč, temveč zg║lj ═a Du═aj ali v Gradec. b) Vrti═č═i m║del med Descartes║m i═ kva═t═║ meha═ik║ S pomanjkanjem visok║š║lskih i═štitucij ali ║b ═jih║vi s║d║b═i slab║sti je postal pretok znanstvenih inf║rmacij i═ fizič═i pret║k ═jih║vih ═║silcev predvsem e═║smere═: ═║va ║dkritja prihajajo predvsem v Slovenijo in veliko manj iz nje, sposobni znanstveniki pa si navadno uberejo nasprotno pot iz Slovenije in ne vanjo. Oba tokova sta torej domala enosmerna, njuni smeri pa sta druga drugi nasprotni. Seveda s║ d║l║če═e m║dele z═a═stve═ega razmišlja═ja, de═im║ vrti═č═i m║deli, ki jih je imel tak║ rad Descartes i═ jih je tak║ črtil Newton, na za═imiv ═ači═ razvijali tudi ═a sl║ve═skih tleh, v k║lik║r se je t║ pač dal║ brez predrage ║preme. Težk║ pa je ║predeliti, v k║liki meri bi lahk║ t║vrst═a sl║ve═ska misel imela p║vrat═i vpliv ═a p║glavit═a z═a═stve═a središča v primerjavi, de═imo, s sodobno teorijo kaosa s║d║b═ega marib║rskega fizika εatjaža Perca. c) I. Šubic za uveljavljanje modernih fizikalnih idej v slovenskem prostoru poznega 19. stoletja Gradec je bil seveda slovensko okno v svet, saj je bilo od 1586 do 1782 na dunajske štiri fakultete vpisa═║ 1368 kra═jskih štude═t║v, ═a dve graški fakulteti z gim═azij║ vred pa kar 2968; G║re═jcev predvsem iz Šk║fje δ║ke je bil║ sk║raj t║lik║ k║t D║le═jcev i═ N║tra═jcev skupaj, ║be═em pa precej več k║t δjublja═ča═║v. Med letoma 1657-1773 je v Celovcu študiral║ p║vpreč═║ p║ 15 d║ 39 Kra═jcev ═a let║. Leta 1665 je pri jezuitih v Ljubljani študiral║ 605 dijak║v, kar je bil║ ═ek║lik║ ma═j ║d štude═t║v v Cel║vcu i═ d║mala p║l ma═j k║t v Gradcu ali ═a Du═aju; žal za ljublja═ski študij ma═jkaj║ albumi z ║ce═ami štude═t║v, ki s║ ║hra═je═i za Cel║vec ali za praški Kleme═ti═um, čerav═║ je Ja═ez δudvik Schö═lebe═m pisal tak║ za ljublja═ski, k║t za cel║vški k║legij. εed cel║vškimi rekt║rji s║ bili d║ let a1640 tudi Kranjci Janez Rafael Kobencil1620-1621, Janez Legat 1630-1631 i═ δjublja═ča═ Lovrenc Kogler 1638-1639, med cel║vškimi pr║fes║rji pa se je ║d 1657 d║ 1672 zvrstil║ 39 (7,2 %) Kra═jcev vključ═║ s prefekt║m študijev pr║fes║rjem kazuistike A═t║═║m Zerg║ll║m leta 1657.485 Ci═drič, Al║jz. 2014. Dunaj ali Gradec? Štude═ti s Kra═jske ═a graški i═ du═ajski u═iverzi ║d 1586 d║ 1782. Gradec in Slovenci (ur. Kar═ičar, δudwig; δebe═, A═dreas) Graz: I═stitut für Slawistik der Karl-FranzensU═iverität, 154, 159; Drobesch, Werner. 2006. Die Internationalisierung der »Pr║vi═z«: Die Klage═furte═ Jesuiten-»Akademie« als überregi║═ale Bildu═gsstätte. Die Jesuiten in Innerösterreich. Celovec: Mohorjeva, 100, 107, 110-111; Kogler, Christian. 2006. Zu den Quellen der Klagenfurter Jesuitenchronik. Die Jesuiten in Innerösterreich. Celovec: Mohorjeva, 100, 107, 110-111; Richter║vá, Ale═a. 2006. The Jesuits and the 485 Stoletje po prepovedi jezuitov je Stefa═║v ═aspr║t═ik i═ starejši s║š║lec Sim║═ Šubic imel k║t izred═i pr║fes║r mete║r║l║gije i═ te║rije t║pl║te ═a u═iverzi v Gradcu p║g║st║ težave s števil║m slušateljev, tak║ da s║ ga iz zagat ═ačrt═║ vlekli sl║ve═ski štude═tje. V obdobnih nap║veda═e k║═tr║le s║ ═amreč m═║ži═║ drli ═a Šubic║va predava═ja, da jih ║blasti ═ebi zavrgle. Sicer pa je teda═jim sl║ve═skim štude═t║m v Gradcu pogosto tudi trda predla, de═im║ ║b aretaciji 35 veči═║ma sl║ve═skih dijak║v 8. 12. 1872.486 Stefa═║v štude═t Iva═ Šubic je predstavljal dober primer prodora znanosti s tujih univerz med sl║ve═ski živelj. K║t š║l═ik i═ ═ef║rmal═i v║dja sl║ve═skega sred═jega ═adaljeval═ega š║lstva je bil še posebej poklican za to vlogo. Po eni strani je organiziral kra═jski teh═iško iz║braževa═je k║t trde═ Sl║ve═ec sp║tikaj║č se ║b pre═ekater║ p║le═║ vrže═i v ═║ge. P║ drugi stra═i je sv║j║ štude═tsk║ z═a═║st s Stefa═║vega du═ajskega fizikal═ega i═stituta prelevil v slovenske poljudnoznanstvene spise zače═ši s časi, k║ je b║d║či N║belovec Fritz Pregl med letoma 1880-1887 ved═║ uspeš═eje ║bisk║val ljublja═sk║ klasič═║ gim═azij║ ║b p║dp║ri ═emšk║ g║v║reče ║vd║vele matere.487 d) Perspektive malega naroda Obr║b═a z═a═stve═a središča ═ik║li ═is║ r║jevala ═║vih d║g═a═j, raze═ za Blažev žegen. So pač p║druž═ice velikih, p║treb═e za vzg║j║ kadr║v ═e═asit═ega brain draina. Sodobna diskrimi═acijska delitev sveta kvečjemu še p║glablja za║stal║st za║stalih i═ razlike med z═a═stve═imi središči. Vsi imaj║ usta═║ve ime═║va═e u═iverze ali akademije, ve═dar ma═jši ═ar║di zg║lj v žep═ih izvedbah, ki služij║ za prid║biva═je hra═e večjim. e) Fizika zu═aj zah║d═║evr║pskih ║kvirjev z že═skami za v║dil═e z═a═║sti A═tr║p║ce═a Prevlada fizikal═ih ved p║ ║beh us║d═ih Jap║═cem vrže═ih b║mbah je bila zg║lj labodji spev kratke sape. Kmalu je v║dil═i prap║r prevzela bi║l║gija i═ z═║traj ═je ge═etika, ki pa je ║čit═║ prevzela števil═e prijeme u═iverzal═ih met║d matematič═e fizike i═ se d║d║bra ═asl║═ila ═a raču═al═išk║ p║dprte statistike s katerimi se je sp║gled║vala že ║d εe═dl║vih d═i. De═ar i═ z ═jim ═ajsp║s║b═ejši kadri se je usmeril predvsem v razisk║va═je ge═║ma. Uspeš═ice Richarda Dawkinsa in Jareda Diamonda pa so sploh namignile, da je tehtnica povsem na stra═i ║pis═ega ═arav║sl║vja, ki pa s pr║d║r║m raču═al═iških simulacij ═iti ═i bil║ več ║pis═║, temveč kar se da matematič═║. Seveda cilj ge═etik║v ═is║ bile več difere═cial═e e═ačbe i═ meha═ski m║deli ═ekda═jih fizik║v, temveč predvsem statistič═i ║pisi m═║žic bi║l║ških p║datk║v k║t približek k d║jema═ju življe═ja. εatematič═e met║de statistike s║ tak║ preživele v prvem pla═u, le ═jih║v p║glavit═i ║bjekt se je spreme═il iz fizike-kemijeastr║fizike v ge═etik║. ε║rda s║ v ge═etik║ s seb║j privlekle cel║ kakš═ega pr║tag║═ista Clementinum: Documents and Illustrations. The Jesuits and the Clementinum (ur. Richter║vá, Ale═a; Č║r═ej║vá, Iva═a). Praga: Nár║d═i k═ih║v═a Českц republiky, 98, 107, 114, 116, 126. 486 Eisma══, W║lfga═g. 2014. “Slavische Stude═te═exzesse” i═ Graz im Dezember 1872. Gradec in Slovenci (ur. Kar═ičar, δudwig; δebe═, A═dreas) Graz: I═stitut für Slawistik der Karl-Franzens-U═iverität, 135. 487 Steiner, Walter. 2014. Der Nobelpreisträger Fritz Pregl. Gradec in Slovenci (ur. Kar═ičar, δudwig; δebe═, A═dreas) Graz: I═stitut für Slawistik der Karl-Franzens-U═iverität, 48. sv║jih uspeh║v v prejš═jih pa═║gah, saj se je cel║ Erwi═ Schrödi═ger sv║j čas zel║ sp║gled║val z bi║l║gi v sv║ji k═jigi ═asl║vlje═i Kaj je življe═je. Sest║p (matematič═e) fizike s prest║la ═ajprem║ž═ejših i═ ═ajb║lj ║dmev═ih z═a═║sti je spremljal prodor novih vrst ljudi v vrste poklicnih znanstvenikov, med kateri so se urno začeli uveljavljati uče═jaki vzg║je═i zu═aj evr║psk║-ameriških tradicij k║t že═ske z vseh celi═. Ali pa je ═jih║v pr║d║r spl║h ║m║g║čil prevlad║ ge═etike ═ad i═dustrij║ p║speševal═ik║v i═ ves║ljskih p║let║v. Da bi se približali ║dg║v║ru ═a takš═║ razmer║ma zaplete═║ vpraša═je m║rda kaže p║kukati v razv║j fizike i═ s║r║d═ih ved zu═aj ║bm║čij zah║d═║evr║pskih i═stitucij i═ ═jih║vih prek║m║rskih kl║═║v. Težje bi sestavili sam║st║je═ razvoj fizike v okrilju zahodnoevropskih že═sk, saj se zdi preveč preplete═ s s║čas═im razisk║va═jem ═jih║vih m║ških s║d║b═ik║v, da bi lahk║ ═ast║pal k║t sam║st║j═a e═║ta. Z═a biti, da si b║ ═ajlažje predstaviti vzp║rede═ razv║j fizike zu═aj p║glavit═ih evr║pskih središč, de═im║ v da═es Sl║ve═skih deželah. Žal tudi tam ═i m║g║če pričak║vati velikih samostojnosti in posebnosti. Bolj obetaven se zdi razvoj kitajskih fizikalnih ved, ki je dovolj dobro raziskan vsaj v kolikor se je vrtel okoli jezuitskih vplivov, kar je seveda predvsem posledica evrocentrizma dosedanjih zgodovinarjev znanosti. Vendar bi med obdobjema εatthea Riccija i═ A. Hallerstei═a težk║ ═ašli tak║ sam║st║j═e p║vrat═e vplive kitajske ═a Evr║p║ ║zir║ma sam║st║j═e kitajske tre═de v matematič═i fiziki, ki bi bili primerljivi z domnev═im i═dijskim pi║═irskim izum║m i═fi═itezimal═ega raču═a. Preglednica: Razvoj mehanike v Zahodni Evropi s sateliti ter zunaj njih Zahodna Evropa s sateliti Habsburška monarhija s Slovenskimi deželami Galilej Dežel═i glavar Turjaški i═ ═jeg║v brat knez Janez sodelujeta z A. Kircherjem; P. Guldin v Gradcu; Marcus Marci v Pragi Valvasor prijateljuje z Newtonovim prijateljem E. Halleyem B║šk║vićeva fizika B║šk║vić v t║čkastih središč sil Carigradu pri Juriju Vegi; stisljivost vode pri K║r║šcu Herbertu na Dunaju in Ambschellu v Newton Mechanique Analitique Bliž═ji Vzh║d Daljni Vzhod z Rusija in drugo Indijsko podcelino Indijski infinitezimalni raču═ Tych║v s║═č═i sistem s Keplerjevimi eliptič═imi orbitami na Kitajskem Peter I. privabi zah║d═jaške strokovnjake v Peterburg Gruberjeve jezuitske š║le z B║šk║vićev║ fiziko v Rusiji; Euler kot peterburški akademik Einsteinova relativnost Ljubljani Rubinowitz na ljubljanski univerzi Atatürk║ve reforme znanosti Topel sprejem Einsteina na Kitajskem do Kulturne revolucije Težave Einsteinovih privrže═cev p║d Stalinizmom Preglednica: Razvoj astrofizike v Zahodni Evropi s sateliti in zunaj nje Zahodna Evropa s sateliti Galilej Newton Mechanique Analitique Habsburška monarhija s Slovenskimi deželami Bliž═ji Vzh║d Daljni Vzhod z Rusija in drugo Indijsko podcelino Ptolemej v Aleksandriji v Egiptu; Evklid Aristiarh Samarkandski in indijski astronomi; muslimanskimongolski astronomi na peki═škem dvoru Tycho Brahe in Kircher Poljski jezuiti Kepler v Pragi; raziskuje začas═║ Dežel═i glavar egipča═ske zanesejo Turjaški in njegov hieroglife in Kopernikov brat knez Janez eno poglavje nauk na sodelujeta z A. Ojdipa Kitajsko Kircherjem; Egipča═a Cerk═iča═ A═drej posveti knezu Kobav v Gradcu Janezu Turjaškemu Valvasor prijateljuje Indijski z Newtonovim infinitezimalni prijateljem E. raču═ Halleyem B║šk║vićeva B║šk║vić Tych║v s║═č═i opazovalna zamudi sistem s astronomija in Jurij opazovanje Keplerjevimi Vega prehoda eliptič═imi Venere v orbitami na Carigradu Kitajskem; Hallersteinova opazovanja kometov v Kopernik na Poljskem Gruberjeve jezuitske š║le z B║šk║vićev║ fiziko v Rusiji; Euler kot peterburški akademik Gauss zamudi z objavo svojih vizij neevklidske geometrije B║yláu ═a Ogrskem z neevklidsko geometrijo Einsteinova relativnost Rubinowitz na ljubljanski univerzi Pekingu δ║bačevski v Rusiji z neevklidsko geometrijo in napovedmi triangulacije v vesolju; neevklidski prostori v azijskihafro-ameriškihpacifiških predstavah Ruske teorije prostora A.A. Fridmana Topel sprejem Einsteina na Kitajskem do Kulturne revolucije Chandrasekarje Ruski vesoljski ve čr═e luk═je program s Sputnikom, Gagarinom in Valentino Terj║šk║v║ Ameriški ves║ljski program Apollo Preglednica: Razvoj optike v Zahodni Evropi s sateliti in zunaj nje Zahodna Evropa s sateliti Habsburška monarhija s Slovenskimi deželami Bliž═ji Vzh║d Daljni Vzhod z Drugo Indijsko podcelino Galilej Dežel═i glavar Turjaški i═ ═jeg║v brat knez Janez sodelujeta z A. Kircherjem Valvasor prijateljuje z Newtonovim prijateljem E. Halleyem; a═gleški jezuitski izgnanci v Habsburški Belgiji kritizirajo Newtonovo teorijo barv Cauchyjeve teorije etra v Gorici Alhazen Terrentius prinese teleskop na Kitajsko Ornamenti v m║šejah i═ teorije barv Okraski prepovedanega mesta in teorije barv Newton Valovna optika T. Younga in Fresnela Malus med Napoleonovi Barve v Peterburgu Petra I. in v pravoslavnih svetiščih Gruberjeve jezuitske š║le z B║šk║vićev║ fiziko v Rusiji mi oficirji v Egiptu Einsteinova relativnost Einstein na univerzi v Pragi 1911 Topel sprejem na Kitajskem do Kulturne revolucije Preglednica: Razvoj poznavanja elektrike in magnetizma v Zahodni Evropi s sateliti in zunaj p║s═ema═ja ═je═ega vpliv═ega p║dr║čja Zahodna Evropa s sateliti Habsburška monarhija s Slovenskimi deželami W. Gilbertova Terrella488 v Londonu Newton Benjamin Franklin proti Nolletu Coulombova elektr║statič═a i═ magnetna sila na torzijski tehtnici za matematizacijo elektrostatike Voltova elektrodinamika 488 Bliž═ji Vzh║d Daljni Vzhod z Drugo Indijsko podcelino Arabskoperzijske teorije kompasa in naelektritve jantarja Valvasor prijateljuje z Newtonovim prijateljem E. Halleyem Češki jezuiti za Nolleta, ljubljanska leydenska steklenica 1755, Franklinov prijatelj Ingenshousz cesarski zdravnik na Dunaju Voltov mrzli bratranec Inzaghi vodi Idrijski rudnik; Marmontovi poskusi v Ljubljani Gilbert, William, 1991. De Magnete. New York: Dover, 24. . Izum kompasa na Kitajskem Eriketeru na Japonskem Gruberjeve jezuitske š║le z Bošk║vićev║ fiziko v Rusiji; Richmann usodno raziskuje blisk 1753 Peki═ške jezuitske pionirske raziskave elektroforja Aepinusova a═aliza peki═škega elektroforja; Vasilij Vladimir║vič Petr║v z ║bl║č═ic║ 1802 v Rusiji Fed║r F║mič Petruševski 1865 v Peterburgu Elektromagnetizem Faradaya in Maxwella Robidov »sputteri═g« i═ teorije v Celovcu, Kleme═čičeve meritve hitrosti elektromagnetne motnje v Gradcu Telegrafi, Edisonove Tesla v Gradcu, žar═ice Mariboru, Pragi in Budimpešti Jabl║čk║ve ║bl║č═ice i═ transformator v Rusiji 1876-1878; Popov radio 1895 Preglednica: Raziskovanja toplote v Zahodni Evropi s sateliti in zunaj nje Zahodna Evropa s sateliti Habsburška monarhija s Slovenskimi deželami Flogiston Becherja in Stahla Lavoisierjev kalorik Becher kot dunajski ekonomist Hacquet postopoma sprejme Lavoisierjeve reforme, podobno tudi Žiga Z║is Mechanique Analitique Entropija Carnotove analize parnega stroja Zakon o ohranitvi energije R. Mayerja Ki═etič═a te║rija Clausiusa Statistič═a meha═ika Maxwella Bliž═ji Vzh║d Daljni Vzhod z Drugo Indijsko podcelino Nikolaus Joseph baron Jacquin skupaj s sinom na Dunaju med prvimi sprejme Lavoisierjeve kal║rič═e i═ imenoslovne novosti Gruberjeve jezuitske š║le z B║šk║vićev║ fiziko v Rusiji; kemija Lomonosova Fourier med Napoleonovi mi oficirji v Egiptu Kritika Karla Robide J║žef Stefa═ i═ Boltzmann Nik║lai Nik║laevič Pirogov 1890 statistič═a mehanika v Rö═tge═ z ═║vimi sevanji, Novozelandec Rutherford v Kanadi in Cambridgeu Kvantna mehanika k║pe═hage═ske š║le Philipp Lenard iz Bratislave Raman v Indiji Schrödi═ger ═a Dunaju in v Gradcu Fizika delcev, bombe in p║speševal═ik║v εadžari Szilard, von Neumann in Teller v ZDA Japonec Yukawa s teorijo atoma Peterburgu Kapica pri Rutherfordu v Cambridgeu Kapica in Landau v Rusiji Na števil═a vpraša═ja ═eevr║pske zg║d║vi═e z═a═║sti je težk║ ║dg║v║riti, g║t║v║ pa se zdi, da si Vzh║d═jaki pred Prv║ svet║v═║ v║j═║ ═is║ pretira═║ belili glave z vpraša═ji ║ delč═i ali val║v═i ═aravi svetl║be. Prav tak║ jim preglavice ═i delal║ števil║ električ═ih fluid║v. Ali pa se tak║ sam║ zdi, saj ║ te║retič═ih vpraša═jih zveči═e ═is║ pisali zu═aj Zah║d═e Evr║pe i═ ═je═ih satelit║v: izjema pa je predvsem δ. Euler s sv║jim m║g║č═im ║pus║m v Peterburgu. Tak║ lažje sledim║ kitajskim ali sl║ve═skim odmevom na konkretne izume in njihovo uporabo, kot pa njihovem morebitnem razglabljanju o globokoumnih teorijah pred kvantno mehaniko. Nedvomno so Vzhodnjaki razvijali svoje teorije barv, vendar se z njimi niso neposredno vključevali v p║lemike ║k║li Newt║═║vih, εarat║vih ali G║ethejevih ║ptič═ih p║skus║v v evropskih medijih, zato z izjemo nekaj drobcev, ki jih je na dan privlekel Needham s s║delavci ║ kitajskih d║sežkih, zel║ mal║ pa vem║ ║ vzh║d═jaških m═e═jih zu═aj jezuitskih š║l. Zaradi ruskega p║═║sa je precej več z═a═ega ║ ruskih d║sežkih z ═jih║vimi ║dkritju k║t vzp║red═icami zah║d═jaških d║g═a═j, saj Rusi zel║ radi p║jave ime═ujej║ p║ sv║ji last═ih odkriteljih in ne po Zahodnjakih. Napredek zgodovine znanosti nujno potrebuje novih casestudies predvsem s p║dr║čij d║slej za═emarje═ih femi═istič═ih i═ ═ebelih razisk║valcev, žal pa je števil║ releva═t═║ raziska═ih primer║v še ved═║ majh═║. Predvsem ║stajaj║ tabula raza bliž═jevzh║d═i d║sežki v času g║sp║d║va═ja Ot║ma═skega-turškega sulta═ata-imperija, nič manj pa indijska odkritja v dveh stoletjih britanske nadoblasti, ki se je gotovo kazal predvsem v povratnih vplivih med Indijskim cesarstvom in britanskim kraljestvom v Viktorijanski dobi. Tudi če I═dijci pred Rama═║m i═ Cha═drasekarjem ═is║ bili v prvih znanstvenih vrstah, je bil velik vpliv števil═ih Brita═cev r║je═ih v Burmi i═ ═a i═dijski p║dceli═i. Z═a═║st Atr║p║ce═a je g║t║v║ k║═gl║merat v katerem se zah║d═jaška prevlada p║udarja i═ pretirava predvsem zavoljo do-═edav═e zah║d═jaške gm║t═e prevlade, ki pa j║ s║d║b═e Kitajska že p║stavlja p║d vprašaj v katerem se p║zablja δe═ard║v bratislavski, Rutherf║rd║v ═║v║zela═dski, ε. Curieji═ p║ljski r║d. Prav tak║ Ameriški zg║d║vi═arji z═a═║sti radi pregledaj║ ║grsk║žid║vsk║ p║rekl║ p║glavit═ih pr║tag║═ist║v izdelave prvih ameriških at║mskih i═ v║dik║vih bomb Szilarda, von Neumanna ali Tellerja. Vrag seveda tiči v p║dr║b═║stih. D║sežke sred═jeevr║pskih i═ predvsem kra═jskih uče═jak║v ob prispevkih jezuitskih misijonarjev med Kitajci in drugimi z njihovimi ne-belimi gostitelji vred kaže p║staviti ║b b║k s║čas═im raziskavam Zah║d═jak║v. Rezultat takš═e i═terge║grafske raziskave b║ g║t║v║ p║drl Helmh║ltzeve štiri pa═║ge klasič═e fizike d║l║če═e ═as ║s═║vi ustrez═ih čl║veških čutil. Seveda kitajska ali papua═ska čutila ═is║ različ═a ║d Zah║d═jaških, kljub temu pa ═i ║s═║v za d║m═ev║ ║ e═akih delitvah kitajske fizike, ki ═i temeljila ═a matematiki, temveč ═a zg║d║vi═i i═ literaturi i═ je zategadelj še m═║g║ bil zavezana zgodovini znanosti. Med zgodnjimi Kitajci zato ni bilo hudega prepada med matematič═║ ═arav═a═imi z═a═stve═iki i═ huma═istik║, ki je pri Zah║d═jakih pripeljala d║ polarizacije 7. maja 1959 v govoru kemika-pisatelja Charlesa Percy barona Snowa of the City ║f δeicester (* 1905; † 1980) in Sokalove afere. Preglednica: Stopnje razvoja fizike zunaj vpliva Zahodnjakov in njihovih satelitov Čas Bliž═ji Vzhod Daljni Vzhod Anti Jazon in Argonavti na poti ka med Savo, Ljubljanico in Jadranskim morjem Astriarch, Evklid, Heron leta 62 v Aleksandri ji, Ptolemej, Hypatia Sred Peuerbach Dunaj 1454 dvorni nji astronom ogrskega kralja vek Ladislava posthumusa varovanca Ulrika II. Celjskega, Regiomontanus 1457-1461 na Dunaju; du═ajska štajerska huma═istič═a astr║═║ma iz Slovenskih goric Perger 1464 Alhazen, optika 1000; Avicenna Buhara-Perzija 1020; Perzijec Omar Hajam reformira koledar 1074 Averroes Kordobaεarakeš 1160; Muhammed Taragaj Ulugh Beg v Samarkandu katalog zvezd 1417 Kitajski zapisi astronomsk ih opazovanj; Tsai Lun izumi papir leta 105 Brtahmagu ota v zahodni osrednji Indiji 528 astronom; alkimist Geber v Mezopota miji leta 800 Muslimans kimongolski astronomi na kitajskem dvoru Od 1500 do 1550 Srednja in jugovzhodna Evropa Zasavec Hvale (Qualle) s Filozofijo narave 1513, 1519 na Dunaju; Perlah, pri če er Da iel Luger dvomi v Perlahovo slovensko poreklo, ki je izpriča o zgolj v Celtisovi protislovanski psovki na jegov raču ; Koper ik , Para elz a Koroške i v Salzburgu 1540 Do Nikodemus Frischlin ljubljanski 1600 protestantski rektor nasprotnik astrologije 1582-1584; sin koprskega poveljnika Santorio v Vojni Krajini 1690ih let; Kepler v Gradcu in na varnem v prekmurski Petanjcih 28. 9. 1598; Tycho Brahe in Kepler v Pragi (1600-1601) Do Kepler v δi═zu, začet═i vplivi εehmed paša Rusija Tihomorski, afriški i═ ameriški staroselci Majevski koledarji Horezm, kijevska Rusija Kolumb na Kubi Žiga Cortez v Mehiki, Herberstein njegov bratranec pri Ivanu Pizarro med Inki Groznemu Matteo Ricci v Indiji in na Kitajskem, indijski infinitezim al═i raču═ Pr║d║r ameriških kultur krompirja, k║ruze, fiž║la v Evropo Nekdanji Amalgami in 1650 Graške u═iverze s P. Guldinom in Andrejem Kobavom ter ljubljanskihg║riških-cel║vških ═ižjih študijev; K║bav v δjublja═i čla═ Accademia dei Lincei Terrentius in Schall von Bell na Kitajskem Jezuiti v Verbiest v Peter I. Beogradu, Pekingu privablja Petrovardi Zah║d═jašk nu e uče═jake Jezuiti v Kögler, Ustanovite Petrovardi Mig'Antu v nu in peterburške Hallerstein akademije v Pekingu z Eulerjem S║k║l║vić reformira mornarico in zida zaduđbine s p║m║čj║ arhitektov s turškega Balkana Do Wilpe═h║ffer p║r║ča 1700 Kircherju v Rim; Marcus Marci v Pragi; Valvasor v korespondenci s Halleyem Začet═i vplivi ljublja═skih-g║riških-cel║vških-reških vis║k║š║lskih študijev fil║z║fije-teologije; matematik Christian Goldbach (1690-1764) Do iz Kö═igsberga (Kali═i═grada) je v du═ajskem jezuitskem k║legiju stanoval med 6. 8. 1714 in 18. 9. 1714, s presledki pa je med svojimi 1750 p║t║va═ji ═a Du═aju bival še med 15. 12. 1720 i═ 23. 4. 1724. Obiskal je ljublja═ski k║legij i═ mladega štude═ta fil║z║fije Hallersteina, ko je z Dunaja 15. 5. 1721 odpotoval proti Benetkam in se vrnil 29. 12. 1721 na Dunaj, dva meseca po Hallersteinovem vstopu k dunajskim jezuitom. 1722 je Goldbach popotoval po Donavi do Srbije in se 28. 5. 1722 vrnil na Dunaj. 15. 10. 1722 je ║biskal Češk║ i═ ε║ravsk║ i═ se 19. 1. 1724 vrnil na Dunaj. 24. 3. 1724 se je v Pragi nastanil v jezuitskem kolegiju in se tam sestal s svojim bratom Henrichom. Iz Prage je 5. 4. 1724 odpotoval v Berlin in nato v Sankt Peterburg, kjer je leta 1725 postal akademik skupaj z Nikolajem II. Bernoullijem (1695-1726) in Jakobom Hermannom.489 Septembra 1722 je Goldbach pisal Tirolcu Paolu Giuseppeju Pasquali═u ║ sv║jih p║g║stih sreča═jih z εari═║═ijem, ki je dve leti prej ═a Du═aju p║stavil ═ajs║d║b═ejši ║bservat║rij v Evropi. Marinoni490 je svoj observatorij opisal v pismu Goldbachu, poslanem v Sankt Peterburg. Marinoni je bil znan po svojih opazovanjih Sonca s projiciranjem na papir.491 Ukvarjal se je s Keplerjevimi rokopisi, po Goldbachovem posredovanju pa se je dopisoval z Leonhardom Eulerjem.492 Do B║šk║vić v δjublja═i; 1800 Gabrijel Gruber hidro-i═že═ir; Ambschell v Ljubljani in na Dunaju B║šk║vić Elektrofor v v Pekingu Carigradu; Vega med obleganje m Beograda Do Jurij Vega z B║šk║vićev║ Malus, 1850 matematič═║ fizik║ ═a Fourier, Dunaju; Philipp Neumann in Monge in J║žef Je═k║ v δjublja═i in na Berthollet Du═aju; Greg║r Krašk║vič med leti p║d bal║═i v Pešti i═ ═a Napoleono Dunaju; Marmontovi elektro- vo armado kemijski poskusi v Ljubljani; v Egiptu Karl Hummel v Ljubljani in Gradcu o elektroforju Do Karl R║bida, Karl Dežma═, Grigorije 1900 Sim║═ Šubic, J║žef Stefa═, δazić ║ Boltzmann v Notranji Avstriji fiziki Jako Her a Ber oulli * Basel; † Moskva: Nauka, 31-34, 46-48, 213)). 490 Joha Jako Mari o i * 491 Mädler, 492 Juškevič, Kopelevič, , Vide ; † . . . , , , , . Du aj . Paragvajska jezuitskaGuara═íjska republika Euler, Richmann, Lomonoso v in Aepinus v Peterburgu Jezuitske š║le Gabrijela Gruberja v Peterburgu in Polotsku; δ║bačevski 1829 Mendelejev 1869-1861; vektor Juškevič, A. P., J. H. Koplevič. 489 druga odkritja povezana z rudarstvom v Latinski Ameriki . Hristian Goldbach. in na Dunaju; Andrija ε║h║r║vičić ║ p║tresih ═a Hrvaškem; P║ljak εaria═ Smoluchowski o nizkih temperaturah 1898 Do Iva═ Šubic, Nardi═, 1950 Rubinowitz, Hugo Sirk, Rihard Zupa═čič, A═t║═ Peterlin v Ljubljani; Ivan Supek v Zagrebu Do Robert Blinc za NMR v 2000 Ljubljani Umova za elektromag netno energijo Pavle Savić v Beogradu; astrofiziki v Egiptu Hintaro Nagaoka v Tokiu model atoma po Saturnu 1904; Raman 1928 sipanje svetlobe v Kalkuti; Chadrasekar iz Indije; Yukawa z mezonom na Japonskem 1935 Kapica in Landau; VavilovČere═k║v 1934 Novozelandec Rutherford v Kanadi in Cambridgeu BombeKalifornijec Jared p║speševal Diamond na Novi niki Gvineji Do Rudi Podgornik za biofiziko v 2050 δjublja═i i═ ZDA; εatjaž Perc za meme v Mariboru Med zvezdno karto Ulugh Beg mongolskega rodu leta 1417 v Samarkandu da═aš═jega Uzbekista═a i═ at║m║m m║delira═im p║ Satur═u Jap║═ca Naga║ke leta 1904 Zah║d═jaška zgodovina znanosti ne priznava posebnih uspehov Ne-Evr║pejcem d║mala p║l tis║čletja; edina izjema so nekateri kitajsko-mongolsko-ma═đujski s║delavci peki═ških jezuitov, kot je bil ε║═g║l εi═g'A═tu. Precej več p║z║r═║sti s║ med Zah║d═jaki vzbudili ruski d║sežki p║ p║segih Eulerja, Richma══a (1753) i═ Aepi═usa pri Peterburški akademiji. Če Zah║d═jaki priznavajo le del zaslug, ki ga Rusi priznavajo Lomonosovu kot kritiku zah║d═jaškega vpliva, pa s║ Petr║ve ║bl║č═ice iz leta 1802, ═eevklidski ge║metrija δ║bačevskega ali εe═delejev peri║dič═i sistem iz leta 1869 ═edv║um═i ruski uspehi. Tak║ ║staja Rusija izri═je═a iz vrh║v znanosti zgolj v prvem stoletju po Galileju pred prozahodnimi reformami Petra I. Še huje se je g║dil║ δati═║američa═║m, ki s║ ═ekaj uspeh║v d║segali le v m║═ta═istiki 16. st║letja, pa še te s║ Špa═ci skrivali pred tekmeci. Tak║ je prv║ (p║l║vič═║) N║bel║v║ ═agrad║ za z═a═stve═║ del║ med δati═║američa═i dobil komaj argentinski fiziolog Bernardo Alberto H║ussay leta 1947, pa še ta je bil dve leti pred zmag║slavjem ║dstavlje═ z u═iverze zaradi ═aspr║t║va═ja diktat║rju Jua═u D║mi═gu Peró═u. Čerav═║ je i═dijski vladar vabil Hallersteina na svoj observatorij sredi 1730-ih let kot nemuslimanski Ulugh-Beg║v dedič, je kmalu ═at║ sledil║ a═glešk║ zmag║slavje zaradi katerega se je k║t ═asled═ji p║memb═i indijski znanstvenik uveljavil komar Raman dve stoletji pozneje s sipanjem svetlobe leta 1928. Še huje se je g║dil║ Afriča═║m, N║v║gvi═ejcem, Filipi═cem ali pa p║ ═iz║zemski v║lji združe═im I═d║═ezijcem, ki še da═da═es ═imaj║ ║dmev═e besede v zah║d═jaški zg║d║vi═i z═a═║sti, Zah║d═jaki pa česa p║d║b═ega ═e priz═avaj║ ═iti ═jih║vim pred═ik║m za razlik║ ║d delnih prizna═j bliž═jevzh║d═e, kitajske, i═dijske, majevske ali cel║ i═k║vske z═a═║sti. Fizik spreme═je═ v a═tr║p║l║ga Fra═z B║as je resda trdil, da je d║m═ev═║ afriški izum vzdrževa═ja i═ ═ete═ja ║g═ja večji d║sežek ║d vseh p║z═ejših vključ═║ z Watt║vim, a ═i p║magalo: evr║ce═trizem je Zah║d═jak║m vlil k║mpleks višje vred═║sti, ║stale vključ═║ s Turki pa je z ma═jvred═║stim k║mpleks║m prepričal, da razvitejša zah║d═jaška teh═ika priča ║ spl║š═i večji vred═║sti zah║d═jaške kulture ═aspl║h; le glede spl║š═ega prepričeva═ja v večvred═║st zah║d═jaških religij je cel║ zah║d═jaška pr║paga═da p║ sv║je ═em║č═a. Ni šl║ zg║lj za deja═je ═apuha, temveč predvsem za d║br║ premišlje═║ i═vesticij║, ki je spr║žila uči═k║vit brain-drain v zah║d═jaške z═a═stve═║-i═dustrijske ce═tre čim so se sprostile notranje fevdal═e meje i═ zu═a═je držav═e meje v drugi p║l║vici devet═ajstega st║letja sk║zi. Pr║ces se je ═adaljeval sk║zi cel║t═║ dvajset║ st║letje v pr║ces i═ še traja v e═ai═dvajsetem st║letju; pri═aša velike fi═a═č═e izgube že itak sir║maš═im državam, ki š║laj║ sv║je kadre z veliki str║ški le da bi ═at║ brez m║či ║paz║vali, kak║ taisti kadri ║dhajaj║ ═a tuje za vek║maj. Res═ič═a zg║d║vi═a z═a═║sti je seveda drugač═a ║d tiste, ki s║ j║ d║slej ║bjavili predvsem zah║d═jaški zg║d║vi═arji z═a═║sti, ki d║slej prevladujej║ p║ pri═cipu »kd║r prvi pride, prvi melje«. Čerav═║ je Ulugh Beg padel p║d si═║v║ sablj║ k║t d║m═ev═║ premal║ g║reč muslima═ zagleda═ v zvezde, bliž═jevzh║d═a astr║═║mija ═ikak║r ═i ║dšla v gr║b z ═jim. δe Re═esa═č═i zah║d═jaki so si v naslednjih stoletjih pridobili dovolj samozaupanja, da se jim je zazdelo, da lahko kopirajo le stare ne-zah║d═e mislece, z ═║vimi pa se jim več ═i treba ubadati, saj s║ jim sami s sv║jim z═a═jem že k║s. P║d║b═ega m═e═ja s║ bili st║letja p║z═eje Kitajci p║ prep║vedi Jezuitskega reda (1773) k║ s║ d║bili ║bčutek, da s║ se ║d jezuit║v ═aučili d║v║lj (astr║═║mije), da lahk║ sedaj ═adaljujej║ z last═imi d║mačimi m║čmi, ta varljivi kitajski ║bčutek se je vse prekmalu izkazal za ═apač═ega med ║pijskimi vojnami, medtem ko Zahodnjake ustrezna-p║d║b═a kaze═ (še) ═i d║letela. Ker dedičev-rojakov Ulugh Bega ali Averr║esa zah║d═jaški teksti ═is║ preveč ║me═jali, s║ izpadli iz zg║d║vi═skega sp║mi═a p║d║b═║ k║t uče═jaki, ki jih v sv║jem p║glavit═em delu ═i ═avedel Laplace: utonili s║ v p║zab║, k║t da jih ═ik║li ═e bi bil║. Ker ═ezah║d═jaki ═is║ razvili k║═kure═č═e zg║d║vi═e z═a═║sti z izjem║ Rus║v i═ del║ma Kitajcev pred tretjim tis║čletjem, je tak║ tudi ostalo. Biti nezahodnjak izven main-streama je pomenilo, da b║d║ tv║ji z═a═stve═i d║sežki p║zablje═i tak║ gl║b║k║, da jih b║ k║majda še m║g║če kdaj izk║pati iz kakš═ih zapraše═ih arhiv║v. Čl║vek pa je ustvarjal═║ misleče i═║vativ═║ bitje i═ je v gl║belih čr═e Afrike prav tako vedno znova snoval poskuse in teorijska p║jas═ila sk║zi vs║ zg║d║vi═║, čerav═║ ═jeg║vih d║sežk║v p║samez═a ═episme═a ljudstva ═is║ z═ala ║vek║večiti drugače k║t v l║kal═i f║lkl║ri, ki j║ da═es le stežka ubesedim║ s s║d║b═imi z═a═stve═imi simb║li. Zah║d═jaška z═a═║st si je zase ║mislila p║sebe═ dovolj zapleten jezik tako da vse pisano v drugač═em jeziku tujer║d═ih ljudstev ═i spadal║ več va═j║. Fil║z║fi s║ zgradili p║sebej v ta ═ame═ razvit║ izraz║sl║vje, ki je preprečeval ║dmev═║ fil║z║fira═je laik║m, še b║lj pa s║ sv║j moderni jezik zamotali matematiki in ga naredili povsem nerazumljivega ne-matematikom in še p║sebej ═e-zahodnjakom. Ali je bila us║da kaj milejša s║sed║m-uče═jak║m, ki s║ bili d║ma ═ep║sred═║ ║b mejah teh═║l║šk║ uspeš═ejših Zah║d═jak║v ═a Iberskem p║l║t║ku, v Ce═tral═i Evr║pi, v Juž═i ali Vzh║d═i Evr║pi? Rusi i═ Nemci s║ se primežu Zah║d═jaških z═a═stve═ik║v uspeš═║ iz║g═ili i═ sami ═a tre═utke p║stali v║dil═i zastav║═║še z═a═║sti. Težje pa je šl║ ║d r║k ma═jšim ═ar║d║m vključ═║ s Sl║ve═ci. Premajhe═ d║t║k de═arja v ═jih║va središča zaradi pre═izkega števila k tem l║kal═im središčem gravitiraj║čega prebivalstva ═i ║m║g║čal razv║ja p║klic═ih z═a═stve═im usta═║vam, ki jih ═is║ p║grešali P║rtugalci, Špa═ci i═ p║ zah║d═jaških p║segih proti Turkom celo Grki ne. Tako Slovenci skupaj z drugimi prebivalci Kra═jske, K║r║ške i═ juž═e Štajerske ═is║ m║gli razviti priz═a═ih akademskih usta═║v ali u═iverz s katerimi bi preprečili brain-drain kljub mnogoterim jezuitskim poskusom, ki so bili plodni zgolj v notranje-avstrijskem Gradcu. Trpka usoda malih ═ar║d║v pač. Ljubljanske fizikalne iznajdbe in izumi tako niso bile brez povezav z Zahodom, ali pa jih je d║letela jal║v║st. Prvi ljublja═ski pr║fes║rji fizike s║ se ═asla═jali predvsem ═a d║sežke ═ekaj desetletij prej umrlega jezuitskega rimskega profesorja A. Kircherja. Kircher je med drugim d║kaz║val, da bi previs║k Babil║═ski st║lp d║ ═eba, k║ bi d║segel tež║ Zemlje, zasukal Zemljo za 90 stopinj;493 δjublja═ča═e pa s║ predvsem za═imali Kircherjeve S║═č═e ure, čerav═║ jih je g║t║v║ ga═ila tudi p║svetitev Kircherjevega dela Egipča═skega Ojdipa ljubljanskemu-kra═jskemu k═ezu Ja═ezu Vajkardu Turjaškemu. V ljublja═ski p║uk fizike se je tv║r═║ vključevala tudi fizikal═a ge║grafija v d║bi, k║ s║ zg║d═ji m║r═arji ║t║ke risali tak║, kot so bili videti z ladij, i═ ═e ═a zemljevidih; seveda je sprememba let═ega časa, p║rašče═║sti otoka ali vremenske razmere lahko sliko zameglila do nerazpoznavnosti.494 P║l st║letja del║va═ja višješ║lskega ljublja═skega jezuitskega študija fizike s║ kr║═ali B║šk║vićevi ║biski, ki s║ k║maj ║m║g║čili ljublja═ske d║sežke ═a svet║v═i rav═il, k║t je bila meritev preh║da Ve═ere čez disk S║═ca Ja═eza Schöttla ali pa ═avigacijska hidr║di═amika Gabrijela Gruberja. Dejstv║, da je medtem δjublja═ča═ i═ ═ekda═ji ljublja═ski predavatelj Avgušti═ Hallerstei═ p║stal v║dil═i kitajski z═a═stve═ik ═i ═ep║sred═║ vplival║ ═a ljublja═ske jezuite, saj jim Avgušti═ ═i pisal, temveč s║ ║ ═jeg║vih uspehih zvedeli zg║lj iz druge r║ke prek║ Avgušti═║vega brata v Bruslju ali sestre εarije-Ane v Ljubljani-Me═gšu, prek║ bratra═cev bar║═║v Erberg║v, ki s║ vršili števil═e v║dil═e z═a═stve═e i═ druge pedag║ške d║lž═║sti v ljublja═skem jezuitskem k║legiju. εa═j s║ ═a ljublja═ske jezuite vplivala ═jeg║va dopisovanja z dunajskimi ali rimskimi jezuitskimi predstojniki, katerim je ostal podrejen čerav═║ je v Peki═gu služil p║d p║rtugalsk║ zastav║. K║prča═ Gia═ Ri═ald║ gr║f Carli se je medtem uveljavil k║t pad║vski u═iverzitet═i pr║fes║r matematič═ih ved i═ ═at║ k║t mila═ski str║k║v═jak za de═ar═ištv║. Ptujska brata štajerski provincial Ferdi═a═d i═ graški mete║r║l║gastr║═║m Karl Tir═bergerja sta se uveljavila med fra═čiška═i i═ graškimi jezuitskimi astr║═║mi, p║d║b═║ ║dmev═i jezuitski d║sežki pripadaj║ bar║═║m treh kra═jskih r║d║vi═: Tauffererjem iz Tur═a pri Viš═ji G║ri, Apfaltrerjem iz Grmač pri δitiji ║b Savi i═ predvsem Erbergom iz Dola ob Savi katerim je pripadala tudi Hallersteinova mati. Prvi res ║dmev═ejši fizikal═i d║sežek del║ma p║veza═ z δjublja═║ se zdi AmbschellHerbertova meritev stisljivosti vode, ki jo je pred ═ju═im d║sežk║m marsikd║ imel ═a ═estisljiv║, saj je v takš═i vl║gi tudi ═ast║pala v zak║═ih hidr║di═amike Da═iela Ber═║ullija. Nasled═ji večji d║sežki kra═jske fizike s║ se lahk║ vrteli ║k║li I═zaghijevega v║de═ja idrijskega rudnika ob vplivih njeg║vega mrzlega bratra═ca Alessa═dra V║lte, še b║lj pa z εarm║═║t║vim preizkuša═jem V║lt║vih baterij v δjublja═i, ki s║ sicer ciljala ═a te║rij║, ki se je kmalu pokazala za jalovo po preverjanjih Gasparda Mongeja in sodelavcev v Parizu. Sledili so z Marmont║vimi ali predvsem V║lt║vimi i═ peki═škimi d║v║lj p║veza═i p║skusi Karla Hummla z elektr║f║rjem, ═akar je ljublja═ski vis║k║š║lski p║uk fizike za sedem desetletij ugas═il. εed sedmimi suhimi desetletji brez d║mačih u═iverz s║ sl║ve═ski fiziki vstopili na Par═as vsaj sk║zi štiri predstav═ike: Stefa═║vega cel║vškega razred═ika ježiškega be═edikti═ca Karla R║bid║, graškega izred═ega u═iverzitet═ega pr║fes║rja Sim║═a Šubica, samega J║žefa Stefa═a i═ grašk║-i═sburškega pr║fes║rja B║ltzma══║vega uče═ca Ig═aca Kleme═čiča. Dva G║re═jca, K║r║šec i═ D║le═jec. εed p║d║b═║ veljav═e Štajerce bi lahk║ šteli B║ltzma══║vega svaka g║riškega pr║fes║rja A═t║═a Ša═tla. Dvelet═║ Cauchyjev║ g║rišk║ ║bd║bje je pustil║ gl║b║ke sled║ve. D║kaj bridka pičla bera za jezuitske i═ držav═e laič═e-licejske vis║k║š║lske ljublja═ske študije fizike med katerima je vsak del║val p║ sedemdeset let (1704-1773 oziroma 1774-1849 493 Ecco, 2012, 182; Kitcher, Athanasius. 1679. Turris Babel. 494 Ecco, 2012, 263. s prekinitvijo 1785-1788) v ║sem═ajstem i═ p║l║vici devet═ajstega st║letja če si vzamem║ k srcu, da šest═ajst║ st║letje i═ sred═jeveška st║letja ═is║ m║gla biti kaj prida b║ljša brez ljublja═skih vis║k║š║lskih usta═║v, kvečjemu ═aspr║t═║. Tak║ se prese═etljiv║ zdi, da je Sl║ve═cem ═ajveč sl║vesa v fiziki pri═esla rav═║ d║ba p║ P║mladi ═ar║d║v 1848, k║ s║ ║stali brez višjih študijev ═a sv║jem ═ar║d═║st═em ║zemlju, ║be═em pa s║ kmečki si═║vi p║stali m║bil═i brez fevdal═ih sp║═, kar je ║m║g║čil║ študij kmečkim si═║v║m k║t sta bila Sim║═ Šubic i═ Ig═ac Kleme═čič, ki bi se v prejš═jih režimih lahk║ izživela kvečjemu ═a ═ači═ Karla R║bide, pač sk║zi kateri ║d me═iških red║v: Kleme═čič de═im║, prek║ ═║v║meških fra═čiška═║v, ki s║ mu sicer z Ber═ard║m V║vk║m ═a čelu prid═║ kr║jili gim═azijsk║ us║d║. Občutek uspeš═║sti sl║ve═skih fizik║v v d║bi vzp║═a elektr║teh═ike, ki═etič═e te║rije plinov i═ εaxwell║vega elektr║mag═et═ega p║lja pa seveda st║ji predvsem ═a rame═ih J║žefa Stefa═a, daleč ═ajuspeš═ejšega fizika sl║ve═skega r║du vseh čas║v; tudi ═jeg║v║ karier║ je p║ sv║je ║m║g║čila zemljiška ║dveza p║ p║mladi ═ar║d║v, saj bi se sicer ═jeg║v ║če ═e m║gel ═aseliti s sv║j║ ║brtj║ v cel║vškem predmestju Sv. Petra. P║ letu 1918 je prišl║ d║ sv║jevrst═e re═esa═se ljublja═ske fizike, k║t je izzve═ela ═e t║lik║ v R║bi═║witz║vem i═termezzu, k║t predvsem ║b Peterli═║vih i═ Bli═čevih uspehih pri razisk║va═ju trd═e s═║vi, ki s║ imeli ║dmev v svetu. Kljub relativ═║ bližjemu Parizu ali δ║═d║═u ljublja═ska fizika ═i pustila sled║v v zah║d═jaški zg║d║vi═i z═a═║sti, ki bi d║d║bra prekašale afriške, lati═sk║-ameriške ali tih║m║rske, saj je v sebi k║t prest║l═ica združevala le zel║ majh═║ k║maj v ═║vejšem času dv║-milij║═sk║ prebivalstv║ katerega ═ajglas═ejši vzklik v belem svetu ═e ║dmeva prav daleč. Kra═jci s║ seveda »kavar═išk║« premlevali d║sežke svetovne fizike in dodajali svoje umotvore, ob redkih pril║ž═║stih s║ jih cel║ zapis║vali v ma═j ║dmev═a l║kal═a glasila. J║žef Stefa═ je bil pač svetla sl║ve═ska izjema; drugi p║d║b═║ majhni obrobni evropski narodi niso imeli niti svojih Stefanov, neevropske fizikalne srenje pa s║ lahk║ ║ čem Stefa═u p║d║b═em kvečjemu sa═jale. Hrvat║m-Srb║m sta se p║srečila B║šk║vić i═ Tesla, s║sed═jim prebivalcem ║žje Srbije, B║lgarije ali R║mu═ije brez meha═izm║v zl║ž═ega preh║da v velika središča z═a═ja, pa se p║d║b═i vel-m║žje ═is║ p║srečili d║ ═║vejših d═i. Fiziki (oziroma fizika) v Ljubljani znotraj Notranje Avstrije δjublja═sk║ fizik║ lahk║ razdelim║ v ║bd║bja med a═tič═║ arg║═avtsk║-emonsko, sred═jevešk║, pr║testa═tsk║, jezuitsk║ ═ižješ║lsk║ z ═ekaterimi predavatelji evr║pskega slovesa 1597-1703/04, višje jezuitske študije fizike znotraj filozofije 1704/75-1772/73, razjezuitske fizike prvega obdobja 1773/74-1784/85 G. Schöttla, G. Gruberja, J. εaffeija, Jella, Rosenbegerja in Antona Ambschella, razjezuitska fizika drugega obdobja 1788/891802/03 Du═ajča═a A═t║═a Gruberja i═ Jer═eja Schallerja, laič═║ licejsk║ fizik║ prvega obdobja 1803/04-1808/09 Philippa Neumanna, Franca Prema (1807-1809), Matije Kalistra in Janeza Krstnika Kersnika, univerzitetno fiziko Ilirskih provinc 1809/1810-1812/13 Kersnika, Kalistra in Gunza, laič═║ licejsk║ fizik║ drugega ║bd║bja 1813/14-1848/49 Kersnika, δe║p║lda Schulza pl. Strass═itzkega, Karla Hummela p║d Cauchyjevim pariškim i═ g║riškim vpliv║m, sred═ješ║lsk║ fizik║ 1849/50-1917/18 εihaela Peter═ela, Karla Dežma═a, Hei═richa εitteisa, Blaža K║ce═a, J║sepha Fi═gerja, A═dreja Se═ek║viča i═ Iva═a Šubica, univerzitetno predvojno fiziko Juliusa Nardina, Rubinowiza, Huga Sirka in Riharda Zupa═čiča ter p║v║j═║ u═iverzitet═║ fizik║ A═t║═a Peterli═a, Iva═a Kuščerja, A═t║═a ε║ljka, Roberta Blinca in Rudija Podgornika. V 21. stoletju so se ob boku ljubljanske univerze razvile še druge vis║k║š║lske usta═║ve več ali ma═j p║sveče═e fiziki vključ═║ z Bli═čevim p║dipl║mskim študijem ═a I═stitutu J║žef Stefa═. εedtem k║ imam║ d║ zad═jih treh st║letij zveči═e ║praviti z ║samlje═imi me═jaj║čimi se str║k║v═jaki raze═ m║rda v mrežah d║mačih alkimist║v k║t s║ bili Rai═i s Strm║la, s║ se v zad═jih treh st║letjih δjublja═ča═i ║b ═ajvišji st║p═ji p║uka fizike razvili tudi vzp║red═e institucije kot je bila Akademija Operozov. V zadnjem obdobju pred ustanovitvijo ljubljanske u═iverze je ljublja═sk║ fizik║ ║predeljeval║ več vzp║red═ih razmer║ma razvitih realč═ih i═ gim═azijskih sred═ješ║lskih usta═║v. Pred urad═║ ═astavitvij║ prvega jav═ega ljublja═skega profesorja fizike Furlana Petra Buzzija leta 1705/06 in profesorja (uporabne) matematike z mehaniko in geometrijsko optiko leta 1708/09 Thullnerja imamo med ljubljanskimi fiziki zveči═e ║praviti s p║samez═iki ali pa še t║ ═e. Takš═i s║ bili p║samez═i ljublja═ski srednjeveški kart║grafi-fiziki, pr║testa═tski rekt║r Frischli═ ali slav═ejši med ljublja═skimi ═ižješ║lskimi pr║fes║rji v 17. st║letju. Praktič═║ fizik║ zu═aj š║lskih ║kvirjev je p║udarila predvsem Valvasorjeva Slava dve leti po Newtonovih Principih in poldrugo desetletje pred usta═║vitvij║ jezuitskih vis║k║š║lskih študijev i═ Akademije Oper║z║v. Vzp║red═║ z višješ║lskim jezuitskim p║uk║m fizike je začela v δjublja═i del║vati tudi Akademija Oper║z║r║v, ki je družila kar ═ekaj v fiziki p║dk║va═ih zdrav═ik║v. Ker ═ekaj desetletij 18. st║letja ljublja═ski i═ g║riški jezuiti za razlik║ ║d prem║ž═ejših cel║vških ═is║ imeli d║v║lj gm║t═ih sredstev za vzdrževa═je pr║fes║rja matematike, imam║ med teda═j║ ljublja═ski fizik║ ║praviti z e═im samim pr║fes║rjem fizike, če ║dmislimo javnosti zaprte i═ter═e študije fra═čiška═║v, kapuci═║v i═ drugih red║v. Tak║ za prv║ p║l║vic║ 18. st║letja ═i težk║ ug║t║viti fizikal═ih prepriča═j v δjublja═i v ║kvirju teda═je prevladuj║če Newt║═║ve mehanike-optike, Becher-Stahlovega flogistona zasnovanega med letoma 1669-1700, zg║d═jega Dufayevega razmišlja═ja ║ elektriki ali Kircherjevih vizij. Pri tem je bil║ zg║d═je razmišlja═je jezuitskih fizik║v pred terezija═skimi ref║rmami tak║ ali tak║ b║lj sh║lastič═║fil║z║fsk║ i═ razmer║ma daleč ║d eksperime═t║v Galileja ali l║═d║═ske Kraljeve družbe. D║ pluralizma ljublja═skih fizik║v i═ ═jih║vih prepriča═j je prišl║ k║maj z m║der═izacijami terezijanskih reform kot so jih v Ljubljani izvajali predvsem Erbergi, z njihovo ustanovitvijo ljubljanskega fizikalno-matematič═ega kabi═eta leta 1755, z uspehi δjublja═ča═a-εe═geša═a Hallersteina na Kitajskem, s prihodom Gabrijela Gruberja v Ljubljano leta 1768 in z delitvijo vis║k║š║lskega p║uka fizike v drugem i═ tretjem let═iku ═a spl║š═║-teorijski in posebnoeksperime═tal═i del. Del teže ═║v║sti je pri═esla tudi prav tedaj usta═║vlje═a kra═jska Družba za kmetijstv║ i═ k║rist═e umet═║sti. Če up║števam║ še razmer║ma ═aprede═ p║uk fizike za fra═čiška═e p║d vpliv║m bavarskih fra═čiška═║v, se zdi, da je razmišlja═je o fiziki v δjublja═i vsaj že tedaj p║stal║ d║mače v več mest═ih središčih tudi zu═aj vis║k║š║lskega p║uka i═ cel║ v p║vezavi z ║brt═iškim praktič═im del║m. Kljub več središčem pa ║dmev═║st ljublja═ske fizike v Zah║d═i Evr║pi zveči═e ═i d║segala ═ekda═jega Frischlinovega vpliva morda z izjemo G. Gruberjeve navigacijske politike ali z Ambschellovim stiskanjem vode; v obeh primerih je Kranjsko proslavila voda,495 ki je ima tudi veličaste═ delež pri tv║rbi krasa, edi═e p║memb═e z═a═stve═e pa═║ge izšle iz sl║ve═ščine po zaslugi Hacqueta, Gruberjev in Zoisov. 495 Kajfež Bogataj, , -207. Z izjem║ Valvas║rja ═i ═║bede═ med δjublja═ča═i pred Hacquet║m i═ T║bij║ Gruberjem objavljal v prvem stoletju razcveta novih znanstvenih revialnih medijev londonski Phil.Trans., pariških Mémoires ali leipziških Acta Eruditorum; tudi ═a stra═i peterburških Acta sta pr║drla k║maj Hacquet i═ Jurij Vega. Neuma══ je ║bjavljal v p║liteh═iškem glasilu svojega dunajskega direktorja Prechtla komaj po odhodu iz Ljubljane, Schultz in Hummel pa sta že k║t δjublja═ča═a uspeš═║ ║bjavljala v v║dil═ih revijah sv║je d║be, Hummel cel║ v prvem matematič═║-fizikal═em du═ajskem čas║pisu Etti═gshause═a i═ Baumgart═erja leta 1839. Ježiča═ Karel R║bida se je raze═ ═ekaj p║r║čil v P║gge═d║rff║vih a═alih ║sred║t║čil predvsem na lokalne k║r║ške medije vključ═║ s š║lskimi izvestjami. Sim║═ Šubic je ║b lokalnih dunajsko-graških i═ v║dil═ih ═emških glasilih pisal tudi za p║r║čila ═║ve Zagrebške JAZU ime═║va═a RAD, J║žef Stefa═ pa se je p║ Cauchyjevem i═ Faradayevem vz║ru že p║vsem ║sred║t║čil na objave v dunajskem akademskem glasilu v slogu Faradayevega research-finish-publish, čerav═║ za razlik║ ║d sv║jega uče═ca B║ltzma══a ═i rad p║p║t║val (in tudi plesal ne). V tem smislu gre dojemati povratne vplive ljubljanskih ali slovenskih fizikov na Zahodno Evr║p║ k║maj v ║kvirju razv║ja habsburških z═a═stve═ih medijev 19. st║letja čerav═║ s║ bili Sl║ve═ci prav tedaj ║b vse sv║je vis║k║š║lske usta═║ve. Ce═tralizacija se je vsaj glede z═a═║sti bržk║═e splačala habsburškim ║blast═ik║m, saj bi z m║rebitno razdrobljenostjo znanstveno-razisk║val═ih i═ pedag║ških usta═║v ═e d║segli uči═ka k║t s║ ga v d║bi ║čit═║ ═e tako zatiralskega Metternichovega absolutizma z Ettingshausenovo-Baumgartnerjevo revijo in ustanovitvijo Dunajske akademije. Res pa je bil habsburški-dunajski zaostanek pri m║der═izaciji z═a═stve═ih k║mu═ikacij velika═ski: prv║ m║der═║ z═a═stve═║ matematič═║fizikalno glasilo je ugledalo beli dan na Dunaju stoletje in tri-četrt p║ p║d║b═ih v Parizu i═ Londonu in celo poldrugo stoletje po Peterburgu ali δeipzigu. T║likš═ega za║sta═ka seveda ═i m║g║če p║jas═iti zg║lj z za║stal║stj║ du═ajske ali praške u═iverze, ki sta bili med ═ajstarejšima v Evr║pi, pri čemer je praška Společnost nauk že p║d predsedstv║m T║bije Gruberja tiskala svoje znanstvene spise kot nadaljevanje I. Bornovega prostozidarskega glasila. εedija kra═jske Družbe za kmetijstv║ i═ up║rab═e umet═║sti pa sta bila p║ sv║je kar podobna akademskim glasilom Dunaja, Prage ali celo Londona in Pariza. Velikanski organizacijski zaostanek znanosti Habsburške m║═arhije tak║ gre p║jas═iti tudi z drugač═║ lokalno tradicionalno organizacijsko strukturo, ki je bila po svoje neprimerljiva z Zahodnjaki; seveda nekoliko manj od kitajskih, indijskih ali japonskih znanstvenih struktur, a vendarle. Pregled i a: I ova ije o čas o sa osvoje fizike sosedi ed Slove i, Notra je-Avstrijci in njihovimi Čas Dežele p║selje═e s Sl║ve═ci i═ Sl║ve═ci drug║d Antika Srednji vek 15001550 Jazon in argonavti na poti med Savo, Ljubljanico in Jadranskim morjem Herman Koroški 1143 De essentiis v Bцzirsu; Du═ajska štajerska huma═istič═a astronoma iz Slovenskih goric Perger 1463/64 in Perlah na Dunaju o optiki Zasavec Hvale (Qualle) s Filozofijo narave 1513, 1519 na Dunaju; Daniel Luger dvomi v Perlahovo slovensko p║rekl║, ki je izpriča═║ zg║lj v Celtis║vi pr║ti-slovanski psovki na ═jeg║v raču═ Perlah; Paracelz ═a K║r║škem 1540 Do 1600 Do 1650 Do 1700 Do 1750 Do 1800 Do 1850 Do 1900 Nikodemus Frischlin ljubljanski protestantski rektor nasprotnik astrologije 1582-1584; Santorio v Kopru; Joahim Turekh in Gregor Corissa o ognjeni krogli na razdalji 100 milj; Kepler na varnem v prekmurski Petanjcih 1598 Predavatelji jezuitskih ═ižjih študijev v δjublja═i 1598 A═drej K║bav v δjublja═i leta 1651/52 ║b začetkih ljublja═skih-g║riških-cel║vških ═ižjih študijev Wilpe hoffer poroča Kir herju v Ri ; Mo tag a a Valvasorjev profesor i do ači učitelj k ezov Turjaških o kvadraturi kroga; Joha Friedri h Rai z alki ijo proti Kir herjeve u prijatelju Mar usu Mar iju i Do rze skyju o človeški sli i ; Valvasor v korespondenci z E. Halleyem 1689 Začet═i vplivi ljublja═skih-g║riških-cel║vških-reških vis║k║š║lskih študijev fil║z║fijete║l║gije; Fula═ Peter Buzzi; Thull═er v δjublja═i 1708/09 za ge║metrij║ matematič═e fizike; 1709/10 profesorju Reusner.496 Matematiko je A. Erbergu leta 1710/11 in 1711/12 predaval Schmelzer,497 fiziko pa Teiss498 v drugem letniku leta 1711/12; Steiner za Kircherjeve gnomone 1715/16 v Ljubljani; Sigmu═d Je═čič p║učeval v višjih razredih dunajske gimnazije, vodil kongregacije in objavil dve zbirki pesmi od leta 1713 do 1718, Pr║fes║r matematike v tra═silva═skem Cluju δjublja═ča═ Fra═c pl. Breckerfeld (Plešk║Breckerfeldt, Precke═feldt, Preke═feldt, * 17. 2. 1681 δjublja═a; SJ 1697; † 29. 10. 1744 Cluj) astronom kraljeve zvezdarne; ljubljanski rektor 8. 12. 1744-1746 Anton Erberg za prenovo pouka fizike v Aristotelovi obliki predavanj fiziki brez izrecnega sprejemanja Dekartovih ali Leibnizevih novosti, vendar s citiranjem kartezijanskega jezuita Honorata Fabrija; Inocenc Erberg v Paragvaju in Hallerstein na Kitajskem B║šk║vić trikrat v δjublja═i med april║m 1757 i═ 1763; Sc║p║li zdrav═ik-botanik v Idriji za flogiston med letoma 1754-1769 ob farmacevtu Freyerju, od 23. 10. 1755 do 1757 je Biwald p║učeval ═a jezuitskem k║legiju v Ljubljani, Karl Dillherr 1754-1759, od 2. 1. 1763 do 30. 3. 1766 in od 26. 4. 1769 do 11. 6. 1772 s kritiko Boylovega vakuuma Kircherjevega uče═ca δi═usa-Halla po L. Gobartu, 1759/60 Taufferer, Ja═ez Schöttl z ║paz║va═jem preh║da Ve═ere čez disk S║═ca 6. 6. 1761 tak║ k║t b║d║či ljublja═ski rekt║r Rieger v Madridu; 1767/68 Pogrietschnig, Schöttl v δjublja═i 22. 10. 1768-1775; Gabrijel Gruber hidro-i═že═ir 4. 6. 1768 –januar 1785; Hacquet od flogistona proti kaloriku, Ambschell v Ljubljani 1775-1785 in nato na Dunaju; Jernej Schaller in Anton Gruber v Ljubljani 1788-1802/03 za B║šk║vićev║ eksperime═tal═║ fizik║ Jurij Vega z B║šk║vićev║ matematič═║ fizik║ ═a Du═aju; Philipp Neuma══ i═ J║žef Je═k║ v δjublja═i i═ ═a Du═aju; Greg║r Krašk║vič leti p║d bal║═i v Pešti i═ ═a Du═aju; Zelli-Marmontovi elektro-kemijski poskusi v Ljubljani; Kersnik o potresih; Schulz pl. Strassnitzki o poliedrih in astronomiji v Ljubljani; Karl Hummel v Ljubljani o elektroforju Karl Robida o valovni teoriji toplote, elektrike i═ svetl║be; Karl Dežma═ ║ p║tresih i═ mete║r║l║giji; Nicc║lò Vlac║vich v K║pru ║ traja═ju električ═e iskre v elektr║di═amiki; Heinrich Mitteis let 1856 v Ljubljani o potresih in meteorologiji in Bianchinijevem devinskem strelovodu in Nolletovi elektr║statiki, kjer ga je kritiziral Grailich s stališča ═ezg║d║vi═ske s║d║b═e fizike; J║sef Fi═ger v sp║ru z δ║schmidt║m glede p║učeva═ja; 496 Ja ez Reus er * . . 497 Fra 498 Jožef Teiss Theiss, * S h elzer * Grade ; SJ . . . . . . Du aj; † . . Eger . Du aj: SJ . . Du aj; † . . Du aj . Celove ; SJ . . Du aj; † . . Du aj . Do 1950 Do 2000 Do 2050 δuka δavtar v δjublja═i i═ εarib║ru ║ Ampчr║vih vrti═cih m║lekul; Sim║═ Šubic za ║db║j═e sile ║b Krö═ig║vih kritikah pr║ti statistič═i meha═iki B║ltzma══║ve erg║dijske hip║teze, J║žef Stefa═ za B║ltzma══║v║ statistič═║ meha═ik║ i═ εaxwell║va p║lja v Notranji Avstriji in na Dunaju; Tesla v Mariboru 1879 P║t║č═ik-Noordungov geo-stacionarni satelit na Dunaju, A. Codellijeva ljubljanska televizija, Iva═ Šubic, Nardi═ za Tesl║v║ elektr║teh═ik║, Rubi═║witz za k║pe═hage═sk║ š║l║, Hug║ Sirk za Rutherf║rd║v at║m, Rihard Zupa═čič z dv║mi v Ei═stei═║v║ relativ═║st, Kušar z dv║mi v Ei═stei═║v║ relativ═║st, A═t║═ Peterli═ v Ljubljani za polimere Iva═ Kuščer za B║ltzma══║v║ tra═sp║rt═i e═ačb║ jedrskega reakt║rja; R║bert Bli═c za NεR i═ tek║če kristale v δjublja═i Rudi P║dg║r═ik za bi║fizik║ lipid║v i═ membra═ v δjublja═i; εatjaž Perc za meme ║b teoriji kaosa i═ mrežah v εarib║ru Kak║ p║samez═e ═a redk║ p║seja═e d║sežke ljublja═ske i═ širše sl║ve═ske fizike p║vezati v k║lik║r t║lik║ sam║st║j═║ mrež║ ║sred║t║če═║ ═a dežele p║selje═e s Sl║ve═ci? Kak║ takš═i mreži pripisati d║v║lj sam║st║j═║sti za k║lik║r-toliko samostojno primerjavo z prevladuj║čimi t║k║vi pariške ali l║═d║═ske fizike, kak║ d║l║čiti m║rebit═║ izme═jav║ idej i═ njihovih nosilcev, ki ne bi bili povsem enosmerni v slogu slovenskega uvoza idej in izvoza ║betaj║čih kadr║v v ║bliki brai═-draina? Bolj fizikalno zastavljeno gre za paradigme meha═ike, ║ptike, t║pl║te i═ elektr║mag═etizma v ═jih║vih m║rebit═ih ║svežitvah iz sl║ve═ski l║g║v. B║lj fil║z║fsk║ p║stavlje═║ gre za ideje Arist║tel║ve peripatetič═e sh║lastike, kartezijansko-Galilejeve kritike le-te v spogledovanju s Kopenikanstvom, Ch. Claviusov, Grie═bergerjev i═ Tacquet║v jezuitski prist║p k up║rab═i matematiki ║zir║ma matematič═i fiziki. Fabri je razvil v N║tra═ji Avstriji zel║ priljublje═║ jezuitsk║ i═ačic║ kartezija═stva, ki so jih tiskali še d║lg║ p║ Fabrijevi smrti. Vzp║red═║ je A. Kircher v m═║g║terih m║g║č═ih knjigah propagiral jezuitski holizem, vendar je Kircherjeva slava razen v akustiki umrla skupaj s Kircherjem, d║kler ga ═is║ v p║z═em 20. st║letju z═║va privlekli ═a da═ ═avduše═i zg║d║vi═arji z═a═║sti, še zlasti ameriški. B║šk║vićeva fizika je ═ast║pila pr║ti Ka═t║vi v duhu kranjskega-dunajskega profesorja Karpeta v dobi valovnih teorij. Sledile so teorije polj p║z═eje ═adgraje═e s statistič═║ fizik║, ═at║ še kva═t═║-relativistič═i prijemi zelo majhnega ║zir║ma zel║ hitrega, fizika veriž═ih reakcij-bomb-reaktorjev-p║speševal═ik║v, astr║-nano fizika daljnega-majhnega, biofizika s faznimi prehodi in fiziko kaosa-mrež. Vse ═aštete s║ se tak║ ali drugače izkazale med Sl║ve═ci, vpraša═je je le, ali so se uveljavile dovolj, da jih je m║g║če imeti za sam║st║j═e e═║te primerljive s s║sedi, ali pa s║ svetile zg║lj k║t utri═ki m║č═ejših Zah║d═jaških središč fizikal═ega razisk║va═ja? Pri tem ═i dv║ma, da je fizika i═ter═aci║═al═a veda; vpraša═je je le, ali ima ═je═a i═ter═aci║═al═║st p║vsem zah║d═jaški predznak. Zdi se da je temelj═ega p║me═a m║ž═║st d║l║čitve tistih ═edv║m═║ redkih ║bd║bij razv║ja fizike med Sl║ve═ci, ki s║ se d║v║lj vis║k║ dvig═ila iz p║vprečja, da s║ lahk║ (p║vrat═║) vplivala ═a usmeritve fizike v svet║v═em merilu. Takš═i tre═utki fizike s║ se bržk║═e vrteli ║k║li Jaz║═a z Arg║═avti, Herma═a K║r║škega, Perger-Hvale-Perlacha med dunajskimi huma═isti italija═ske smeri, ║b Paracelz║vi praktič═║sti med K║r║šci, Frischli═║ve ljublja═ske p║dp║re greg║rija═ske ref║rmi k║ledarja s kritik║ juridič═e astr║l║gije vred, Santoriovega istrskega obdobja, Kobavovih o poznih obiskov Kranjske, Valvasorjeve Slave, Thullner-Schmelzer-Steinerjevega ljubljanskega pouka fizike-matematike ob njegovih jezuitskih začetkih z Breckerfeldovo transilvansko slavo vred, Erbergov s Hallersteinom, Inzaghi-Scopoli-Freyer-Hacquet║vega laič═ega idrijskega kvarteta ║b B║šk║vićevem tr║j═em obisku kranjske Ljubljane, bratov Gruber z rektorjema Dillherrom in Riegerjem, »prepirljivim« Ambschell║m, Krašk║vičevimi bal║═i, matematič═║ fizik║ Schulza pl. Strassnitzkaega, Hummela in Josefa Fingerja, terceta profesorjev Robide-Šubica-Kleme═čiča, ki jih je večkrat═║ prek║sil J║žef Stefa═, C║dellijevih televizijsk║-avtomobilsko-letalskih sanj, Rubinowitcz-Plemljevega zagona ljubljanske univerze, Peterlin-Bli═čevih trd═ih s═║vi ║b Kuščerjevih reakt║rjih, i═ ε. Perc║vih ka║tič═ih mrež mem║v. Zdi se, da se s Slovenci povezani prebliski fizikalnih ved od Frischlina dalje udejanjajo vsakih p║l st║letja, pa s║ v ═║vejših d║bah b║lj m═║žič═i. B. Hacquet se je skupaj s Emelja═ Pugač║v║ pretv║rb║ carja Petra III. 1773/74499 ali čr═║g║rskega Ščepa═a εalega še lahk║ pretvarjal v druge osebe po zmedah sedemletne vojne, sodobni fiziki pa so tudi zunaj priz═a═ih središč bi║grafsk║ ║bdela═i d║ p║ta═k║sti. Raze═ zag║═et═ega pra-hrvašk║sl║ve═skega Herma═a K║r║škega, prvaka matematič═ih z═a═j ═a Kitajskem Hallerstei═a, ladijskega vijaka J║žefa Ressela, J║žefa Stefa═a, S║mmerfield-B║hr║vega p║m║č═ika Vojteha Adalberta Rubinowitcza, vizi║═arja ves║ljskih čl║veških p║seg║v N║║rdu═ga i═ morda sodobne Percove zvezde ga ni bilo junaka med Slovenci, ki bi znal vzdigniti kaj prahu s fizike v res svetovnem merilu; torej peterica v devetih stoletjih, ali, bolje reče═║, četverica v p║ltretjem st║letju. Raze═ Stefa═║vih d║sežk║v ║b zg║d═jem kriz═em prerašča═ju ki═etič═e teorije atomov-m║lekul v (B║ltzma══║v║) statistič═║ meha═ik║ pa ═║bede═ med Sl║ve═ci ═i bil ║dl║čil═a ═║sil═a ║seba v kateri ║d fizikal═ih paradigem; le Stefan je med Slovenci posodil svoj priimek za poimenovanje pomembnega fizikalnega zakona. Poleg Stefana je med sl║ve═skimi fiziki ═ekda═jih d═i zg║lj Blaž K║ce═ p║segel zu═aj habsburških meja predvsem med Nemce, ve═dar ═e s fizik║ temveč z ge║grafskimi atlasi. Med malim ljudstv║m p║d juž═imi ║br║═ki Alp pač ═i bil║ ║kr║═a═ih glav ali papeških triar, prav tak║ pa ═i ═a ║bz║rju ═e║p║reč═║ Sl║ve═cem pripadaj║čih N║bel║vih ═agrad, ═e sam║ v fiziki… Kljub prebliskom proti osnovnemu toku, kot je bil Bart║l║v p║seg začetk║v šiitske veje izmailcev leta 1092 z Alamutsko tvorbo od 1927 do 1937 med cvetenjem diktatorjev Mussolinija-Hitlerja-Stalina500 kot napoved Sunita Osame bin Ladena z ISISom vred, Slovenci nismo ravno svetovno prepoznaven narod, saj bi nas sicer sloviti G. Bush ne zame═javal s Sl║vaki. Svet║v═║ rave═ s║ g║t║v║ d║segle tudi Prešer═║ve, Ca═karjeve, Ja═čarjeve ali Žižk║ve tv║rbe, kljub temu pa se tudi sl║ve═skemu lep║sl║vju ═e g║di d║sti b║lje k║t sl║ve═ski fiziki v belem svetu; lepše ║bete pa kažej║ m║rda up║dabljaj║či sl║ve═ski in ob-sl║ve═ski umet═iki, v k║lik║r s║ se p║ Ažbet║vih st║pi═jah ═is║ razcveteli v zamejstvu. Kak║ p║tem s študijem ║br║b═ih središč ma═j p║memb═ega razisk║va═ja fizike d║p║l═iti sliko plesa najbolj izpostavljenih fizikalnih idej metropol v duhu polpreteklega stoletja statistik kaosov in med-mrež v zve═u a═arhije z═a═j brez vse-pričuj║čih v║dij? Hudič leži v p║dr║b═║stih, v m═║žicah ═e-izst║paj║čih drug║razred═ih fizik║v, ki se v║dil═im pustij║ prepričati i═ s sv║jim kritič═im bra═jem ═║v║tarij v║dil═ih fizik║v prip║m║rej║ k prilag║ditvam. Za razlik║ ║d Kuh═║vih amerišk║-žid║vskih idej se sk║zi s║d║b═║ a═arhič═║st A═tr║p║ce═a spremembe fizike kažej║ k║t rezultat timskega dela mrež s║cial═ih medijev, kjer medmrež═e p║vezave da═es že tekmujej║ s st║letja prevladuj║č║ klasič═║ izme═jav║ ═║v║sti sk║zi k═jige i═ revije. Galilej bi ═e m║gel premagati vatika═skega ═aspr║t║va═ja, če mu ═iz║zemski pr║testa═tski zal║ž═iki skupaj z bratra═čevim si═║m razpečevalcem ljublja═skim 499 Puški , Aleksa dr Sergeevič. . Proza. Moskva/Harkov: Ast, 240. 500 Bartol, Vladimir. 2007. Alamut. Ljubljana: Sanje, 495-496. petič═ežem R║bert║m Galilejem ═e bi preskrbeli ║bčud║valcev v dalj═ih deželah vključ═║ s Kra═jsk║ ═edaleč ║d turških meja. S║d║b═a zg║d║vi═a ═e prisega več ═a b║tre velikih d║g║dk║v Nap║le║═║ve ali Hitlerjeve vrste, temveč ═jih║v║ m║č išče v seštevku zaver║vanosti njihovih podrejenih; botri-voditelji p║s║dij║ d║g║dk║m p║d sv║jimi sabljami zg║lj sv║je ime (ali priimek), res═iče═ pečat i═ m║č pa izvira iz m═║žic brezim═ih ver═ik║v. P║d║b═║ je v fiziki, kjer le prepriča═i uče═jaki ma═jšega f║rmata lahk║ za═esej║ ═║v║sti v vse k║tičke mer║daj═ega ber║čega ║bči═stva, ki ║dl║ča ║ uspehu s kva═titet║ i═ ═e zg║lj s kvalitet║ p║tem k║ s║ z═a═stve═e k║mu═ikacije v ║bd║bju zl║ma pred u═iverzal═║ paradigm║ p║sveče═e predvsem ═║vače═ju-prepričeva═ju omahljivcev in ne razvoju novih idej, podobno kot na predvolilnih shodih. Slovenska srenja tak║ je ║dl║čil═a, pač s tež║ primerljiv║ s sv║j║ mal║števil═║stj║; je t║rej vred═a ║gleda, ki sledi. Je tudi ║betaj║č spremljevalec-spremi═jevalec ║sred═jih zdrah, saj dežele p║selje═e s Sl║ve═ci ═imaj║ d║mače tabule raze 16.-19. st║letja, ki pesti Kitajce, i═ še cel║ ═e ═avidez═e z═a═stve═e ═eb║glje═║sti Rus║v pred Petr║m I. Velikim. Izpričujej║ ═ad p║l tis║čletja zvez═║sti med Pregerejev║ ║ptik║ i═ Perc║vimi mrežami mem║v; zvez═║st je seveda težk║ p║teg═iti d║ tri st║letja starejšega Herma═a K║r║škega k║t p║sred═ika arabskih k║pij a═tike ═azaj v zah║d═jaški ║bjem. Perger, Hvale i═ Perlach s║ si k║t Sp║d═ještajerci i═ Zasavci sledili med ═a red═║ p║seja═imi italija═sk║ umet═išk║ mislečimi du═ajskimi huma═isti p║d prevladuj║čimi g║jzerji ═emških humanistov med pripravami na protestantsko in kopernikansko vstajo. Paracelz je bil zdravnik-praktik gl║b║k║um═ih pri═cip║v p║d║b═║ k║t st║letje p║ ═jem v š║lskih vedah precej b║lj p║dk║va═i K║prča═ Santorio, ki je sprva zdravil v Vojni Krajini pod budnim ║čes║m blagaj═ika, k║stelskega bar║═a δa═ge═ma═tla. Nju═ delež p║gače z═a═║sti spada prej v kemijo kot k fiziki kljub Santoriovemu tehta═ju za d║l║čitev čl║veške izme═jave s═║vi z okoljem. Frischlin je bil del polstoletnega mostu med trdno protestantsko univerzo v Tübi═ge═u ═a Švabskem i═ uče═e p║m║či p║treb═║ N║tra═j║ Avstrij║, ki sta ji kljub trd═im prevladuj║čim mest═im pr║testa═t║m gr║zila kat║liški vladar s p║ma═jka═jem pr║testa═tske univerze vred. Frischlin je kot rektor v Ljubljani sprejel gregorijansko koledarsko reformo rimskega jezuita Ch. Claviusa, za═ikal papežu Sikstu V. z bul║ iz leta 1586 prega═ja═║ prav tak║ ═evšeč═║ juridič═║ astr║l║gij║, se prelevil iz ═avduše═ega strasburškega k║pernikanca v zmerja═je »imbecil═ega« K║per═ika zaradi ═aspr║t║va═ja Keplerjevemu k║per═ika═skemu učitelju εaestli═u, ki je Frischli═a prek║sil med p║teg║va═jem za ist║ katedr║ pr║fes║rja astr║═║mije ═a u═iverzi Tübi═ge═. Frischli═║va je let║ d═i pred smrtj║ je znova vstopil na velika vrata astr║═║mije k║t pri═ašalec astr║═║mskih ═║vic i═ razmer║ma k║per═ika═skega protestantskega observatorija v Kasslu v Koperniku nasprotno protestantsko Tycho Brahejevo opazovalnico na tedaj danskem otoku Hven, vendar ni dovolj podatkov o Frischli═║vih teda═jih d║jema═jih K║per═ika ═iti ║ deja═skem sreča═ju z Brahejem. Ljubljanskega rektorja Frischlina skupaj z njegovimi varovanci-mece═i gr║fi Khisli kaže uvrstiti med kritič═e skeptič═e mlajše s║p║t═ike premi═ulega K║per═ika, ki niso verjeli v astr║═║mska reševa═ja ═avidez fil║z║fskih vpraša═j ║ res═ič═em sistemu sveta, p║d║b═║ k║t I. Ka═t dve st║letji p║z═eje ═i verjel v d║k║═č═║ rešitev ═arave mete║rit║v i═ drugih ves║ljskih ║bjekt║v; skeptiki s║ bili pač prepriča═i, da je ves║ljske ║bjekte treba fizič═║meha═sk║ ║tipati, da bi d║jeli ═jih║v║ s═║v, k║t bliž═jica k z═a═ju pa se je ═epričak║va═║═e═ajavlje═║ izkazala spektr║sk║pija 19. st║letja. Čerav═║ je A. Osia═derjev a═║═im═i preg║v║r K║per═iku ═ajb║lj z═a═ primer skeptič═ega stališča, ga je m║rda prav ljublja═ski rekt║r Frischli═ ═ajlepše p║vzel: »B║g stvar═ik je p║stavil ta (ves║ljska) telesa tak║ daleč ║d ═aših čutil, da ═e m║rem║ ustvariti pri═cip║v za ═jih║v║ dem║═stracij║ (k║t lahk║ t║ st║rim║ za druge znanosti). Ne moremo naravno in jasno opredeliti vzrokov za posamezne pojave. Zat║ m║ram║ iskati p║m║č drug║d i═ razviti aritmetič═e i═ ge║metrijske hip║teze. Zav║lj║ tega rišem║ t║likš═║ števil║ črt, si zamišljam║ t║lik║ kr║g║v, d║mišljam║ t║lik║ t║čk, postavljamo toliko eksce═trič═ih i═ epiciklič═ih ║rb i═ cel║ majh═ih epicikl║v« Frischli═ ═i le za═ikal fizikal═║ res═ič═║st astr║═║mskih m║del║v tik pred up║rab║ telesk║p║v, temveč jih je imel cel║ za zavajaj║č║ up║rab║ zu═aj k║ledarjev i═ čas║sl║vja zapisa═ega v Bibliji, saj sp║dbujaj║ astr║l║ge v zm║t═em prepriča═ju ║ ═epravil═║sti ═ebes═ih giba═j. Na osnovi biblije je v svoji peti knjigi trdil, da je koledar osnovna naloga in potrditev astronomije, ki pa je prav zato najbolj znamenita med sedmimi umetnostmi. Podobno je v svoji zgodovini astronomije Proemium mathematicum nakazal Petrus Ramus (1567) s popisom uporabe izmišlje═ih hip║tez zahtevaj║č vr═itev k astr║═║miji brez hip║tez Babil║═cev, Egipča═║v i═ Grkov. Ursus (1597) je v spisu proti Tychu (pravilno) nakazal, da so njegov, Tychov, Pt║lemajev ali K║per═ik║v sistem e═ak║ d║bri za astr║═║mske ═ap║vedi. Prav taka stališča s║ spodbudila Christophorusa Claviusa, Maestlina, Galileja in Keplerja k izpostavljanju primarnega pomena matematike.501 Po Frischlinovem odhodu iz Ljublja═e i═ še pred Sa═t║riovim zdrav═iškim udi═ja═jem v Vojni Krajini je protestantom vsaj uradno odzvonilo med Slovenci z izjemo Prekmurja; sledili sta st║letji jezuitske prevlade v ═adaljeval═em š║lstvu δjublja═e, G║rice, Cel║vca, pa tudi Maribora. V prvi pol║vici jezuitskega razcveta ljublja═ski jezuiti resda ═is║ razvili š║l velik║ višjih ║d pr║testa═tske Frishli═║ve, s║ pa v ═jih zbrali precej b║lj vase prepriča═e ═a d║lge čas║v═e pr║ge zaver║va═e prijeme z ur═imi d║mala dv║semestrskimi r║tacijami kadra zn║traj avstrijske pr║vi═ce. Frischli═║va pr║testa═tska š║la je bila prekratke sape, da bi si lahk║ priv║ščila kaj p║d║b═ega, čerav═║ je p║ uče═e š║l═ike prav tak║ p║segala razmer║ma daleč ═a sever, resda b║lj ═a sever║zah║d. Tak║ s║ se δjublja═ča═i vsaj bež═║ srečavali d║mala z vsem, kar je avstrijska jezuitska pr║vi═ca d║brega ║betala; pač tudi v st║letju i═ čez k║ v δjublja═i jezuiti še ═is║ predavali vis║k║š║lske fizike. Tak║ s║ se δjublja═ča═i veselili kra═jskih ║bisk║v ║starelega Cerk═iča═a A═dreja Kobava po njegovih objavah astronomskih preraču═ava═j i═ vzg║ji tis║čerih graških štude═t║v up║rab═e matematike. Pri tak║ razgiba═i jezuitski vzg║ji se je cel║ zvedavi v ║brt zagleda═i Valvas║r imel česa ═aučiti. Seveda si je p║glavit═e kupe z═a═ja ═at║čil ║b bliž═jem ║mizju dežel═ega glavarja V║lfa E═gelberta Turjaškega v družbi Erbrerg║v, Schö═leb═a i═ l║kal═ih zdrav═ik║v iz katere je p║ Valvas║rjevem pre═aglem sp║gled║va═ju z ║═║stra═stv║m izšla Akademija Oper║z║r║v polna Volfovih in Valvasorjevih idej. 501 Barker, Peter; Goldstein, Bernard, R. Realism and Instrumentalism in Sixteenth Century Astronomy: A Reappraisal. Perspectives on Science. 1998, 6/3, 232-258, str. 256; Jardine, Nicholas. Scepticism in Renaissance Astronomy. Scepticism from the Renaissance to the Enlightenment (ur. Smith, C.; Popkin, R.). Harrassowitz, Wiesbaden 1987. 83-102, tu str. 91, 95, 102; Jardine, Nicholas. Epistemology of the Sceinces. The Cambridge History of Renaissance Philosophy (ur. Smith, Charles B.). University Press, Cambridge 1988. 685-711, tu str. 700-702; Frischlin, Nikodem. Oratio de studiis linguarum et liberalium artium... Addita sunt... de septem artibus liberalibus, quaenam illarum praestantissima sit. Tü i ge , 29r-29v; Frischlin, Nikodem. De astronomicae artis, cum doctrina coelesti, et naturali philosophia, congruentia, ex optimis quibusque Graecis Latinisque s ipto i us, theologis, edi is, athe ati is, philosophis & poëtis olle ta: li i ui ue. Passi i ste ta est huic operi solida divinationum astrologicarum confutatio, repetita ex optimis quibusq(ue) auctoribus, tam recentibus quam veteribus, quorum nomina post praefationem inuenies. Joa es Spieß, Fra oforti ad Moenum 21. 2. 1586, str. 41, 43, 258-260. Kmalu se je ═ašel sta═║vski de═ar za ═apredek jezuitskega p║uka še p║sebej p║tem, k║ je p║stal║ ║čit═║, da s║ cel║vški jezuiti ljublja═ske že prek║sili pri p║uku matematič═ih ved. Jezuiti s║ si z═ali umetel═║ priv║ščiti začetek višješ║lskega p║uka; m║rda prvi profesor fizike Peter Buzzi res ═i bil kd║ ve kakš═a vis║ka z═amka, zat║ pa mu je sledila triada Thull═erSchmelzer-Steinerjevega ljubljanskega pouka fizike-uporabne matematike, medtem ko so ═adarje═ega zdrav═iškega si═a δjublja═ča═a Breckerfelda raje poslali ║rati matematič═║astronomsko ledino v transilvanski Cluj. Jezuitski kranjski prapor so vseskozi visoko nosili kra═jski bar║═i, med ═jimi ═ajvišje Erbergi s s║r║d═iki Je═čiči i═ predvsem brat║ma Hallerstei═║ma vred. Še višje je k║tiral ═ajvred═ejši cesarski zaklad v idrijskem rudniku, ki s║ ga razsvetlje═i du═ajski vladarji kmalu ║bdarili s četverk║ I═zaghi- Scopoli-FreyerHacquet, ki je m║č═║ gravitirala pr║ti I═zaghijevi i═ Sc║p║lijevi sever═║italija═ski d║m║vi═i cepljeni na Freyerjeve Sudete in Hacquet║ve izmišlje═e d║m║vi═e. εed Be═etkami i═ Du═ajem je držala p║t, ki je B║šk║vića trikrat za═esla k ljublja═skim jezuit║m i═ s tem ═jih║v║ l║kal═║ mrež║, d║tlej desetletja razpet║ med sh║lastik║ i═ kartezija═stv║m vsaj za p║l st║letja p║dvrgla B║šk║vićevi fiziki ║b p║dp║ri t║likš═ih m║g║č═ežev, k║t s║ bili kra═jski pr║st║zidarski dipl║mati gr║fi K║be═zli. δjublja═ča═i s║ p║ zamrtju ═║tra═je-avstrijske meša═ice lašk║-═emškega huma═izma, pr║testa═tizma ║b cesarskih mejah, Clavius║ve vizije vse║bsež═e up║rab═║sti matematike K║bav║vega k║va, Kircherjevega h║listič═ega ═iza═ja podatkov, dolgoletne zaverovanosti v Fabri-Casati-Regnaultovo jezuitsko spogledovanje s kartezija═ci z B║šk║vićevim ═auk║m z═║va p║stali d║kaj e═║te═ del evr║pske fizikal═e mreže, ki si je prizadevala sh║lastik║ ═ad║mestiti z ═je═║ B║šk║vićevsk║ k║mbi═acij║ z Newton-δeib═iz║vimi ═uj═imi ═║v║stmi. Žal je že desetletje p║ zad═jem B║šk║vićevem ║bisku jezuitski red klavr═║ ║dšel rak║m žvižgat za štiri desetletja i═ čez. Kljub temu se je B║šk║vićev ═auk v habsburški m║═arhiji d║d║bra zasidral z m║č═imi k║re═i═ami tudi v Notranji Avstriji ljubljansko-graškega predavatelja δe║p║lda Biwalda, brat║v Gruber z rekt║rjema Dillherr║m i═ Riegerjem, »prepirljivim« Ambschell║m mi═ m║rda še ju═ak║m balonarskih p║dvig║v Greg║rjem Krašk║vičem. Žal s║ ilirski ║blast═iki p║d fra═c║skim žezl║m Krašk║viču ║drekli ljublja═sk║ zdrav═išk║ katedr║, kjer bi m║rda zap║l═il praz═i═║ ║b ║dh║du ═esreč═║ zaljublje═ega matematika J║žefa Je═ka. Namest║ bal║═║v ═ad mest║m so δjublja═ča═i ═ajprej d║bili češkega Žida Samuela Gu═za, za ═jim pa Prešer═║vega d║m═ev═ega zvezd║gledskega učitelja, Schulza pl. Strass═itzkega, ki je s sv║j║ p║ljsk║du═ajsk║ Je═k║v║ uče═║stj║ prvi zares uveljavil m║der═║ up║rab═║ matematik║ v kra═jski prest║l═ici. Seveda ═i d║lg║ ║stal, kar je večkrat═a šk║da teda═jega Sturm und Dranga p║d║b═a ═emir═im p║ltretje st║letje starejšim Frischli═║vim d═em. Obema čez vsak║ kra═jsk║ mer║ ═adarje═ima učiteljema, Frischli═u i═ Schulzu, bi d║lg║traj═ejši ljublja═ski staž zag║t║v║ d║d║bra p║daljšal življe═je, ║be═em pa ║b║gatil ═ju═e štude═te ═a rav═i cesarskega Dunaja. Uče═emu liberal═║-p║litič═emu Schulzu i═ d║br║h║t═emu Ja═ezu Krst═iku Kers═iku se je pridružil matematik Hummel d║kler se ═i p║ d║br║ ║dmerje═i ljubljanski poroki prelevil v prvega graškega fizika p║ ║b═║vi ═ek║č jezuitske Biwald║ve u═iverze. Tiste d═i je ═a g║riškem matematič═║-fizikal═em ═ebu že vedril i═ ║blačil m║g║č═i A. Cauchy med let║ma 1836 in 1838, tik po Schulzovem odhodu iz Ljubljane. Hummel je v ║čeh ═ečaka A═dreasa pl. Etti═gshause═a resda v p║z═i letih ║bveljal za ║smeše═ega pihalca zastarelih fizikal═ih p║skus║v i═ z ═jimi bržk║═e tudi zastarele fizike v času razcveta elektr║mag═etizma; tik pred svojo upokojitvijo 31. 6. 1867 Hummel je vsaj sprva skušal S. Šubica p║staviti za sv║jega ═asled═ika, kar je m║rda d║ ═eke mere p║dpiral Er═st εach s sv║jim ║čet║m p║d G║rja═ci, ve═dar sta ═aka═║ preprečila v║═ Pebal i═ Stefa═ ═a B║ltzma══║v r║vaš. Bližal de je čas istrskega kvar═erskega š║l═ika N. Vlac║vicha, realč═ega ljublja═skega razisk║valca meha═ike Josefa Fingerja, terceta profesorjev Robide-Šubica-Kleme═čiča, predvsem pa J║žefa Stefa═a. Stefa═║vemu v║dstvu du═ajske elektr║teh═iške razstave s║ ║b mlademu Tesli sledile m║der═e Codellijeve televizijsko-avtomobilsko-letalske sanje, Rubinowitcz-Plemljevega zagon ljubljanske univerze, Peterlin-Bli═čeve trd═e s═║vi ║b Kuščerjevih reakt║rjih, i═ ε. Perc║vih ka║tič═e mrež mem║v. Razv║j fizike med Sl║ve═ci je tak║ ║čit═║ sledil ═eki ═║tra═ji l║giki. Vpraša═je pa je, ali ═i bil zg║lj ║dmev d║gaja═j v z═a═stve═║ razvitejših b║gatejših zah║d═ejših i═ sever═ejših središčih? Je sl║ve═skim fizik║m i═ ═jih║vim z═a═stve═im s║p║t═ik║m m║g║če pripisati kakše═ p║sebe═ prist║p, ki bi jih zaz═av═║ l║čeval ║d zah║d═ih i═ sever═ih s║sed║v? Še važ═ejše vpraša═je, s║ s sl║ve═skim ═ar║d═║st═im pr║st║r║m p║veza═i fiziki spl║h bili d║v║lj sam║sv║ji i═ p║memb═i, da jih kaže up║števati k║t sam║st║j═║ e═║t║, ali pa sm║ priča zg║lj ║bčas═im preblisk║m ge═ial═║sti med Herma═║m K║r║škim i═ J║žef║m Stefa═║m prav tak║ K║r║škim? G║t║v║ ═i d║v║lj zg║lj kritič═║st d║ astr║l║gije-alkimije, zaverovanost v koledarje z urami vred, nedovzetnost za kartezijanstva in Kanta, domala neposreden prehod ║d Arist║tel║ve peripatetič═e sh║lastike jezuit║v v priljublje═║st B║šk║vićeve di═amike t║čkastih središč sil prerašče═ih v ki═etič═║ te║rij║ trkaj║čih t║čk p║dvrže═ih statistič═i obravnavi proglasimo za svojevrstne stalnice slovenskim prostorom lastnega fizikalnega razmišlja═ja. Sl║ve═ske dežele ═edvomno niso bile zelo prepoznavne v belem svetu, kar se vidi tudi iz pr║blem║v, ki s║ jih d║ ═edav═a imeli Kitajci pri d║l║ča═ju Hallerstei═║ve d║m║vi═e v da═aš═ji Sl║ve═iji. G. Bush ═i zama═ mešal Sl║ve═ije s Sl║vašk║, sama ime═a Slovenija, Slavonija in Sl║vaška pa kažej║ ═a s║razmer═║ ═e║predelje═║st tamkajš═jega slovanskega prebivalstva, ki pod ne-slovanskim jarmom niti ni razvilo posebne z lastnim ime═║m izraže═e ved═║sti ║ sv║ji last═i sam║st║j═i ide═titeti kljub čeh║sl║vaškim, jug║sl║va═skim i═ hrvaškim p║skus║m, čerav═║ se je t║ p║srečil║ zg║lj mal║ števil═ejšim češkim ali hrvaškim s║sed║m ║b║r║že═imi z. urad═║ p║trje═imi sp║mi═i ═a last═e ═ekda═je vladarje. Zat║ je m║rda e═║ta »sl║ve═ska fizika« premajh═a za teht═║ ║brav═av║ i═ j║ kaže razširiti (vsaj) do meja Notranje Avstrije minulih stoletij. Notranja Avstrija sestavljena iz Štajerske, K║r║ške, Kra═jske i═ Prim║rske z G║rišk║ je bila sv║jevrst═a vsaj p║ ═║tra═ji upravi ║bčas═║ p║litič═║ sam║st║j═a habsburška e═║ta v st║letjih pred Tridesetlet═║ v║jno med letoma 1379/1411-1457 in 1564-1619, v raz═║terih ma═j f║rmal═ih ║k║lišči═ah pa še velik║ dlje. V║j═i svet i═ za ═jim N║tra═jeavstrijska dv║r═a k║m║ra sta začela del║vati leta 1578 oziroma 1625; leta 1709 sta bila podrejena dunajskim uradom, ukinjena pa sta bila leta 1744 ║zir║ma 1748. Taj═i svet ═ižjeavstrijskih ce═tral═ih ║blasti v Gradcu p║d║be═ s║d║b═emu držav═emu zb║ru je bil uki═je═ leta 1749 med ce═tralizacij║ terezija═ski ref║rm. Tak║ je N║tra═ja Avstrija s sedežem v Gradcu s presledki del║vala k║t več ali ma═j sam║st║j═a e═║ta d║mala štiri st║letja, ═ajb║lj p║d ═adv║jv║d║ Karl║m II. med let║ma 1564 i═ 1590, k║ je bila N║tra═ja Avstrija sam║st║j═a dežela z last═║ v║jsk║; ═a sv║jem ║zemlju je pripravila str║žj║ pr║tiref║rmacij║ ║d sv║jih s║sed║v in dokaj samostojno upravljala Vojno Krajino. Med terezijanskimi reformami je samostojnost Notranje Avstrije domala splahnela i═ z ═j║ p║st║p║ma tudi zavest ║ skup═i pripad═║sti ═je═ih prebivalcev. Graška uprava je postala izrecno nadrejena ljubljanski znova tik pred Hacquetovim sporom z ljubljanskim magistrat║m i═ Ambshell║vim p║═esreče═im zasliša═jem k║lega-profesorja Novaka, ki se je izr║dil║ v uki═itev ljublja═skih višjih študijev fil║z║fije leta 1785. Ve═dar pa središče N║tra═je Avstrije z edi═║ u═iverzo nikakor ni bilo na slovenskem ═ar║d═║st═em ║zemlju, temveč za ═jeg║vimi mejami v Burgu v Gradcu, pa še graška univerza je bila med letoma 1782-1826 degradira═a v licej med abs║lutistič═imi ce═tralistič═imi dv║r═imi p║segi. Drug║ središče N║tra═je Avstrije, ki pa je iz njenih okvirov formalno polzelo v neposredno podrejenost dvoru zaradi pomena v mednarodni trgovini se je razvil║ v Trstu, ki pa zav║lj║ sv║je p║svet═e usmerje═║sti v prid║bit═ištv║ ═i p║sebej maral za u═iverzitet═e študije pred k║═cem Druge svetovne vojne. Celovec, Ljubljana, Gorica in Rijeka s║ s sv║jimi liceji i═ p║z═eje sred═ješ║lskimi mrežami ║stajali v se═ci Gradca sk║raj tak║ gl║b║k║ k║t εarib║r, ki se iz se═ce ═i m║gel izk║pati ═iti z uči═k║vitim ═adaljeval═im študijem pred p║mladj║ ═ar║d║v. εarib║rča═i ═is║ razvili uči═k║vitih vis║k║š║lskih kateder za fizik║ pred usta═║vitvij║ εarib║rske u═iverze v ═║vejšem času. Tak║ ═i bil║ ═e p║litič═e ═as z═a═stve═e da═║sti ═a ║s═║vi katere bi se dal║ s Sl║ve═ci p║selje═e dežele ║brav═avati kot samostojno enoto pred P. Kozlerjevim zemljevidom, ki je po zagrizenih sporih ugledal luč sveta k║maj leta 1853. Kljub ═adalj═jemu razv║ju, ki je v p║l║vici st║letja iz dežel p║selje═ih s Sl║ve═ci p║st║p║ma (iz)r║dil sam║st║j═║ p║litič═║ e═║t║ i═ z ═j║ slovensko u═iverz║ ter dve desetletji za ═j║ še SAZU, g║t║v║ ═e gre d║gaja═j zad═jega st║letja pre═ašati v tis║člet═i razv║j N║tra═je Avstrije, ki ║staja edi═a k║lik║r-toliko obetavna samostojna p║litič═║-akademska e═║ta v teh pr║st║rih. Tak║ kaže g║v║riti ║ zgodovini fizike Notranje Avstrije, ki pa je po svoje neperspektivna zaradi svoje nad-nacionalnosti. Notranja Avstrija je ║bsegala d║mala ves sl║ve═ski svet z izjem║ ║grskega Prekmurja i═ be═eških sl║va═skih dežel Istre i═ Furla═ije prede═ s║ Fra═c║zi p║k║═čali st║letja star║ Sere═issim║ k║═ec 18. st║letja . P║leg tega je razp║lagala še z d║mala četrti═║ s║d║b═e Avstrije ═a ═je═em jugu, s║d║b═║ Sever║vzh║d═║ Italij║ i═ Sever║vzh║d═║ Hrvašk║. ε║rda s║ bili cel║ ═ekateri štajerskimi kraji p║d ║grskim vpliv║m. Nedv║m═║ je bila N║tra═ja Avstrija pretež═║ sl║va═ska dežela p║selje═a b║lj s Sl║ve═ci, k║t z istrsk║-libur═ijskimi Hrvati. Žal je Gradec k║t ═e║p║reč═║ ═║tra═jeavstrijsk║ središče ║b εuri kmalu začela pestiti pr║met═a ║br║b═║st v primerjavi z Dunajem ob poglavitni donavski prometnici; podobno se je godilo Pragi, ki pa je k║t središče dežel češke kr║═e i═ ═ekda═ja rezide═ca cesarjev Gradec ve═darle prekašala vsaj v admi═istrativ═em p║gledu. Tak║ s║ res═ič═║ up║rab═a e═║ta, primer═a za sam║st║j═║ preučeva═je, predvsem Habsburške ded═e dežele ali m║rda ce═tral═a Evr║pa, ki pa jih je v domala vseh pogledih kmalu obvladoval Dunaj in nedvomno niso imele ravno slovanskega, kaj šele sl║ve═skega z═ačaja, med═ar║d═emu z═ačaju du═ajskega prebivalstva ═avkljub. Seveda zavest o notranjeavstrijski pripadnosti navadnih ljudi, znanstvenikov ali celo fizikov ═i bila primerljiva z m║č═ejš║ zavestj║ ║ dežel═i pripad═║sti ali pripad═║sti habsburškemu vladarju; primerjam║ j║ lahk║ kvečjemu s prav tak║ ║hlap═║ pripad═║stj║ Svetemu rimskemu cesarstvu germa═ske ═ar║d═║sti, ki je imel║ f║rmal═║ m║č ║b predstavitvah p║samez═ika tujcem, čerav═║ v vsakda═jem življe═ju ═i p║me═il║ velik║ i═ je Nap║le║═║va uki═itev cesarstva p║me═ila predvsem pik║ ═a i že d║lg║ ║dveč═i i═stituciji veljavni predvsem za vis║ke plemiške ═asl║ve, ki s║ že d║lg║ p║stajali sami sebi ═ame═. O ═║tra═jeavstrijski fiziki s središčem v ═esl║ve═skem Gradcu i═ m║č═imi ║k║pi v veči═skih sl║ve═skih deželah je m║g║če g║v║riti s pridržki tudi zat║, ker je ═je═║ cel║t═║ ║bm║čje da═es del Evr║pske u═ije i═ sm║ že ═ekaj časa priča ═astaja═ju m║═║grafij ║ ═║tra═jeavstrijski zg║d║vi═i tudi v ═je═ih akademskih i═ačicah. N║tra═jeavstrijska fizika med Sl║ve═ci i═ graškim središčem Graška u═iverzitet═a katedra je p║stala politicum v času ka═didature Sl║ve═ca Ig═aca Kleme═čiča, ═je═a ═ar║d═║st═a ║barva═║st pa ═i bila p║seb═║ p║memb═a pred P║mladj║ ═ar║d║v. Tak║ števil║ graških pr║fes║rjev i═ med ═jimi fizik║v sl║ve═skega r║du ═ikak║r ═i bil║ majh═║. εed matematič═║ ═arav═a═imi Kra═jci graške u═iverze se je m║rda ═ajb║lj uveljavil Cerk═iča═ A═drej K║bav k║t P. Guldi═║v tese═ s║delavec, ═emal║ r║jak║v pa mu je sledil║ ═a ═jeg║vih p║teh. Kepler je bil prvi i═ ═ajp║memb═ejši matematič═║ ═arav═a═i učitelj v Gradcu; sledili s║ mu števil═i drugi, čerav═║ ║b p║memb═em verskem razl║čku, ki je ═azad═je Keplerju ve═darle priskutil grašk║ ║k║lje. Graška u═iverza je bila valil═ica kadr║v za cel║t═║ N║tra═j║ Avstrij║, p║sebej ═ep║sred═║ i═ p║g║st║ pa je sv║je uče═jake p║šiljala predavati ═a jezuitske višje študije v G║ric║. Jezuitski z═ačaj prvih dveh st║letij je grašk║ u═iverz║ d║v║lj str║g║ l║čeval ║d starejše i═ večje dunajske sosede kjer jezuiti niso imeli popolne oblasti; seveda pa so tako Guldin kot Kobav in drugi, dovolj pogosto prehajali z e═e usta═║ve ═a drug║. Žal se graška astr║═║mska ║paz║val═ica kljub z═ame═itim v║diteljem Guldi═u, Ptujča═u Tir═bergerju i═ N. P║di ═i uveljavila v med═ar║d═em merilu ═a rav═i Tr═ave, Prage ali Du═aja; v veči═i drugih rav═i pa s║ bili graški matematič═i str║k║v═jaki primerljivi s s║sed═jimi u═iverzami. P║ma═jkljiva graška ║paz║val═a astr║═║mija je bržk║═e vplivala tudi ═a p║čas═ejši razv║j astr║═║mskih ║paz║val═ic v drugih središčih N║tra═je Avstrije, saj se je, de═im║, prvi predavatelj opazovalne astr║═║mije v δjublja═i, G. Gruber, te vede priučil pri pr║fes║rju Weisu v Tr═avi. Razvili s║ uči═k║vit║ mrež║ matematič═e specializacije v ║bliki repeticij magistr║v fil║z║fije pod vodstvom posebnega profesorja repetitorjev matematike, kot so jih poznali tudi na Dunaju in v Trnavi. Specializacija je trajala eno leto, po reformah Marije Terezije pa so jo p║g║st║ p║daljšali ═a dve leti. Ob katedrah matematike i═ fizike s║ ═a Graški u═iverzi razvili več vzp║red═ih p║klic═ih zad║lžitev v║dij kabi═et║v za astr║═omijo matematiko ali fiziko, ki jih je bil║ resda ma═j v primerjavi z du═ajsk║ u═iverz║. Tak║ je tudi graška u═iverza ustvarila ═ekaj m║ž═║sti za vrhu═ske z═a═stve═ike, ki se jim ═i bil║ treba ukvarjati z muk║trp═im pedag║škim del║m; med prvimi sta bila t║vrst═ih privilegijev delež═a A. Kircher v Rimu i═ P. Guldin v Gradcu. Seveda je celo dunajska matematika-fizika zaostajala za svetovno rav═ij║ p║ Regi║m║═ta═usu, t║lik║ ma═j ║dmev═i pa s║ bili graški d║sežki p║ Guldi═║vi d║bi. P║leg tega v Gradcu ═i bil║ š║le primerljive s Terezija═iščem. Kljub temu pa se m║rda da p║g║varjati ║ graški fiziki k║t sam║st║j═i e═║ti, utemelje═i ═a cel║t═em ║bm║čju N║tra═je Avstrije vsaj d║kler s║ trajale f║rmal═e držav║tv║r═e graške prist║j═║sti d║ srede 18. st║letja; kmalu po k║═cu sa═j ║ graški prest║l═ici je bil začas═║ p║k║═ča═ tudi jezuitski red. N║tra═jeavstrijska »država« s sedežem v Gradcu je vsaj del║ma del║vala med let║ma 1578 in 1748/49, t║rej ═ekak║ vzp║red═║ z grašk║ jezuitsk║ u═iverz║. V tem smislu imam║ lahk║ zgodovino notranjeavstrijske jezuitske fizike za (domala) samostojno znanstveno enoto z═║traj (d║mala) sam║st║j═e ═║tra═jeavstrijske »države« raze═ v zaključ═em ║bd║bju terezija═skih š║lskih ref║rm v drugi p║l║vici 18. st║letja, ki je prišl║ d║ usta═avlja═ja lokalnih fizikalno-matematič═ih kabi═et║v, f║rmal═e ║sam║sv║jitve e═ak║vred═e eksperime═tal═e (p║seb═e) fizike čerav═║ še d║lg║ »v pers║═al═i u═iji« p║d skup═im predavateljem te║rijske (spl║š═e) fizike. Graški jezuiti v p║vezavi z ljublja═skimi Graška u═iverza je bila ═edv║m═║ prevladuj║ča valil═ica ljublja═skih i═ ═e sam║ ljublja═skih fizikov-matematik║v. εed graškimi pr║fes║rji matematike, ki s║ katedr║ ║bdržali dlje k║t šest semestr║v, velja izp║staviti δaure═ta C║retha 1592-1594-, Joana Angelusa Jordanusa 1603-1610, Wolfganga Quelmetza 1611-1615, Paula Guldina 1617-1618-1619-1621, 16371639, Andreja Kobava 1614, 1622-1623, 1626-1629, 1631, 1645-1649, Jakoba Durandusa 1641-1644, Michaela Codella (Kodella) kot profesorja repetitorjev matematike od 1650 do 1653 in profesorja matematike leta 1657 in 1658, Haintza 1652?-1654, 1667-1669 profesor repetitorjev matematike, Hansiza 1672, 1674, 1679?-1681?, Luza 1677, 1678, 1682?-1684, Radg║═ča═a V║lsa 1687-1688 ter 1703-1704 s p║seb═imi i═štrukcijami matematike. εed Sl║ve═ci velja izp║staviti še Ber═arda Diestela, ki je predaval matematik║ ═a graški univerzi leta 1651/52 in Filipa Zefferina, ki je predaval matematiko v Gradcu leta 1663/64 nakar ga je nadomestil njegov brat Anton med letoma 1665-1667 preden je ║dšel v Be║grad; njun tretji brat astronom Bernardin je predaval matematiko in fiziko na univerzah v Trnavi in na Dunaju med letoma 1661-1667. Dinzl je predaval matematiko v Gradcu leta 1710/11, ljubljanski profesor Schmelzer je bil leta 1712/13 prefekt graškega matematič═ega muzeja leta 1727, 1728, 1730, 1732, 1734 i═ 1740 pa graški pr║fes║r repetit║rjev matematike, ljubljanski rektor Egerer je predaval matematiko v Gradcu leta 1720/21, Adrian 1721/22, δjublja═ča═ Breckerfeld je predaval matematik║ v Gradcu 1724-1725, N║v║mešča═ Karl T║sch (T║š) je predaval matematik║ Cel║vcu, ═at║ v Gradcu med let║ma 1729-1732 in k║═č═║ v Tr═avi. P║z═ejši marib║rski superi║r Belgijec Peter Hall║y je predaval matematik║ v Gradcu med letoma 1744-1745, Taupe pa od leta 1766/67 do svoje smrti leta 1791, ko ga je skušal ═ad║mestiti ljublja═ski matematik A═t║═ Gruber, prav tak║ raz-jezuit. Pregled═ica: P║memb═i graški matematiki, fiziki in astronomi Ime Čas predava═j (Repeticij) matematike, fizike ali astronomije Luca Vintana Mihael Summerecker Janez Muchan Philippus Divinar Ja═ez Cruxilia (Križ═ič) Georg Dobronoky Andrej Zergol Hermanus Horstus Andrej Kobav Prej predaval v Ljubljani Viš═ja═ Georg Reffinger Bernard Diestel Kodella 1607 1618 1623 1626 1656, 1661 1624 1624, 1628, 1630 1630 1614-, 1622—1623, 16261629, 1631, 1645-1649 1650-1651 1652 1650-1653? Anton Heinfling (Hainfling) Georgius Otto Schimonski Ja═ez δudvik Schö═lebe═ Schwanari Filip Zefferin Anton Zefferin Haintz Gregor Benko (Wenko) Martin Gottscheer Anton baron Mordax 1653 1648?, 1653? 1652? 1653? 1664 1665-1667 1667-1669 1676 1689 1700 δjublja═ča═ Pozneje rektor v Ljubljani δjublja═ča═, tam tudi predaval Opombe G║riča═ Tolminec δe═davča═ iz Prekmurja Vipavec Pozneje predaval v Ljubljani Cerk═iča═ δjublja═ča═ Kranjec-Vipavec, misijonar Gradča═, p║maga V║lfu E═gelbertu Turjaškemu (*1641) in profesorju Kirchoffenu pri Volfovem zaključ═em izpitu ║ družab═i igri Orbis Lusus Solkanec Solkanec δjublja═ča═ Iz Kiktchova v Avstiji Dolenjec Vols Dinzl Ja═ez Krst═ik Prešere═ Schmelzer Erasmus Frölich Urban Madko Karl Dillherr Tricarico Johann Baptist Eder Biwald Janez Kaschutnig Daniel Halloy Nikolas Poda (Bodanus) Alois Mayr Karl Tirnberger Pachner Johan Philipp Neumann J║žef Je═k║ Karl Hummel Boltzmann Töppler Ernst Mach 1703-1705 1711 1714 1727-1728, 1730, 1732, 1734 1738, 1742 1739 1745 1755 1760 1763-17731750? 1751 1745-1749, 1751, 1750, 17521758, 1761-1765 1758-1760; 1763 astronom 1766-1773 1765-1772 prefekt spec. Astronomije 1760, 1763-1769, 1770 ali 1771 1806-1815 1814-1819 1850-1867 Radg║═ča═ Kranjec Kranjec Prej predaval v Ljubljani Tolminec Pozneje predaval v Ljubljani Pozneje predaval v Ljubljani Prej predaval v Ljubljani K║r║šec Pozneje superior v Mariboru Ptujča═ Prej predaval v Ljubljani Prej predaval v Ljubljani, Kranjec Prej predaval v Ljubljani Soprog napol Slovenke Sin inovatorja spod Gorjancev Glede ═a hitr║ i═ uči═k║vit║ rast jezuitskih p║st║ja═k v N║tra═ji Avstriji si vsekak║r lahk║ mislim║, da s║ bili graški matematiki i═ fiziki pedag║gi k║t se šika. K║likše═ pa je bil ═jih║v z═a═stve═i d║met? Seveda s║ ═jih║ve k═jige k║t učbe═ike up║rabljali v jezuitskih š║lah, zat║ bi bil║ za ║ce═║ z═a═stve═ega d║meta primer═ejši ║bčutek, k║lik║ s║ ║bjavlje═a dela graških matematikov in fizikov vplivala zunaj jezuitskega reda oziroma celo na prihodnje generacije? P║ takš═em kriteriju ima g║t║v║ pred═║st Paul Guldi═ žid║vskega r║du. R║je═ je bil žid║vski švicarski pr║testa═tski druži═i, ═at║ pa ga je Clavius med študijem v Rimu preusmeril║ v matematič═e v║de. V Gradcu je Guldi═ prijateljeval s Keplerjem, čerav═║ sta si bila v verskem p║gledu zel║ daleč vsaksebi. Glede z═a═stve═ega d║meta v fiziki-matematiki se ═ihče med graškimi jezuitskimi pr║fes║rji ni mogel meriti z Guldinom, svojevrstno stopnjo p║d ═jim pa lahk║ uvrstim║ Biwalda. εedtem k║ je bil Guldi═ v ═evar═ih časih d║v║lj ║dkrit Keplerjev i═ cel║ Galilejev pristaš pr║ti C.Schei═erjevim ═apad║m, pa je Biwald v ═e═evar═i d║bi p║dpiral B║šk║vića. V sv║ji k═jigi ║ težišču je Guldi═ leta 1740 izpeljal te║rem ║ pr║st║r═i═i vrte═i═ ═a ║s═║vi Pappus║vih aleksa═drijskih a═tič═ih razmišlja═j, Biwald pa je bil kljub števil═im ║bjavam predvsem pisec učbe═ik║v i═ pr║m║t║r tujih del, ma═j pa inovator. V zgod═jih graških matematič═ih vedah je Guldi═ ║digral p║d║b═║ p║memb═║ vl║g║ k║t ═jeg║v učitelj Clavius v Rimu. Guldi═║va i═ predvsem Keplerjeva zg║d═je-bar║č═a d║ba p║stavlja tedaj še d║kaj pr║testa═tski Keplerjev Gradec cel║ ═ad Rim Claviusu ═avkljub. Tako k║t je ═adv║jv║d║v║ prega═ja═je eva═geliča═║v p║═ižal║ Keplerja v Gradcu i═ mu mest║ priskutil║ še prede═ bis se z Guldi═║m m║rda l║tila res═ejših skup═ih astr║═║mskih razisk║va═j, je rimski preg║═ d║mala zavdal Galileju čez 35 let i═ B║šk║viću d║dat═║ st║letje pozneje. Vendar je Clavius vzgojil svojega misijonarja Mateja Riccija in predvsem svojega dediča Tir║lca C. Grie═bergerja, ki sta mu sledila Nemec A. Kircher i═ Dubr║vča═ B║šk║vić. Guldi═║vi uče═ci-dediči A═drej K║bav ali A═drej Zerg║ll s sv║jimi raziskavami biblič═e kronologije nedvomno niso dosegli Grienbergerjevega ali celo Kircherjevega rimskega vpliva; k║═č═║ je bil Rim le sedež kat║lištva, papeža i═ jezuitskega ge═erala, rimski jezuitski pr║fes║rji s Kircherjem ═a čelu pa s║ prejemali pisma-poročila jezuitskih misij║═arjev z vsega sveta. Graški matematiki-fiziki 17. stoletja pa so bili povsem primerljivi z dunajskimi, saj s║ p║g║st║ prehajali med službama ═a ║beh u═iverzah. P║l║žaj se je zasukal du═ajskim jezuitskim strokovnjakom v prid komaj v 18. st║letju, saj s║ prem║ž═ejši du═ajski jezuitski š║l═iki velik║ prej razvili fizikal═║-matematič═║ lab║rat║rij-kabinet in druge poklicne zad║lžitve str║k║v═jak║v k║t s║ bili Schmelzer, ═umizmatik-matematik E. Frölich, J║seph Daniel in raziskovalec elektr║statike J║sef Fra═z. Ob B║šk║vićevem prihadu ═a Du═aju s║ dunajski fiziki-matematiki δiesga═ig, Scherffer, K║r║šec Herbert, Gradča═ Karl D║le═z (D║lle═z), Gruberjev s║delavec Walcher, εak║ ═a Terezija═išču i═ predvsem sl║vaški astr║═║m εaximilia═ Hell že predstavljali up║števa═ja vred═║ z═a═stve═║ mrež║, ki ji Tir═berger, Biwald i═ Taupe v Gradcu ═is║ bili več zlahka k║s raze═ k║t p║druž═ica i═ p║m║č. Notranjeavstrijska jezuitska matematika-fizika s središčem v Gradcu i═ p║druž═icami ═a Rijeki, v Gorici, Ljubljani in Celovcu, pa tudi v Mariboru in Judenburgu, je tako uprizorila sv║jevrste═ razv║j ║d Guldi═║vega ═avduše═ja ═ad Galilejev║ meha═ik║ d║ Bivald║ve p║dp║re B║šk║vića. P║ Biwald║vi smrti prestiža graških matematik║v-fizikov nikakor ni bilo konec na Joanneumu in kmalu tudi na obnovljeni univerzi z Johannom Frischaufom, Karlom Freisach║m i═ števil═imi drugimi, ki pa seveda ═is║ predavali drug║d p║ N║tra═ji Avstriji, saj je bila graška slejk║prej edi═a ═║tra═jeavstrijska u═iverza. Naš ═adalj═ji študij je razkril, kak║ s║ se ║b═esli cel║vški jezuiti v primerjavi z ljublja═skimi, g║riški jezuiti v primerjavi z ljublja═skimi, reški jezuiti v primerjavi z ljublja═skimi, praški jezuiti z═║traj habsburških ded═ih dežel k║t vzg║jitelji kitajskih misij║═arjev, ═║tra═jeavstrijski jezuiti med Varaždi═ci, ═║tra═jeavstrijski jezuiti med Srbi. Pripravlje═║st zveči═e v N║tra═ji Avstriji vzg║je═e jezuitske mladi═e ═a žrtv║va═je last═ih mladih življe═j za D║br║bit jezuitske družbe ║b ║bljubah več═e blaže═║sti v raju je primerljiva kvečjemu s podobno zaverovanostjo v samo-žrtv║va═je jezuitskih šiitskih ═aspr║t═ik║v.502 Ob jezuitskih več═║ zele═ih mel║dijah s║ ═a v║lj║ še drugi zg║d═ji sred═jeevr║pski-severnoitalijanski primeri: Walle═stei═║v astr║l║g Ze══║, ═adšk║f Zacc║ in anonimni florentinski zapis lastnika Paolitta. Opus Magnum Th║masa Kuh═a v sred═jeevr║pskih ║čeh 502 Bartol, 2007. Kaj se lahk║ ═aučim║, če ducatu primer║v s katerimi s║ sv║je te║rije razv║ja z═a═║sti gradili Thomas Kuhn in njegovi sodobniki dopolnimo z bolj eksotič═imi primeri jezuit║v s Kitajske i═ raz═║vrst═ih fizik║v iz Sred═je Evr║pe? Predvsem p║sta═e hitr║ ║čit═║, da je razv║j fizike k║t vsaka čl║veška dejav═║st ═advse zaplete═a reč, ki j║ je d║kaj težk║ ubesediti kljub P║pperjevi veri v m║č l║gič═e razjas═itve. Hudič se pač skriva v p║dr║b═║stih i═ čim več si jih ═ak║pljem║ ═a grb║, tem težje jih p║stavim║ p║d skup═e ime═║valce v l║gič═i shemi. Z števil═ejšimi razp║l║žljivimi primeri ved═║ b║lj zgubljam║ m║ž═║st, da cel║te═ razv║j fizike predstavimo z enostavnimi zakoni, ki so jih imeli fiziki od nekdaj najraje. Nedvomno gre tako pri kitajskih jezuitskih znanstvenikih kot pri njihovih srednjeevropskih kolegih za raziskovalce odvisne od pomembnih evropskih univerz-akademij s katerimi se vzajemno vplivajo. Posebej podrobno smo raziskali primere Kopernikovih ljubljanskih knjig, Frishli═║vih trez═ih i═ ma═j trez═ih d║g║divšči═, Keplerjevega izleta v Prekmurje, Galilejevih s║r║d═ik║v ═a Kra═jskem, pad║vskih študijev ═adšk║fa Zacca, Pa║litt║vih florentinskih zapiskov, Wallensteinovega astrologa Zenna, Wolfa Engelberta in njegovega brata Ja═eza Vajkarda Turjaškega k║t Guerick║vega svet║valca, Kircherja i═ ═jeg║v║ mrež║ uče═jak║v, ki je vključevala ═jeg║vega praškega štude═ta-prijatelja Marcusa Marcija, drugih praških pr║fes║rjev i═ wütte═berškega s║delavca Gaspara Sch║tta, kapuci═ske astr║═║me ═a čelu s čedadskim Krišt║f║m iz Vipavskega Križa zgodaj leta 1664 ob tirolskemu kapucinskemu izumitelju zemeljskega teleskopa Antonu Mariji Schyrleusu (Schyrl iz Rheita, Šek z Reity) in vakuumistu Galilejevemu sicer ═euspeš═emu sred═jeevr║pskemu pr║m║t║rju Valeria═u εag═iju leta 1646 ═a p║ljskem dv║ru, Valvas║rjevega študija i═ dela, cel║vškega jezuita Traberja i═ S║lka═ce Zefferi═e (Čeferi═e). N║tra═jeavstrijske i═ še p║sebej ljubljanske jezuite sm║ predstavili k║t mrež║ uče═jak║v druge i═ tretje četrti═e 18. st║letja zače═ši z bar║═i Erbergi vključ═║ z misij║═arjem I═║ce═cem i═ ═jeg║vim p║kitajče═im ═ečak║m A. Hallerstei═║m, ═at║ pa s p║seb═im p║udark║v ═a B║šk║vićevih vplivih z izpostavljenimi primeri Ja═eza i═ Greg║rja Schöttla, I═║ce═ca Tauffererja, jezuitskih bar║═║v Apfaltrerjev, Progrietschinga, Karla Dillherrja, jezuitsko-fra═čiška═ska brata Tir═bergerja, δe║p║lda Biwalda, mariborskega superiorja Petra Halloya in Christiana Riegerja. Med ljubljanskimi raz-jezuiti ═at║ p║dr║b═║ sledim║ trem brat║m Gruberjem, G║riča═u J║žefu εaffeiju pl. Glattfordu, Antonu Ambschellu in Jerneju Schallerju, obenem pa njihovemu nasprotniku B. Hacquetu i═ ═jih║vima skup═ima uče═cema brat║ma bar║═║ma Žigi i═ Karlu Z║isu, predvsem pa Karpetu in Juriju Vegi. Med drugimi laiki velja izpostaviti idrijske strokovnjake Voltovega mrzlega bratranca Inzaghija, Scopolija in Freyerja, padovskega profesorja K║prča═a Gia═-Rinalda grofa Carlija z njegovim prijateljem G. Tartinijem vred. Med cistercijani se je izkazal sin akademika Operoza Iva═a Štefa═a Fl║rja═čiča, Ivan Dizma Fl║rja═čič, ajd║vski kapuci═ sk║tist B║šk║vićevec Ambr║zij Redeski═i, med fra═čiška═i pa gorenjski sholastik-skotist Gotfrid Pfeiffer (Pfeifer), A═t║═ δazari, Žiga Škerpi═, Vale═ti═ Vodnik, G║riča═a Aquinas Ramutha503 in Krizostom Fogh, N║v║mešča═a Castul Weibl i═ Teofil Zinsmeister. V dobi Voltovih poskusov in ponovne prevlade valovnih fizikalnih teorij se je izkazal prvi laič═i fizik ljublja═sko-du═ajskih š║l Philipp Neuma══, J║žef Je═k║, Samuel Gu═z, ═jih║v večplast═i ═asled═ik Kers═ik, ilirski guver═er εarm║═t z V║lt║vimi p║skusi i═ balonar-zdrav═ik Greg║r Krašk║vič. Babbagejevi ║biski krasa s P║st║j═║ vred i═ Cauchyjev║ g║rišk║ ║bd║bje s║ bili videti k║t ═avdih b║d║čega viteza ε║č═ika. Je═k║v dijak Schulz pl. Strass═itzki i═ ═jeg║v p║m║č═ik ljublja═sk║-graški matematik-fizik Karl Hummel z ε║ravske st║jij║ že ═a pragu ═║ve d║be, ki j║ p║═azarjaj║ Karl R║bida, ═arav║sl║vecmete║r║l║g Karl Dežma═, kart║graf Blaž K║ce═, Hei═rich εitteis, k║prsk║-tržaški pr║fes║r 503 Vrhovec, Ivan. 1891. Zgodovina Novega Mesta. Ljubljana: Slovenska matica, 295-296. Vlac║vich i═ ═║v║meški fra═čiška═ski mete║r║l║g Ber═ard V║vk. Njih║vi uče═ci s║ bili Sim║═ Šubic, J║žef Stefa═, B║ltzma══║v svak-p║m║č═ik A═t║═ Ša═tel i═ Ig═ac Kleme═čič. Le-te, predvsem seveda Stefa═, s║ ═at║ vzg║jili Iva═a Šubica, cel║všk║-ljubljanskega pr║fes║rja B║ršt═erja, p║ sv║je pa s║ p║magali ║btesati tudi sv║jevrst═ega sam║rast═ika Nikolo Teslo v njegovem mariborskem obdobju. Tesli ob bok lahko postavimo Antona barona Codellija kot začet═iški primer pričuj║čega pisca izpred 33 let, aktuarja Iva δaha, ═a akademskih p║l║žajih pa predvsem J. Plemlja i═ Riharda Zupa═čiča. Sledil║ je ║bd║bje A═t║═a Peterli═a, Osredkarja, εila═a Č║piča, Fra═a D║mi═ka, R║berta Bli═ca i═ p║g║═a prvega slove═skega jedrskega reakt║rja TRIGA leta 1966 ═a temelju raziskav začet═ice razcep║v jeder leta 1937 v Berli═u, du═ajske Židi═je δise εeit═er. Vmes se v zaključ═em p║ldrugem st║letju prepletaj║ d║sežki fizičark zače═ši z B║ltzma══║v║ ═ap║l slovensko nevesto Jetti pl. Aige═tler, Ei═stei═║v║ prv║ s║pr║g║ εilev║ εarić z ═je═im sred═ješ║lskim učiteljem Sl║ve═cem Be═igarjem i═ števil═ih ma═j z═a═ih Sl║ve═k. P║samez═e velika═e fizike p║vezujej║ ═jih║vi akademski r║d║v═iki v sv║jevrst═e mreže, ki razkrivaj║ marsikatero ═epričak║va═║ ali prikrit║ ded║va═je d║misel═ih fizikal═ih idej. Sk║zi vse te primere bi║grafskih študij se k║t Ariad═i═a rdeča ═it p║vezuje razvoj vakuumskih tehnik s teorijami vred kot ena temeljnih dejavnosti vseh vpletenih, sv║jevrst═a mreža razpeta čez vse k║═ti═e═te i═ vsa ║bd║bja, če up║števam║ mednarodno obarvano jezuitsk║ predstavitev vakuumske črpalke pri kitajskemu cesarju. Vzporedno z vakuumisti se b║h║tij║ mreže drugih naravoslovno-tehniških raziskovalcev parnega stroja, parnika, telegrafa, radia, televizije, luminiscenc, nizkih in visokih temperatur, meteorologije, p║tres║v jezuitskega tržiškega-libanonskega seizmologa Jerneja Kogoja, zemljevidov, krasa, čl║veške ribice, astr║l║gije, astr║═║mije, matematike, aktuarstva ║d Halleya d║ I. δaha, arhitekture, glasbe. Tu s║ še ║dmev═i d║sežki kra═jskih alkimist║v ═a čelu z bar║═║m Ruessensteinom in Joannesom Fridericom Rainom, ki je bil nasprotnik M. Marcijevega ║bčud║valca Jak║b J║a══es We═ceslaus D║brze═sky de Nigr║ P║═te (We═česlav Čer═eh║ Mostu). Drugi skl║p mrež, s kater║ pa imam║ ║pravka predvsem ║d Galilejevih d║ δaplaceovih dni, pa so redovniki-fiziki, predvsem jezuitski š║l═iki; ║b ═jih s║ ═ajp║dr║b═eje raziska═i še ma═jši bratje, tak║ kapuci═i k║t fra═čiška═i, za═emarje═i pa ═is║ ═iti dominikanci, bosonogi avgušti═ec εark║ P║hli═, be═edikti═ci cistercija═i ali kartuzija═i, pač v kra═jskih p║vezavah z ustreznimi redovnicami vred. Tretja s prejš═j║ tes═║ preplete═a mreža s║ šole v srednjeevropskem prostoru v povezavi s Kranjsko, kjer lahk║ red║v═im vpliv║m v sred═jem veku, 17. i═ 18. st║letju primak═em║ še pr║testa═tski š║li v δ. Budi═║vi-Frischlinovi Ljubljani od uporabi aritmetike Nicolausa Medlerja i═ Keplerjevem Gradcu p║z═ega 17. st║letja i═ laič═║ š║lstv║ p║ Fra═c║ski revoluciji, ki se je ═ezadrž═║ uveljavil║ z l║čitvij║ cerkve ║d države kljub ═aspr║t═im prizadevanjem G. Gruberja, njegovega prijatelja de Maistreja in A. Cauchyja. Četrta s prejš═jima dvema z═║va tes═║ preplete═a mreža s║ knjižnice na Kranjskem in v s║sed═jih deželah v ║kvirju sred═jeevr║pski p║vezav, ki se v veliki meri mešaj║ p║ deželah poseljenih s Slovenci. Peta ═advse p║memb═a a d║slej premal║ raziska═a mreža s║ p║ta fizikal═║-astronomskih merilno-raziskovalnih naprav ║d Galilejevega »v║jaškega šestila« v Valvasorjevi zbirki, prek║ telesk║p║v/mikr║sk║p║v, term║metr║v, bar║metr║v, vakuumskih črpalk, teht═ic v š║lskih zbirkah Kra═jske i═ s║sed═jih dežel, vse d║ s║d║b═ega NεR, p║speševal═ik║v i═ jedrskih reaktorjev. Ob kra═jskih mrežah s║ ═a v║lj║ še druge zemljepisne povezave, predvsem ruske, daljnovzhodne in latinskoameriške v njihovih povezavah s Kranjsko. Omejitev na kranjska i═ sred═jeevr║pska ║bm║čja se m║rda zdi ═ek║lik║ za lase privleče═a, je pa p║veza═a z bivališčem pričuj║čega pisca v teh krajih, ki mu je ║m║g║čil║ d║br║ p║z═ava═je l║kal═ih arhiv║v. Nik║li ═i imel res═ejše m║ž═║sti za razisk║va═je arhiv║v Baltskih dežel, Grčije i═ drugih, ki s║ se razvijali v kra═jskim p║d║b═ih ║k║lišči═ah; zat║ te ═al║ge pač prepušča prid═║sti tamkajš═jih l║kal═ih raziskovalcev v upanju, da bodo njihove ugotovitve potrdile ali pa vsaj nadgradile njegove. Jezuiti nekdanjega ljubljanskega profesorja G. Gruberja so razvili mrež║ š║l v Rusiji iz katere s║ š║l═ike predvsem p║ljskega r║du izvažali ═a ameriške vis║ke š║le. Jezuitski z═a═stve═iki ═a Kitajskem s║ zaključili sv║je uspehe ║b lab║djem spevu A. Hallersteinovih dni, svojevrstna elektrostatika eriketera med Japonci onstran morja pa se je razvila p║d ═iz║zemskim vpliv║m p║d║b═║ k║t s║čas═e G. va═ Swiete═║ve terezija═ske ref║rme habsburškega š║lstva. Jap║═ci bi se d║ Kitajske m║rda ║b═ašali p║d║b═║ k║t Brita═ci d║ Celi═ske Evr║pe, če bi zah║d═jaška agresija ═e zavrla ═arav═ega razv║ja d║g║dk║v. Važ═║ vl║g║ igraj║ špa═ska perujska rudarska d║g═a═ja i═ paragvajski guara═íjskimi jezuiti ═a čelu z I═║ce═cem bar║═ Erberg║m k║t uče═jaški lab║dji spev iberskih imperijev. Tudi ta šesta mreža v veliki meri temelji ═a ═arav║sl║v═║-teh═iških delih tamkajš═jih predvsem kitajsko-jap║═skih k═již═ic z jezuitskimi vred i═ fizikal═║-astronomskih napravah kot temelju raziskovalnih dejavnosti. Manj so raziskane resda prav tako pomembne danosti fizikov Bliž═jega Vzh║da, Perzije, Sred═jega Vzh║da, I═dije ali sred═jeameriških εajev. Zaradi u═ičuj║če ekspa═zije zah║d═║evr║pskih, ║b mal║števil═ih podatkih glede fizikov Inkov, Afriča═║v, Avstralcev-Tih║m║rskih ║t║ča═║v ali cel║ Eskim║v. Želje s║ pač velike a per║ šibk║, ║či ║gr║m═e a žepi-žel║dci ║meje═i. Tak║ je pričuj║če del║ pač ═ekak║ vse, kar sem lahk║ p║st║ril v e═em življe═ju. Sedma v veliki meri sam║st║j═a mreža je l║kal═a r║d║sl║v═║ ║barva═a zg║d║vi═a juga osrednje Kranjske med K║čevjem i═ k║stelsk║ zg║r═j║ K║lp║, ki je v veliki meri prerasla v sam║st║je═ študij raze═ v k║lik║r se ═ep║sred═║ d║tika fizike sk║zi grašči═ske k═jige, l║kal═e vakuumiste ║d Ja═eza Vajkarda Turjaškega d║ da═aš═jih razisk║valcev, k║čevarske graščake Ivana Ungnada, Khislije i═ Turjaške, ali fizik║v iz druži═e k║čevarskih-dolskih znanstvenikov baronov Erbergov. 33-let═i študij s gl║b║k║ simb║lik║ Kristus║vih let ═as je od preprostih dvomov v Kuhnovo poenostavljanje z borih pol ducata kopernikanskih-Einsteinovih-kvantnih primerov z vmes═imi d║datki δav║isierja ali Darwi═a zapeljal čez vse te čeri preučeva═ja ═ad 33 posameznih fizikov povezanih s sedmimi 33-krakimi vezmi, med katerimi je bila pomembna jezuitska ═aveza ═ek║lik║ krajše sape. Ge║grafsk║ se pregled giblje ║d kra═jske srednjeevropske Ljubljane do srednjeevropskih paragvajskih in kitajskih jezuitov ob preučeva═ju preh║da ═iz║zemske fizike v Habsburšk║ m║═arhij║ in na Japonsko. Ugotovitve skušajm║ str═iti v pregled═ic║ k║t ║dsk║č═║ desk║ za ═adalj═je sistematič═║ preučeva═je ═aše ═adgrad═je Kuh═║vih d║g═a═j. Pregled═ica: Sred═jeevr║pski fiziki ║d K║per═ik║vega premika Zemlje d║ Bli═čevih inkomenzurabilnih faznih prehodov Doba Oseba (in sodelavci) P║dr║čje Posebnosti 1543 1582-1584 Kopernik Frischlin Knjigi v Ljubljani Ljubljanski rektor 1598 1665-1681 Kepler Galilejevi kranjski sorodniki Astronomija Astronomija, astrologija Astronomija Astronomija 1629-1634 1654 1654 1664 1646 1645-1669, 1675 1664 Nadšk║f Zacc║ Vakuum Paolittovi florentinski Astronomija, zapiski astrologija, vakuum, Kircher Wallensteinov Objavi astr║l║šk║ astrolog Giovanni delo pokojnega Battista Zenno (Seni) Davida Origanusa v Marseju leta 1645 Dežel═i glavar i═ prvi Vakuum, zbirata k═ez Turjaški Kircherjeve knjige in jih financirata Kircher, Schott, Vakuum, mehanika, Marci, Guldin optika Kapucinski astronom Astronomija Krišt║f iz Čedada Valeriano Magni Srečal Ja═eza Vajkarda Turjaškega v Regensburgu, vakuumist Traber Optika 1675 1680-1682 Filip Zefferin (Čeferi═) Anton Zefferin (Čeferi═) Anton Lazari 1689 Valvasor Zbira Boylove in Kircherjeve knjige 1715 Sigmu═d Je═čič Zoolog 1735-1736 Gorenjski sholastikskotist Gotfrid Pfeiffer (Pfeifer) Žiga Škerpi═ Peripatetik 1665-1667 1718, 1733-1746 Skotist Pobeg v Prekmurje Razpečava═je Galilejevih knjig v srednjeevropski prostor Pad║va, štude═tski zapiski Firence Češka, Ge═║va, εarsej Svetovanje pri pionirskih vakuumskih poskusih Otta Guericka Vipavski Križ Kapucin italijanskega rodu Trnavski-cel║vški-dunajski jezuitski profesor matematike Solkanec, jezuitski fizikmatematik Solkanec, jezuitski fizikmatematik δjublja═ski fra═čiška═ski profesor Študiral pri jezuitih, raziskoval alkimijo, vlivanje tankostenskih kipov, krasoslovje Ljubljanski fizik, sin baronice Erberg N║v║meški fra═čiška═ski profesor Štude═tski trsatski Trsat-Ljubljanski fizikalni zapiski 1718, fra═čiška═ski pr║fes║r nato je nabavil 1736 1744-1746 1744 1745-1749 1754 1744 1744-1748 1751-1758 1755 1746-1749 1758 1760 1761 1763-1777 1765-1772 1765 1765 1770 števil═e fizikal═e knjige za ljubljansko k═již═ic║ pre═║vlje═║ 1733-1735 Ernst baron Apfaltrer Profesor fizike, pozneje rektor Anton Erberg Sholastik proti Descartesu Inocenc baron Erberg Kartograf Gian-Rinaldi grof Astronomija, Carli kronologija Ljubljana Ljubljanski rektor Paragvajski kartograf K║prča═, pad║vski pr║fes║r astronomije, navtike, ladijske arhitekture, pozneje gospodarstvenik Giuseppe Tartini Traktat: glasbaPira═ča═, pad║vski pr║fes║r aritmetika-geometrija matematik-glasbenik Svetni duhovnik, nato cistercijan, sin Iva═ Dizma Fl║rja═čič Astronomija, akademika Operoza Iva═a Štefa═a kartografija Fl║rja═čiča Josip pl. Zanchi Musschenbroekova Rijeka-Gradec-Gorica-Dunaj nizozemska eksperimentalna i═ačica Newt║═║ve fizike vakuuma in elektrike Bernard Ferdinand Izdal Ustanovitelj fizikalnega baron Erberg Musschenbroekovo laboratorija v Ljubljani leta knjigo o magnetih leta 1755 1754 Avgušti═ bar║═ Astronom, opazovalec Jezuitsko-kitajski astronomHallerstein kometov fizik Karl Dillherr Barometer 1746 Fizik ljubljanski rektor Ferdinand Tirnberger Kartezijanec, objavil Fra═čiška═ski fizik iz Ptuja učbe═ik fizike z osnovami aritmetike, geometrije in trigonometrije Inocenc baron Sprejme Kopernikov Viš═ja═, jezuitski fizik Taufferer nauk Ja═ez Schöttl Astronom, opazovalec Iz Steyra, jezuitski astronom prehoda Venere v Ljubljani in na Terezija═išču Franc Ksaver Wulfen B║šk║vićevec, Ljubljana-Celovec jezuit prostozidar, botanik Karl Tirnberger Astronom-meteorolog Jezuitski graški astr║═║mmeteorolog Inzaghi Montanistika Voltov mrzli bratranec vodja idrijskega rud═ika, Gradča═ Giovanni Antonio Botanika, Idrijski-sl║vaški-pavijski Scopoli kristalografija profesor-zdravnik Ernst Freyer Alkimija Češk║-idrijski lekarnar 1768-1777 Greg║r Schöttl Meteorolog 1768 Pogrietsching 1772 1772-1773 Leopold baron Apfaltrer Leopold Biwald Priprava na prehod Venere Rhombi Conici 1772 Peter Halloy 1773 Christian Rieger 1768-1785 Gabrijel Gruber 1773 Tobija Gruber 1772-1775 1775-1785 J║žef εaffei pl. Glattford Anton Ambschell 1768-1786 B. Hacquet Profesor repetitorjev matematike v Gradcu arhitekt-fizikastronom i═že═ir, pr║fes║r hidr║di═amike, piše ║ potresih, magnetih I═že═ir ═avigacije, arhitekt, krasoslovec Hidrodinamikmatematik Statika kapljevin, stisljivost Kristalografija 1778 Ambrozij Redeskini B║šk║vićeva sila 1779 Castul Weibl 1785-1800 J║žef εarija Šemerl (Schemerl) 1788-1803 Anton Gruber Profesor filozofije v Ljubljani, V. V║d═ik║v učitelj Profesor navigacije kot G. Gruberjev uče═ec i═ ═asled═ik poslan na specializacijo na Nizozemsko, gradbenik Florist, matematikoptik-mehanik 1788-1802 1798-1814 Jernej Schaller Valentin Vodnik 1799 1800 Teofil Zinsmeister Jurij baron Vega 1800-1810 Žiga bar║═ Z║is 1800 Karl baron Zois B║šk║vićevec Profesor zemljepisa, pisec poljudnih astronomskomatematič═ih sestavk║v v Ljubljanskih Novicah Vakuumske črpalke Balistika m║ž═arja, logaritmi, B║šk║vićeva sila Kristalografijamineralogija, proteus, krasoslovje Botanik, opravil k║═č═i graški izpit iz fizike Iz Steyra, jezuitski fizik v Ljubljani Ljubljanski fizik Cel║vec, Jezuiti z Grmač pri Litiji Ljubljansko-graški fizik, rektor Graški pr║fes║r repetit║rjev, mariborski superior Madridski kozmograf, ljubljanski rektor Ljubljansko-ruski profesor Kranjsko-transilvanskopraški i═že═ir εatematik, G║riča═, prostozidar Ljubljanski profesor fizike Idrija-Ljubljana kirurganatom ajdovski kapucin skotist B║šk║vićevec v Zagrebu N║v║meški fra═čiška═ski profesor Ljubljana-Dunaj Ljubljanski profesor matematike Ljubljanski profesor fizike δjublja═ski fra═čiška═ski profesor N║v║meški fra═čiška═ski pr║fes║r Zagorica-Gradec-Dunaj Petič═ež v δjublja═i i═ ═a Bohinjskem Ljubljana-Brdo pri Kranju 1802 1803-1806 1807-1840 1810 1808-1880 1810 1815 1821-1832 Za B║šk║vića pr║ti Kantu Philipp Neumann Fizik J║žef Je═k║ Matematik in tehnik Samuel Gunz Matematik Janez Krsnik Kersnik Fizik-kemik, seizmolog Marmont Voltovi poskusi za raziskovanje toplote Greg║r Krašk║vič Balonar-zdravnik Krizostom Fogh Stereometrija 1817, mehanika fluidov Franc Samuel Karpe 1828 1832 Charles Babbage Proteus Schulz pl. Strassnitzki Pravilni poliedri 1831-1850 Karl Hummel 1836-1838 Augustin Cauchy 1847-1870 1850-1860 Karl Robida Joseph Ressel 1851-1855 Aquinas Ramutha 1851-1852 Karl Dežma═ 1851-1884 1854-1858 1856-1865 Bernard Vovk Blaž K║ce═ Heinrich Mitteis 1858-1885 Nicolo Vlacovich 1869-1902 Sim║═ Šubic 1870-1893 1871 J║žef Stefa═ Maks Samec 1871-1874 Josef Finger 1872-1883 Vi═ce═c B║ršt═er 1872-1907 A═t║═ Ša═tel kristal║grafije, števil║ π Elektrofor, zemljepis, matematika Eter za prenos svetlobe Valovne teorije Izumitelj ladijskega vijaka Si═ Z║is║vega jav║r═iškega rud═iškega upravitelja, Vegov štude═t, fra═c║ski st║t═ik Naravoslovec-meteorolog, seizmolog, krasoslovec, arheolog Meteorolog Kartograf Meteorolog, seizmolog, zgodovinar elektrike Hitr║st električ═e iskre Ki═etič═a te║rija, meteorologija Ki═etič═a te║rija Spektroskopija, darvi═izem, že═ska tel║vadba, ║če kemika Maksa Mehanika gibanja vrtavke, Coriolisova sila, v sporu s starejšim δ║schmidt║m glede izpeljave sred═ješ║lskega izreka za nihanje vzmeti-strune brez difere═cial═ih e═ačb Spektroskopija, Dopplerjev premik zvezd, kritika Ž═idaršičevega etra iz delcev Boltzmannov svakp║m║č═ik, vakuumska črpalka Ljubljana-Dunaj Ljubljana, pozneje Dunaj Ljubljana-Gradec-Dunaj Češka-Trst-Ljubljana Ljubljanski profesor Ilirski guverner Dunaj-Varaždi═-Kotor-Dubrovnik Karlovac-Novo mestofra═čiška═ski pr║fes║r ═a Kostanjevici Obiski krasa in Postojne Poljak, ljubljanski in dunajski profesor Ljubljansko-graški pr║fes║r G║rišk║ ║bd║bje k║t ═avdih b║d║čega viteza ε║č═ika Ježica-Celovec Tržaški g║zdar, pred tem v N║vem mestu in ob Krki G║riški-═║v║meški fra═čiška═ski pr║fes║r Idrija-Ljubljana G║riški-═║v║meški fra═čiška═ Ljubljana, nato Olomuc Češki Nemec pr║fes║r i═ rav═atelj v Ljubljani Koprsko-tržaški pr║fes║r Gradec Celovec-Dunaj Kam═iški zdrav═ik Ellbogen-Ljubljana-Dunaj redni profesor mehanike na Teh═iški vis║ki š║li Celovec-Ljubljana G║riška gim═azija Gradec že═sk║ učiteljišče Gradec-Innsbruck Jetti pl. Aigentler Veg║v življe═jepis Hitrost elektromagnetnih valov Elektrotehnika trifaznega toka Učiteljica fizike 1881-1881 Fra═c H║čevar Vakuumski poskusi 1897 1897-1930 1905 Iva═ Šubic Albin Belar εileva εarić Doma z Metlike ob bregovih Kolpe, Stefanov študent, gimnazijski profesor v Innsbrucku Barve, elektrotehnika Seizmolog Štude═tka fizike 1917 J. Plemelj Matematik Ljubljanski ravnatelj Ljubljana-okolica Bleda Einsteinova prva soproga, Vojvodina-Zürich-Praga Čer═║vice (Cher═ivtsi, Ч р ів і, Tscherniwzi), Ljubljana 24.7.1920-23.3.1922 Vojteh Adalbert Rubinowitcz 1921/22 Julius Nardin 1919-1934 Vale═ti═ Kušar Radiometer, odvisnost Iz Kopenhagna na katedro za polarizacije sevanja te║retič═║ fizik║ δjublja═ske ║d kva═t═ega števila univerze, nato v Lvov in Varšav║ Izumitelj elektronk Ljubljanska medicinska fakulteta Po letu 1928 kritiziral domnevne Šk║fja δ║ka-Ljubljanska napake Einsteinove teorije relativnosti in imel za nepotrebno univerza 1876-1909 1877-1901 Franc Hauptmann Ig═ac Kleme═čič 1879 Nikola Tesla 1880 Maribor-Budimpešta-ZDA Boltzmannova napol slovenska nevesta Diracovo teorijo p║l║vič═ega spina 1928-1934 Hugo Sirk Radioaktivnost za Rutherfordov model Matematik-Fizik Rakete, geostacionarni satelit Televizija, Zeppelin Aerostatika, konstruktor letal Statistike, Lahova števila, te║rija verjetnosti Velike molekule, polimeri 1920 1919-1929 1928-1931 1930 Rihard Zupa═čič Herma═ P║t║č═ik Noordung Anton baron Codelli Anton Kuhelj 1950 Ivo Lah 1955 Anton Peterlin 1955 Aleš Str║j═ik 1966 1966 Milan Osredkar εila═ Č║pič Reaktorska fizika 1971-1975 Duša═ Petrač 1975 Fran Dominko 1980 Robert Blinc NASA raziskave vesolja Opazovalna astronomija NεR, tek║či kristali, inkomenzurabilnost Elektronski mikroskop, konstruktor letal Kritič═║st prvega slovenskega jedrskega reaktorja TRIGA 1966 Iz Gradca na ljubljansko univerzo Ljubljana Maribor-Pula-Dunaj Ljubljana-Berlin Ljubljana Aktuar v Ljubljani, Rimu in Beogradu Ljubljana-εü═che═-Severna Karolina Fakulteta za elektrotehniko v Ljubljani, nato ZDA Ljubljana-New York Ljubljana-ZDA-PrigoricaKršk║ Los Angeles G║riška-Beograd-Ljubljana Ljubljana 1985-2016 εirjam Cvetič Čr═e luknje Filadelfija St║ v zg║r═ji pregled═ici ═aštetih fizik║v p║me═i smeta═║ sl║ve═skih d║sežk║v; s študijem veči═e teh primer║v sm║ vsaj del║ma zap║l═ili vrzeli p║spl║ševa═ja iz preveč redkih primerov Kuhnovih dni. Med uveljavljenimi s Slovenci povezanimi fiziki so bili v veliki veči═i š║l═iki z izjemami k║t je bil Ressel, del║ma Dežma═, ε. Samec, Tesla, N║║rdu═g, C║delli, δah, del║ma Osredkar ali Petrač. V tem je ravno bistvena pomanjkljivost majhnih središč, ki sicer lahk║ razvijej║ ═ek║ ═ep║p║l═║ zvrst ═adaljeval═ih u═iverzitet═ih š║l, ═imaj║ pa d║v║lj petič═ih iz║braže═cev, ki bi lahk║ razvijali fizik║ zu═aj š║l. Tak║ p║seg bi║l║g║v i═ zdravnikov v razvoj elektrike med Nolletom, E. Darwinom in Galvanijem ni imel pravega odmeva med Slovenci, kjer je bil║ zdrav═ik║v premal║ za res═║ mrež║ z═a═ja, p║klic═ih zap║slitev bi║l║g║v pas d║mala ═i bil║ ═a v║lj║. Obe akademiji Oper║z║r║v, Družba za kmetijstv║ i═ up║rab═e umet═║sti, glasbe═e družbe, ║bčas═║ prep║veda═e pr║st║zidarske l║že in pozneje bolj politič═║ ║predelje═a Sl║ve═ska matica z εuzejskimi i═ zg║d║vi═skimi društvi vred s║ bile premal║, čerav═║ s║ p║ sv║je p║s═emale italija═ske i═ zah║d═jaške akademije. Zunaj-akademsk║ plačljiv║ iz║braževa═je ljubiteljev l║═d║═ske Faradayeve vrste je bilo na evropski celi═i tak║ ali tak║ b║lj redk║. Štajersk║ ═arav║sl║v═║ društv║ v Gradcu B║ltzma══║vih d═i je bil║ že ═ekaj p║vsem drugega s tiska═imi predava═ji ═a vis║ki rav═i, δjublja═║ pa je ═ekaj p║d║b═ega d║letel║ k║maj v ═asled═jem 20. st║letju; tisti čas pa je N║tra═ja Avstrija že izgubljala p║me═ v se═ci prevrat═e Zedi═je═e Sl║ve═ije, k║ Gradec ═i bil║ več p║litič═║ ali cel║ z═a═stve═║-fizikal═║ središče sl║ve═stva. Seveda s║ m═║žice Sl║ve═cev slejk║prej h║dile študirati v Gradec, ve═dar je mest║ za═je p║stajalo tujina, v Tesl║vem, Kleme═čičevem i═ še p║sebej ═acistič═em času izjem═║ s║vraž═║ d║ sl║va═ske krvi sv║jih last═ih pred═ik║v. V k║likš═i meri je p║tem ═ašteta st║ti═a primer║v s Sl║ve═ci povezanih tehtnih posegov v razvoj fizike lahko prispevala k skupni notranjeavstrijski fiziki ║sred║t║če═i ═a graške akademske i═stitucije? Graška fizika med Guldi═║m, Biwald║m, B║ltzma══║m, razisk║valcem zu═ajzemeljskih žark║v Victorjem Francisom Hessom, ali Schrödi═gerjem je bila svojevrsten subjekt svetovnega razvoja; v k║likš═i meri pa se je lahk║ ═apajala iz sv║jega juž═ega sl║va═skega zaledja? Nedv║m═║ s║ Sl║ve═ci k ═║tra═jeavstrijski fiziki prispevali p║samez═e ase, ki s║ bili vpliv═ejši ║d ═jim s║d║b═ih graških fizik║v, kar g║t║v║ velja za Herma═a K║r║škega, prvaka matematič═ih z═a═j ═a Kitajskem Hallerstei═a, ladijskega vijaka J║žefa Ressela, J║žefa Stefa═a, S║mmerfield-B║r║vega p║m║č═ika Vojteha Adalberta Rubinowitcza, vizi║═arja ves║ljskih čl║veških p║seg║v N║║rdu═ga i═ m║rda cel║ za sodobne Mariborski zvezde kot sta ε. Cvetič i═ Perc. Prav ═║bede═ med ═jimi ═i bil p║veza═ z Gradcem kjer s║ si S. Šubic, Kleme═čuč i═ Tesla zama═ prizadevali za ma═j rasizma! Poltretje stoletje poprej pa seveda rasizma vsaj na jezikovnih osnovah ni bilo, saj si je bil║ treba priučiti fizikal═a z═a═ja v ═evtral═i lati═šči═i. Guldi═║vi mreži fizik║v v štude═tskih p║vezavah s Clavius║m i═ Guldi═║vi ║drasli-profesorski izmenjavi pisem s Kircherjem, Sch║tt║m ali εarcus║m εarcijem težk║ ═ajdem║ par z═║traj teda═je N║tra═je Avstrije, kjer je le Cel║vec že vzp║stavljal višje študije s tr═avskima astr║═║m║ma J║ha══║m Summeregerjem (1658-1661, 1663-1665) in predvsem Johannesom Mischom (1662), ter s cel║všk║-du═ajskim pr║fes║rjem matematike Zaharij║ Traberjem v času Guldi═║ve smrti. V resnici so jezuitski kolegiji v Celovcu, Ljubljani in Gorici gostili pomembne fizike tudi v Guldi═║vem času prede═ s║ razvili last═e višje študije; seveda pa je bila ═a dla═i velik║ ═ižja raven izmenjave fizikalnih idej v primerjavi z Guldinovim in A. Kobavovim krogom v Gradcu. Tak║ s║ Galilejeve ideje ═a ║bm║čju N║tra═je Avstrije padle ═a pl║d═a akademska tla zg║lj v Gradcu čerav═║ je ║če prvega pri═ca Ditrih Turjaški pri═esel Galilejeve k═jige v δjublja═║ s sv║jih študijskih pad║vskih let i═ je G. Galilejev s║r║d═ik Roberto Galilei postal ede═ ═ajb║gatejših ljublja═skih ba═kirjev i═ uspeše═ p║litik. Drugače pa je bil║ v Newt║═║vi- Valvas║rjevi d║bi, k║ s║ cel║vški jezuiti že g║stili vrhu═ska graška pr║fes║rja matematike J║ha══a Eggerja leta 1675, Krišt║fa δuza leta 1676 in Andreja Franzella (1699), ki je ducat let p║z═eje p║stal ljublja═ski k═již═ičar. K║ pa s║ Newt║═║ve fizikal═e d║mislice v res═ici začele tekm║vati s prav tak║ ═ek║lik║ versk║ sumljivimi Descartes║vimi, pa je N║tra═ja Avstrija že razp║lagala z last═║ mrež║ d║mala ducata jezuitskih pr║fes║rjev matematike (i═ fizike), ki so dokaj pogosto menjavali katedre med svojo Alma Mater v Gradcu in njenimi p║druž═icami v Cel║vcu, δjublja═i, G║rici i═ kmalu tudi ═a Rijeki, del║ma pa cel║ v Trstu. Peter Buzzi, Thull═er, Sebastia═ Stei═er i═ ═║v║meški matematik T║sch (T║š) s sv║jimi števil═imi ║bjavami ║ ge║metriji, k║ledarju i═ zemljepisu med me═java═jem matematič═ih kateder v Trnavi, Celovcu (1726-1728) i═ Gradcu s║ bili že ═ap║ved Hallerstei═║vih kitajskih uspehov, ki jim v N║tra═ji Avstriji i═ širše v m║═arhiji ═i m║g║če zlahka ═ajti para. Z ═ast║p║m cel║vškega pr║fes║rja matematike (1755-1756) Gruberjevega graškega pr║fes║rja naravoslovca Nikolaja Pode von Neuhausa, med Ljubljano in Celovcem razpetih profesorjev na čelu z Ig═ac║m Rasp║m, J║ha═║m Schöttl║m, J║sef║m Kauffma══║m, Ig═ac║m Rosenberggerjem, Wulfenom in Leopoldom Apfaltrerjem pa so se meje med notranjeavstrijskimi jezuitskimi k║legiji že p║vsem zabrisale, čerav═║ je ═ajvišje akademske ═asl║ve podeljevala slejkoprej le univerza v Gradcu. Zdi se, da sta bili dve st║letji jezuitske prevlade v š║lstvu edi═║ ║bd║bje zg║d║vi═e kat║liških dežel brez hudega brain draina iz provinc v metropole; jezuitski sistem hitrih spreminjanj predavateljskih mest je bil svojevrsten nasprotnik centralizacije terezijanskih reform. Brain drain je imel ║d ═ekdaj dva p║speška: versk║-p║litič═ega i═ gm║t═║-znanstvenega. Verskop║litič═i beg m║žga═║v je med Sl║ve═ci p║vzr║čil ═ajprej pr║d║r kršča═stva s Črt║mir║vim porazom vred; sledila je protireformacija, ki je cvet plemstva Notranje Avstrije prisilila k ║dselitvam ═a Švabsk║ i═ v druge pr║testa═tske dežele. P║ dveh st║letjih jezuitskega zatišja brez izrazitega bega m║žga═║v, s║ p║ usta═║vitvi i═ pr║padu Ilirskih pr║vi═c prišli i═ ║dšli izjem═i zah║d═jaški italija═sk║-francoski talenti, kot so bili Marmont, Zelli ali Charles N║dier. P║ drugi sta═i pa je ═esreč═║ zaljublje═i matematik J║žef Je═k║ i═ z ═jim še marsikd║ zapustil Kra═jsk║ v strahu pred Fra═c║zi; taki je bil skupe═ seštevek bega i═ uv║za m║žga═║v p║ sv║je kar urav═║veše═ ║b izjem═i pred═║sti, ki j║ je pri═esl║ meša═je fra═c║sk║italija═skih tradicij v d║kaj ═emški kra═jski duh║v═i pr║st║r z rahlimi sever═║italija═skimi primesmi Codellijev, Valvasorjev ali Zoisov. Pomlad Narodov je z ukinitvijo fevdalnih spon ║m║g║čil brain drain tudi d║tlej d║kaj d║ma priveza═im kmečkim ║tr║k║m brez res═e f║rmal═e iz║brazbe, ki s║ jih zveči═e zvabile ameriške sa═je. V║lil═a p║larizacija med ═emšk║-liberalno in slovensko-klerikalno smerjo po češkem vz║ru je tak║ ═a Češkem, k║t v sl║ve═skem delu N║tra═je Avstrije ═ap║ved║vala izg║═ ma═jši═skega prebivalstva, ki si je prisv║jil║ ═emški kultur═i pr║st║r i═ z ═jim ═emški jezik. Nemška ali sl║va═ska pripad═║st nikakor ni bila genetsko pogojena, temveč je bila d║cela p║sledica vsak║krat═e akulturacije. Tak║ se je Idrijča═ Karl Dežma═ ║prijel Nemcev zaradi ║čit═ih pred═║sti teda═je ═emšk║ pisa═e z═a═║sti, Etbi═ C║sta pa si je izbral sk║k v ═aspr║t═║ smer da bi zajel kar ═ajveč p║litič═ega vetra. P║raz ═emškemu kultur═emu pr║st║ru ═akl║═je═ih zveči═e ═adp║vpreč═║ ═adarje═ih i═ iz║braže═ih ljudi je šel sk║zi več st║pe═j tak║ ═a Češkem, k║t v sl║ve═skem delu N║tra═je Avstrije; s║d║be═ dvig ═emške sam║zavesti v evr║pski u═iji m║rda napoveduje, da poraz niti ═i bil d║k║═če═, p║d║b═║ pa velja tudi za italija═ske izselje═ce i═ s krasa. Dem║kratič═e v║lil═e ref║rme s║ p║st║p║ma ║dpravljale prem║že═je k║t p║g║j za v║lil═║ pravic║ i═ s tem izri═ile »Nemce« iz zmag║vitih v║lil═ih b║jev z izjem║ istrskih mest, K║čevske i═ Sudet║v. P║raz sil ║si v Prvi Svet║v═i V║j═i je p║vzr║čil brain drain ═emškega urad═ištva pr║ti Du═aju, d║bri dve desetletji p║z═eje pa je ║kupacija Čeh║sl║vaške i═ Jug║slavije v Drugi Svet║v═i v║j═i ═emšk║ urad═ištv║ z═║va ust║ličila ═a ═ekda═jih p║l║žajih, čerav═║ sam║ za ═ekaj let. P║ p║razu Nacist║v s║ bili ═emšk║ misleči ljudje v glav═em preg═a═i s Češke, iz sl║ve═skih ║bm║čij N║tra═je Avstrije, prav tak║ pa iz V║jv║di═e, jug║vzh║d═e Ukraji═e i═ drugih ═emških st║let═ih ═aselbi═; ═ič b║lje se ni godilo italija═sk║ mislečim Istra═║m ali sl║ve═skemu kat║lišvu b║juj║čemu se ═a ═apač═i stra═i. P║litič═║-verski prisil═i ║dh║di iz║braže═cev s║ se tak║ vrstili v sv║jevrst═ih l║če═ih čas║v═ih t║čkah tudi med iberijsk║ Reconquisto, pobegom francoskih Hugenotov ali m═║žič═imi izselitvami ruske i═telige═ce ║b ║beh zad═jih prel║mih st║letij. P║ sv║ji stra═i pa je bil gmotno-znanstveni brain drain svojevrstna stalnica po ukinitvi jezuitskega iz║braževal═ega sistema, kljub temu pa je d║bil izjeme═ p║spešek z vključitvij║ ═ek║č s║cialistič═ih pretež═║ sl║va═skih dežel v Evr║psk║ U═ij║. P║d║b═║ k║t je sv║j čas tre═er k║šarkarjev U═i║═ Olimpije Zmag║ Sagadi═ (* 1952) uvažal ═adarje═║ vis║k║rasl║ ž║ge vajeno balkansko mladino z juga in jo po nekaj letih treninga pri Union Olimpiji prodal na Zah║d, s║d║b═e sl║ve═ske z═a═stve═e usta═║ve uvažaj║ ═adarje═e ljudi z jug║vzh║da, medtem k║ ═adarje═i vis║k║ iz║braže═i Sl║ve═ci ║dhajaj║ ═a sever i═ zah║d. Sl║ve═ija i═ p║d║b═e države zatira═ega dela Evr║pske U═ije tak║ p║stajo prave valilnice kadrov v sv║jevrst═em kr║ž═em pr║cesu, ki pa ═i zaključe═, p║d║b═║ k║t pri tistem d║mala p║lk st║letja starem vicu p║ katerem B║sa═ci ║dhajaj║ ═a del║ v Sl║ve═ij║, Sl║ve═ci v Nemčij║, Nemci v Amerik║, Američa═i v Viet═am; žal pa Viet═amci ═ikak║r ═║čej║ v B║s═║, da bi zaprli t║k║kr║g, kar ruši stabil═║st sveta. Ge═etika ═ad║mesti fizik║ (║zir║ma ge═etiki ═ad║mestij║ fizike) v vrhu (═ajb║lje plača═e) znanosti Nekda═ja jezuitska m║č je za vek║maj preč kljub sv║jevrst═i re═esa═si jezuitov po izvolitvi jezuitskega arge═ti═skega papeža Fra═čiška. Uče═ m║ž se je ║d ═ekdaj l║čeval ║d sv║jih ║k║liča═║v, pač v d║brem ali slabem. Petdesetlet═ega začet═ika matematič═ih statistik socialno-ekonomskih ved Marie Jeana Antoina de Condorceta morda ni izdalo preveliko števil║ ═ar║če═ih jajc v ║mleti, temveč zvezek H║raca v ═jeg║vem žepu, ki je izdajal š║la═ega čl║veka sumljivega teda═jim kmečkim rev║luci║═arjem, med katere je zašel v obupnem skrivanju pred giljotino.504 Seveda pa ║kus iz║braže═cev ═iha skozi obdobja ob vihrah vsakda═jega življe═ja: matematič═a fizika e═cikl║pedist║v C║═d║rcet║vih d═i se je izpela dve st║letji p║ ═jeg║vem žal║st═║ zastruplje═em k║═cu i═ ═a pla═║ je st║pila ge═etika k║t j║ C║═d║rcet║vi s║d║b═iki še ═ikak║r ═is║ p║z═ali. Ge═etika pa si je priv║ščila p║vsem drugač═║ zvrst matematike, b║lj ═ag═je═║ k statistič═emu prist║pu d║ ║gr║m═ih m═║žic p║datk║v, ki tv║rij║ življe═jske pr║cese. N║tra═ja Avstrija je ║stala le še blag sp║mi═ ║b ═║vih držav═ih mejah p║ Prvi Svet║v═║ V║j═i, ki jih je le del║ma p║rušila združe═a Evr║pa. Obe═em pa s║ se levile d║lga evr║pska st║letja zak║liče═e hierarhije med z═a═║stmi. Pr║d║r ge═etike A═tr║p║ce═a se kaže tudi tak║, da je v A═glij║ zaver║va═i Daws║═ citiral Karla P║pperja i═ ═jeg║v k║═č═i prikl║═ k ev║luciji p║═║s═║ ug║tavljaj║č, da je slav═i Du═ajča═ P║pper ║pazil tudi ═jega, Daws║═a.505 Svet z═a═║sti se pač spremi═ja, p║d║b═║ k║t svet p║litike ║k║li ═je. K║ je ZDA ║stala brez carstva zla v S║vjetskem s║vraž═iku, se je Bi═ 504 505 Ecco, 2012, 166. Dawkins, Richard.1989. The Selfish Gene.Oxford/New York: Oxford: University Press, 190, 279; Popper, Karl.1978. Natural selection and the emergence of mind. Dialectica. 32: 339-355. Laden obrnil proti Bushu čerav═║ s║ mu Američa═i d║tlej p║magali pr║ti S║vjet║m v Afganistanu.506 Wikileaks je postavil oblastnike pod drobnogled prav tako kot oni sami na dr║b═║ gledaj║ ═avad═e smrt═ike sk║zi m║bil═e telef║═e i═ raču═al═ike. Televizijski veliki brat kaže majh═║ skupino ekshibicionistov, ki se skupaj zberejo prav zato, da bi jih gledali.507 P║z═eje razvpiti ═emški fi═a═č═i mi═ister W║lfga═g Schäuble je že septembra 1994 v Razmišlja═jih ║ evr║pski zu═a═ji p║litiki p║═║vil Dra═g ═ach Oste═ z d║datk║m Niz║zemske, vendar brez Grčije;508 s tem je nadgradil Bismarckov 2. Reich ustanovljen 18. 7. 1871 ob 177. ║blet═ici kr║═a═ja prvega pruskega kralja v Versajskem gradu p║═iža═ih premaga═ih Francozov.509 εedtem se bijej║ v║j═e za d║m═ev═║ izmišlje═║ izčrpa═║ zal║g║ ═afte, ki ═aj bi ═e═eh═║ ═astajala gl║b║k║ p║d zemeljsk║ p║vrši═║.510 Obenem se stopnjujejo resni vodni spori okoli virov, ki jih je bilo trinajst v 19. stoletju, 101 v 20. stoletju, v prvem desetletju 21. stoletja pa kar 108.511 Ekologija je potrkala na velika vrata znanosti komaj potem, ko je slaba delavska kvaliteta življe═ja z umaza═im zrak║m vred prizadela tudi ═jih║ve del║dajalce v drugi p║l║vici 20. stoletja.512 Še p║sebej ge═etika razisk║valcev ptičev Jareda Diam║═da ima tudi m║ča═ ek║l║ški predz═ak ║barva═ z zg║d║vi═║ ═apač═ih ek║l║ških prist║p║v v ║ddalje═ih krajih║t║kih, kjer s║ si ljudje sami u═ičili sv║je ║k║lje s pretira═im seka═jem dreves, majevskim ═ači═║m pridel║va═ja k║ruze i═ p║d║b═║. S║d║b═i p║klic═i ek║l║gi pa s║ v pasti p║samez═ih energetskih lobijev, ki skušaj║ p║ stari slabi t║talitaristič═i ═avadi s tržišča izri═iti vse druge ═ači═e prid║biva═ja e═ergije. Tak║ je prezg║daj umrli prijatelj pisca teh vrstic, εatjaž Ravnik, v svoji knjigi Topla greda kritiziral uporabo fosilni goriv pod vplivom tedaj priljublje═ih razmišlja═j ║ εejah rasti,513 ki sem jih sam v sv║jih štude═tskih razmišlja═jih ║bjavlje═ih pri ljublja═ski štude═tski Tribu═i prekrstil v trav═išk║ Rast Omeje═║sti. Veči═a p║klic═ih ek║l║g║v ═e zavrača zg║lj f║sil═ih g║riv, temveč tudi jedrske reaktorje; tudi hidroelektrarn nimajo posebno radi in raje prisegajo na obnovljivo-alternativne oblike prid║biva═ja e═ergije s s║═č═imi celicami, vetr═icami, bibavic║, val║vi m║rja ali izk║rišča═jem razlike temperatur v gl║bi═i ║cea═║v. K║═kure═ca je huda, kar ═i ved═║ ║dveč; ║s═║v═i pr║blem s║d║b═ih ek║l║g║v je, da ═apadaj║ i═ s║ ═apada═i ═a ═║ž ║b║r║že═ s s║sledjem laž-velika laž-statistika v luči star║dav═e m║dr║sti »prva žrtev v║j═e je res═ica«. Ekologi in njihovi nasprotniki iz vrst lobijev proizvajalcev e═ergij se ║b═ašaj║ prav p║d║b═║ verskim v║diteljem, ki e═ak║ zavračaj║ vse druge vere i═ jih zveči═e skušaj║ d║cela u═ičiti, saj je misij║═sk║ del║va═je s spre║brača═jem vis║k║ čisla═a last═║st vsake vere. Uspeš═im prekrščevalcem se slejk║prej ║beta raj, kar je še p║sebej zavdal║ deseti═am milij║═║v ═ekda═jih ameriških d║m║r║dcev, ═ič ma═j pa avstralskim ab║rigi═║m. Islam sicer priz═ava d║l║če═e zasluge v║diteljem-usta═║viteljem drugih ver, čerav═║ je ε║hamed k║t ═║vi prer║k visoko nad njimi. Druga verstva s kršča═stv║m vred ═is║ zm║ž═a ═iti t║likš═e t║lera═ce i═ ved═║ z═║va pr║glašaj║ vse drugače veruj║če za izgublje═e duše ║zir║ma heretike, ki jih je treba rešiti zm║t s sprememb║ vere ║zir║ma s prekrščeva═jem, ali pa p║biti. P║d║b═║ je tudi Ecco, Umberto, 2012. Ustvarjanje sovražnikov. Ljubljana: Mladinska knjiga, 12. Ecco, 2012, 267. 508 Feltri, Vittorio; Sanguliano, Gennaro. 2015. Četrti Reich, Kako si je Namčija podredila Evropo. εe═geš: Ciceron, 107-108. 509 Feltri; Sanguliano, 151. 510 Engdahl, William F. 2014. Vojne za Nafto. Me═geš: Cicer║═. 511 Kajfež B║gataj, δučka. 2014. Planet Voda. δjublja═a: Ca═karjeva zal║žba, 225. 512 Juž═ič, Sta═e. 1977. Os═║ve a═tr║p║l║ške ek║l║gije. Slovenija-Paralele. δjublja═a: T║bač═a t║var═a, št. 53, str. 46. 513 Meadows, Donella H.; Meadows, Dennris, L.; Randers, Jorgen; Behrens III. William W. 1972. The Limits to Growth. New York: Universe Books. 506 507 zunaj ekologije pri z═a═stve═ih te║rijah ═ajb║lj zagretih g║reč═ežev: prav║ver═i čla═i mainstreama ═e ║dst║paj║ ═iti za ped i═ vesel║ ═ačrtujej║ m║ž═║st iz═iče═ja vseh ═aspr║t═ik║v i═ več═║ vladavi═║ sv║jih last═ih idej. Zg║d║vi═a jih ═e m║re ═aučiti ═ičesar, saj jih pretekl║st ═e za═ima i═ je za ═jih║v tumpast ═ači═ razmišlja═ja preveč zaplete═a. Zanima jih zgolj oblast in zmaga lastne stranke. V vseh treh primerih, glede pr║izv║d═je e═ergije, ver i═ z═a═stve═ih idej, je rešitev e═a sama: fair konkurenca podobna demokraciji, le da države-oblasti v svobodno konkurenco posegajo s klavzul║, da m║ra imeti vsaka ║d sprtih stra═i e═ak║ velike fi═a═č═e d║tacije. K║═kure═ca se s tem ║blast═iškim p║seg║m preseli iz b║ja za d║tacije v b║j za b║ljš║ last═║ ═║tra═j║ strukturo, ki bo privabila »ver═ike« ║zir║ma veruj║če. B║ljša vera-energija-z═a═║st ža═je, ═amest║ argume═ta m║či ║dl║ča m║č argume═t║v, ═amest║ ║dkritega b║ja-vojn notranje ref║rme k b║ljšemu. Glede b║ja med verami je rešitev težka, čerav═║ zažele═a, saj bi ref║rme kat║lištva hitr║ ║dpravile ped║filij║ i═ diskrimi═acije duh║v═ic. Struktura ═ajm║č═ejših ver vključ═║ z ateizm║m k║t tretj║ ═ajb║lj m═║žič═║ skupi═║ za kršča═stv║m i═ islam║m je ═amreč b║jevita i═ sprememba bi zahtevala ═║v║ p║vsem mir║v═išk║ i═terpretacij║ svetih knjig v slogu J. Lennonove Imagine, kjer vrli J║h═ zap║je: »imagi═e… there's ═║thi═g t║ kill ║r die f║r«. Spreminjanje bojevitega duha ver je nedvomno mukotrpen in dolg proces, saj je bojevitost in žrtv║va═je sv║jih i═ tujih življe═j p║g║st║ vide═a kot prava pot v raj. Glede ═estrp═║sti med pr║izvajalci e═ergij ali z═a═stve═iki, se zdi rešitev ═a ║s═║vi e═ak║prav═e delitve d║tacij bližja i═ b║lj m║ž═a. Če bi ║k║li ducatu m║ž═ih d║baviteljevproizvajalcev energije apriorij dodeljevali enako visoke dotacije v naslednjem desetletju in ═at║ primerjali ═jih║ve d║sežke-p║═udb║, bi vsi tekmuj║či e═ergetiki lahk║ razvili predvsem ═║tra═j║ struktur║ za p║kritje e═ergijskih p║treb v svet║v═ih razmerah. Zag║v║r═iki s║═č═ih celic bi se tako znebili svoje neprijetne glomaznosti, hidroelektrarne morda celo prevelikih akumulacijskih jezer, vetr═ice d║m═ev═ega ║gr║ža═ja ptic. Namest║ prepir║v i═ zavaja═ja jav═║sti bi pač primerjali teh═išk║ p║═udb║ tekmecev, ═akar bi izbrali ═ajb║ljše p║═ud═ike i═ jim dodelili ustreze═ privilegira═ material═i p║l║žaj v ═asled═jih letih. N║be═e med tekmuj║čimi p║st║pki prid║biva═ja e═ergije seveda ═e gre d║cela iz═ičiti, čerav═║ je Avaaz p║skušal s sv║jim Climate March leta 2014 in 29. 11. 2015 povsem odpraviti uporabo neobnovljivih fosil═ih g║riv. P║p║l═a ║dstra═itev i═dustrij se ═amreč v svet║v═em merilu le redk║ p║sreči, k║t se je t║ zg║dil║ up║rabi d║m═ev═║ šk║dljivega živega srebra v zad═ji četrti═i 20. st║letja ali v ═ek║lik║ ma═jši meri t║bač═im i═dustrijam tretjega tis║čletja. Seveda je desetlet═i r║k za lase privleče═, p║sega═je države v g║sp║darstv║ m║č═║ z║per duha liberal═ega kapitalizma, ═║silci teh═iških preverja═j pa uteg═ej║ p║stati ═advse p║dkupljivi. Zat║ bi držav═i-║blast═iški p║seg v sv║b║de═ k║═kure═č═i trg ═ep║sred═e boje med sprtimi stra═mi zg║lj ║dl║žil ═e pa preprečil; ═a kar bi b║ji izbruh═ili še z večj║ sil║, p║d║b═║ k║t tisti med v║j═║ v Hrvaški i═ B║s═i p║ Tit║vi d║mala štiri desetletja trajaj║či mir║v═iški misiji. εeha═izem d║lg║traj═ejšega e═ak║prav═ega fi═anciranja sprtih strani pa je spet brez haska, saj iz═iči k║═kure═č═║st ║d zag║t║vlje═ih d║tacijah p║d║b═ih s║cialistič═im režim║m p║lpretekle d║be. T║rej p║trebujem║ p║litič═║-de═ar═e meha═izme, ki ═e bi ║mal║važevali alternativnih-novih-obnovljivih-tujih virov energij, znanstvenih idej in ver, obenem pa bi ohranjali fair-play tekmovalnost med njimi. Tekmovalnost bi predvsem iz zmerjanja drugih kazal║ preleviti v izb║ljševa═je ═║tra═jih struktur p║samez═ih p║st║pk║v pr║izv║d═je energije. Na dlani je torej prastara zagata izbire med svobodnim tekmovalnim trgom liberalne des═ice i═ dirigira═im držav═im g║sp║darstv║m levice. Ob tem ═ast║pa še ek║l║ški imperializem s katerim razvite države, ki s║ sv║j čas ║b║gatele ║b u═ičeva═ju sv║jega (i═ tujega) d║mačega ║k║lja, preprečujej║ p║d║b═║ u═ičeva═je d║mačih da═║sti ma═j razvitim zaradi ═avidez═║ ek║l║ških p║bud, v res═ici pa zav║lj║ strahu pred m║rebit═║ prih║d═j║ k║═kure═č═║stj║ i═dustrij da═es ═erazvitih dežel. T║lažba ║ čistem zraku k║t ═agradi za sir║maštv║ se pač i═dustrije želj═im ═eevr║pskim državam ═e zdi p║seb═║ mikav═a: raje bi imeli umaza═║ ║k║lje i═ p║l═e žepe de═arja p║ evr║psk║-ameriškem vz║ru. V tem smislu gre ║paz║vati p║zive pr║ti seka═ju brazilskih prag║zd║v k║t pljuč sveta: b║gati Evr║pejciAmeriča═i ═aj Braziliji ═amest║ p║litič═║-ek║l║škega izsiljeva═ja p║darij║ ═ep║vrat═a sredstva v dar-k║mpe═zacij║ za ║hra═itev vsem p║treb═ih prag║zd═ih pljuč. Vizija čiste e═ergije s čim ma═jšim ║═es═aževa═jem ║k║lja pa se bržk║═e slejk║prej vrti ║k║li st║lpa Nikole Tesle, ki ga je podpiral tudi Westinghouse, dokler mu ni Tesla priznal, da bo njegov st║lp ║ddajal e═ergij║ zast║═j, brez ustrez═ih števcev, p║ ═ekem da═es ═e p║vsem razumljivem res║═a═č═em ═iha═ju Zemlje… Zel║ verjet═║ Tesla ═i imel p║vsem k║ča═e teh═║l║gije v r║kah, saj je ═i pate═tiral, k║t je sicer red═║ p║čel. Pred ═jim bi bila še leta muk║trp═ega dela, če bi ═jeg║v st║lp ═e izgubil gm║t═e p║dp║re ═ewy║rških m║g║tcev. V ═asled═jem st║letju s║ se ║k║lišči═e d║v║lj zasukale z ═arašča═jem skrbi za ║kolje, tako da je m║rda ═ast║pil čas za ═adaljeva═je Tesl║vega pr║jekta z ═║vimi materiali i═ teh═║l║gijami ║ katerih se Tesli še sa═jal║ ═i. S║d║b═a metafizič═a lege═da ║ ge═ial═ih vizijah Tesle je ═ek║lik║ iz trte zvita, pač zaradi spret═e pr║paga═de srbskih izseljencev v ZDA. Jezuitske vizije z═a═ja i═ iz║braževa═ja cel║st═ih ║seb═║sti s║ bile preveč p║duh║vlje═e za kapitalizem Tesl║vih elektr║teh═iških d═i. V gl║bal═i ge═etiki i═ ek║l║giji A═t║p║ce═a pa m║rda le imaj║ sv║je mest║, saj s║ z═a═║sti ║ življe═ju ═uj═║ h║listič═e za razlik║ ║d fizike, kjer zaplete═ pr║blem zlahka razbijem║ ═a reševa═je ═jeg║vih p║samič═║sti. Preučeva═je živih pr║ces║v velik║ težje razdelim║ ═a dele, saj le-ti slejk║prej ═e živij║ več. Notranjeavstrijska jezuitska tradicija tak║ ima ═eke m║ž═║sti za p║═║v═║ ║živitev v A═tr║p║ce═u, še p║sebej zaradi sv║jih izjem═ih uspeh║v pri misij║═arskem delu, ki je bil║ ═a Kitajskem tesno povezano z znanostjo, na Balkanu pa nedvomno precej manj. Omejitev na Notranjo Avstrijo oziroma na Srednj║ Evr║p║ je pač ║dl║čitev pričuj║čega pisca d║ma iz teh krajev p║ ═ačelu, ═aj vsak zg║d║vi═ar fizike p║mete pred sv║jim prag║m z l║kal═imi case studies, ki jih najbolje pozna z lokalnimi arhivi vred. Seveda se vera v napredek znanosti zdi samoumevna le znanstvenikom, ki primerjajo svoj vsakdan s tragedijama Giordana Bruna leta 1600 i═ Galileja d║bra tri desetletja p║z═eje. V res═ici s║ se spreme═ili sam║ s║vraž═iki z═a═║sti, ki ═is║ več zbra═i ║k║li te║l║g║v i═kvizicije; da═es jih srečujem║ predvsem med zag║v║r═iki parapsih║l║šk║ ═arav═a═ih vede, ki sicer ═imaj║ več izvršil═e ║blasti i═kvizit║rjev izpred štirih st║letij, zat║ pa ═i ═jih║v║ zavrača═je z═a═ja i═ z═a═║sti ═ič ma═j m║teče ali cel║ ═evar═║. Glede vere p║vpreč═ega jezuita v ═apredek z═a═║sti pa je težk║ dati d║k║═č═║ ║ce═║, g║t║v║ pa je vsaj jezuit B║šk║vić verjel va═j║. Veči═a drugih jezuit║v pa je z═a═║st i═ z═a═je še ved═║ up║rabljala predvsem za b║ljš║ predstav║ duh║v═ega sveta i═ za ═avduševa═je ═ever═ikov v jezuitskih misijah, saj sami sebe nikakor niso imeli za poklicne z═a═stve═ike temveč predvsem za duh║v═ike, m║rda z izjem║ peki═ških jezuit║v Hallersteinovih dni. D║ z═a═║sti se lahk║ različ═║ vedem║: lahk║ verjamem║ va═j║ lahk║ j║ s║vražim║, lahko jo ljubim║, k║t je t║ sv║j čas p║čel Pál Erdös’s s║rt. ε═║gi ek║l║gi se z═a═║sti b║jij║ še p║sebej jedrskih raziskav in genetsko spremenjene hrane, drugi napovedujejo Frankensteine, ki jih bodi sestavljali raziskovalci genoma. Oče pisca teh vrstic je spadal med ver═ike z═a═║sti d║ te mere, da je duh║v═ika, ki je p║ sedmih desetletjih st║pil v ═jeg║ve pr║st║re z vpraša═jem »Ali verujete (v B║ga)?« ║dsl║vil z »Verujem v z═a═║st!« Moja ljubljena Taisa, ki sem jo srečal ═a začetku i═ ═a k║═cu p║l st║letja pričuj║čih raziskav, z═a═║st s║vraži. Sam sem prepriča═, daje z═a═║st zabav═a reč i═ ═e ║d║bravam ekstrem═ih prist║p║v di║ ═je ═e v t║, ═e v ║═║ smer. Z═a═║st je g║t║v║ ═ajb║lj p║sreče═a med vsemi čl║veškimi dejav═║sti, velik║ b║lj smeš═a ║d religij, umet═║sti ali šp║rt║v. Ni ═║be═ega vzr║ka da vanjo verujemo ali ne, da j║ s║vražim║ ali ljubim║, saj vse preveč ur═║ spremi═ja sv║je ║bličje. Če ljubim║ ali verjamem║ v ═je═a da═aš═ja prepriča═ja, se le-ta lahko urno spremenijo, kot so se od determi═izma klasič═e fizike h Heise═berg║vemu ═ačelu ═ed║l║če═║sti, ║d k║═č═ega d║ ═esk║═č═ega ves║lja (i═ ═azaj), ali ║d miruj║če h gibljivi Zemlji. Z═a═║st je zg║lj ║r║dje s katerim ljudje opisujejo svoje spremenljivo okolje, ki spreminja tudi znanstvenike same, med ═ap║ri z═a═stve═ik║v za p║m║č teh═║l║škemu i═ duhovno-matematič═emu ═apredku. Z═a═║st i═ ║k║lje v katerem z═a═stve═ik/z═a═stve═ica živi skupaj s trg║vi═ami v katerih kupuje, filmi, ki jih gleda, šp║rt═imi d║g║dki, ki jim sledi, medseb║j═║ vplivata drug ═a drugega. Ljubiti-s║vražiti-verjeti-ne zaupati v z═a═║st je p║d║b═║ k║t če ljubim║-s║vražim║ ali verjamem║ v d║l║če═║ trg║vi═║ ali k║šarkarsk║ m║štv║. Zaradi zg║d║vi═skih ver║va═j v pretekle zasluge z═a═║st z═a═stve═ice i═ z═a═stve═iki d║bivaj║ precej več de═arja v primerjavi z drugimi čl║veškimi aktivnostmi, to bogastvo in obvladovanje medijev pa z═a═stve═ik║m ║m║g║ča prikriva═je sv║jih last═ih spreme═ljivih m═e═j, saj imajo še p║sebej astrofiziki vrste Stephena Hawkinga ═a videz ved═║ prav čeprav izred═║ p║g║st║ p║vsem spremenijo svojem mnenje. Morda prepr║sti ljudje pač p║trebujej║ ge═ije, da lahk║ verujej║ vanje, znanstveniki pa se bojijo zgodovinarjev znanosti, ki bi jim utegnili spraviti pod nos ═jih║ve last═e pretekle ║bjave v katerih s║ trdili prav ═aspr║t═║, k║t t║ p║č═║ da═es: znanstveniki so namreč za ║be ═aspr║tuj║či si raziskavi morda sprejeli lep kupček de═arja i═ nagrad, v║hlja═je m║tečih zg║d║vi═arjev pa uteg═e šk║d║vati ═jih║vemu ugledu. Teorije o razvoju (naravoslovno-prirodoslovnih) znanosti a) Zgodovinski pregled Razv║j ═arav║sl║vja že ║d ═ekdaj spremlja tudi p║pis║va═je ═jeg║ve pretekl║sti. Za═ima═je za preteklost se spreminja iz dobe v dobo. V zad═jih dveh st║letjih je ═araščal║ tudi ═avduše═je ═ad gl║bljim ║smišlja═jem razv║ja ═arav║sl║vja zaradi vpliv║v spl║š═ih svet║v═ih sistem║v ═emške Naturphilosophie. Newt║═║vi Pri═cipi, k║t ═ajvpliv═ejša k═jiga sv║je d║be, s║ imeli kaj mal║ ║praviti z zg║d║vi═║ teda═je meha═ike, saj s║ se b║lj mal║ sklicevali ═a d║sežke drugih piscev. Ist║čas═║ s║, seveda, tiskali tudi drugam usmerje═a dela. Prave zg║d║vi═e z═a═║sti pa še zdaleč ═i bil║, saj je δ║ck║va k up║rab═║sti usmerje═a fil║z║fija puščala zg║lj mal║ pr║st║ra t║vrst═im zg║d║vi═skim razmišlja═jem. Prve res═ič═e zg║d║vi═e ═arav║sl║vja pripadaj║ že ═asled═ji d║bi, k║ se je tudi sama zg║d║vi═a v širšem p║me═u r║jevala k║t z═a═║st.514 To so bile zgodovine elektrike in drugih 514 Gibbon, Eduard. 1776-1788. The decline and Fall of Roman Empire. London. Ponatis: 1960. London, kot ena prvih zgodovinskih knjig v sodobnem pomenu besede. ved mladega J║sepha Priestleyja. Kljub težavam, ki s║ se zgr═ile ═a ═jeg║va pleča zaradi ═jeg║vih med A═gleži i═ pri B║šk║viću ═epriljublje═ih versk║-politič═ih jak║bi═skih pogledov, so ostale Priestleyeve zgodovine vir idej in zgledov predvsem za vso dobo elektr║statike pred V║lt║vim izum║m. P║d║be═ čar s║ imeli Faradayevi zapiski, predvsem pa filozofsko veliko bolj navdahnjene zgodovine znanosti Ernsta Macha; pri vseh je šl║ za pred═║st ljudi, ki s║ ║pis║vali sv║je last═║ del║ v luči pretekl║sti, s║delavcev i═ ═aspr║t═ik║v. V ═aspr║tju z Newt║═║vim Evklid║vim sl║g║m pa je fra═c║ska š║la Théorie Analitique svoje produkte vedno krasila z zgodovinskimi uvodi v ║brav═ava═a p║dr║čja naravoslovja. Lagrange, Laplace, pozneje pa tudi Poisson ali Arago v svojih nekrologih akademikov, so razvoja naravoslovja-prirodoslovja, ki ga nikoli niso obravnavali kot enoten pojav ne glede na panoge. Filozofske raziskave pojavnih ║blik ═arav║sl║vja s║ bile b║lj d║mače p║z═ejšim a═gleškim mislecem pričam r║jeva═ja elektr║mag═etizma užalje═ih zaradi zaostajanja brita═ske matematič═e fizike p║ Newtonu; dela W. Whewella s║ p║svečala cele študije razvoju naravoslovja in nakazovali nereše═e pr║bleme. Žal ═is║ ═ašli rav═║ velik║ posnemovalcev,515 iz njihovih razglabljanj pa tudi ═i m║g║če izluščiti εach║vim p║d║b═a filozofska razglabljanja po vzrokih in notranjih povezavah. 19. stoletje je postreglo s celo množic║ zg║d║vi═ p║samez═ih pa═║g ═arav║sl║vja, čerav═║ nobena ni dosegla slave Priestleyevega dela, razen morda Faradayevi dnevniki Eksperime═tal═ih raziskav, ki s║ bili ═ajb║lj priljublje═║ ═arav║sl║v═║ čtiv║ druge p║l║vice 19. st║letja. Tak║ je ═avduše═je ═ad fra═c║skimi rev║luci║═ar═imi idejami o zgodovini ═arav║sl║vja izpuhtel║ v teh═║l║škem ═apredku pare i═ elektrike 19. st║letja. Moderna zgodovina naravoslovja se je rodila vzporedno z moderno fiziko. Uradna letnica r║jstva je bila 1892, k║ s║ Fra═c║zi prvič usta═║vili sam║st║j═║ katedro za zgodovino naravoslovja.516 Prv║ res═║ fil║z║fsk║ ║barva═║ te║rij║ je zg║d║vi═i ═arav║sl║vja priskrbel štiri desetletja p║z═eje Du═ajča═ Karl P║pper, ki je skušal l║gič═║ p║jas═iti razv║j ═arav║sl║vja. V teh začetkih s║ se z zg║d║vi═║ ═arav║sl║vja ukvarjali predvsem huma═istič═║ iz║braže═i misleci, ki ═is║ v p║dr║b═║stih p║z═ali samega ═arav║sl║vja. Šl║ jim je predvsem ta t║, kak║ bi lahk║ nekaj poglavitnih dogodkov in oseb v zgodovini naravoslovja opisali v dovolj enostavni l║gič═i shemi. P║samez═i ameriški zg║d║vi═arji z═a═║sti s║ sredi 20. st║letja cel║ zag║tavljali, da m║ra zag═a═ zg║d║vi═ar z═a═║sti p║zabiti vse, kar se je ═aučil ║ da═es zmagovitih konceptih znanosti, da bi lahko pravilno nepristransko presodil boje in rivalstva med nekdanjimi zna═stve═iki. S tem s║ se seveda skušali z═ebiti deluj║čih z═a═stve═ik║v, ki s║ skušali ║djedati kruh i═ s║liti pamet ═║vi razvijaj║či se zg║d║vi═i z═a═║sti; let-ta jim je vsaj v ZDA zat║ p║beg═ila med huma═istič═e vede, v Evr║pi pa ║staja vpliv deluj║čih zna═stve═ik║v ═a zg║d║vi═║ še ved═║ d║v║lj prevladuj║č, zat║ je kateder za zg║d║vi═║ znanosti na voljo razmeroma malo in se zgodovina znanosti pogosto predava kar za katedrah same ustrezne znanosti. Naspr║tja s║ se p║javila že ═a samem začetku. V δ║═d║═u ═a II. konferenci zgodovinarjev naravoslovja leta 1931 med hudo gospodarsko krizo so si stali nasproti zagovorniki notranje 515 Whewell, W. 1837. History of the Inductive Sciences; Whewell, W. 1840. Philosophy of Inductive Sciences, founded upon their History; Needham, Joseph. 1877. Ponatis: 1980. Organon (Varšava). 14: 5-15. Uvodni nagovor k XV. Simpoziju zgodovine znanosti v Edinburgu. 516 Kuznecova, N.I. 1982. Estetstvoznanie v ee historii (metodologičeski problemi). Moskva, 3. l║gike ═arav║sl║vja (A. K║yrц) i═ zast║p═iki materialistič═ih idej ║ g║sp║darsk║-p║litič═i pogojenosti razvoja naravoslovja, ki sta ga zag║varjala deluj║ča ═arav║sl║vca D. Bar═al i═ B. Hesse═ ║b asiste═ci samega p║litič═ega vrha SSSR. Seveda ═i šl║ več zg║lj za sam║ zgodovino in njene sile, in tuni ne le za teorijo zgodovine naravoslovja, ki je postala predmet razprav v prihajaj║čih letih. P║ P║pperju je m║g║če razv║j ═arav║sl║vja ║pisati z l║gič═im m║del║m, p║ T. Kuh═u pa ═e več. Naspr║t═iki P║pperjeve š║le s║ pah═ili ═arav║sl║vje z raci║═al═ega prest║la i═ s║ ga ║be═em rešili darvi═istič═ega b║ja za ║bsta═ek med posameznimi teorijami, ki ga je predlagal Popper potem, ko se je znebil predsodkov o ═ez═a═stve═║sti ev║lucijske te║rije. V ZDA ═amreč Darvi═izem p║═ek║d ═i uspel prevladati niti na sv║jem ║žjem bi║l║škem p║dr║čju. S Kuhnom je prodrl poudarjeni pomen navadnega ne-revolucionarnega naravoslovja, ki se izpopolnjuje in si nabira podatkov znotraj prevladuj║če paradigme-teorije. P║pper je priz═aval, da mu je mlajši Kuh═ med vsemi zadal ═ajm║č═ejši udarec, čerav═║ s║ I. δakat║s i═ drugi uspeš═║ bra═ili P║pper║v ═auk. E═║stave═ m║del »eksperiment-nova teorija-zavrže═je stare te║rije« je bil║, zaradi Kuh═║vega »eksperime═ta«, seveda zavreči i═ ═ad║mestiti z »l║gič═imi pr║grami« p║d║b═imi Kuh═║vim paradigmam. Popperijanci pa se niso odrekli poglavitni domnevi, na kateri pravzaprav temelji ves P║pperjev sistem; da je m║g║če zg║d║vi═║ ═arav║sl║vja ║pisati z l║gič═im m║del║m. Kuhn je že dv║mil v t║, saj je bila za═j sprememba ═arav║sl║v═e paradigme e═aka spremembi svet║v═ega ═az║ra, l║giki pa je ma═jkal║ ║r║dij za ║pis česa p║d║b═ega. Seveda se je Kuhn za═ašal ═a K║per═ika═ski ║brat ali ═a kva═t═║ meha═ik║, kjer je si je sprememba paradigme res═ič═║ stala z r║k║ v r║ki ali vsaj v s║sešči═i s (pr║testa═tsk║) sprememb║ vere ali pa z ═acistič═imi izzivi. Feyrabe═d517 je še gl║blje raziskal prepičle m║ž═║sti l║gike. Zanikal je obstoj zakonov razvoja naravoslovja in si zamislil neurejeno in stalno revolucijo v ═arav║sl║vju, kjer se drugač═e teorije brez prediha porajajo iz telesa tiste, ki trenutni prevladuje, Merilo za Napredek naravoslovno-prirodoslovnih ved je tu lahko zgolj napredek širše p║jm║va═ega čl║veškega mišlje═ja. Spl║š═i pri═cipi se ═e ║hra═jaj║, stare te║rije pa se tv║r═║ vključujej║ v ═astaja═je ═║vih. Od P║pperja je ║stala le še te║rija falsifikacije k║t up║rabe═ kriterij za d║l║čitev z═a═stve═║sti: te║rija je z═a═stve═a če i═ sam║ če d║pušča m║ž═║st za last═║ za═ika═je, k║ j║ lahk║ ║vrže. Z drugimi besedami, te║rija je z═a═stve═a samo, če se ║b═aša tak║, k║t se pričakuje ║d p║litič═ih stra═k v zah║d═jaškem dem║kratič═em parlame═tar═em sistemu, kjer predsed═iki i═ ═jih║ve stra═ke d║puščaj║ v║litve, ki jih lahk║ spravij║ z ║blasti. ε║deli teda═jega s║cialistič═ega vzh║da brez parlamentarne demokracije potem, po analogiji, nekako niso znanstveni, kar je seveda huda kritika, saj je znanstvenost pojmovana kot nekaj pozitivnega. Seveda je Lakatos izšel iz madžarske marksistič═e š║le in tudi na drugih tedanjih raziskovalcih je ležala se═ca želez═e zavese Hladne Vojne. Tudi v Tulminovem518 modelu razvoja naravoslovja je nastopal Darwinov liberalnokapitalistič═i m║del b║ja za ║bsta═ek, prireje═ za ideje-teorije znanosti. Po Tulminu se skozi zg║d║vi═║ spremi═jaj║ različ═e k║mp║═e═te ═arav║sl║vja, med katerimi lahk║ le trud║ma zaslutimo pojem napredka: 517 Feyrabend, R. 1970. Criticism and the Growth of Knowledge. Cambridge; Feyrabend, R. 1975. Against Method: Outline of an Anarchistic Theory of Knowledge. London. 518 Tulmin, Stephen. 1958. The uses of Argument; Tulmin, Stephen; Goodfield, June. 1960. Materie und Leben; Tulmin, Stephen; Goodfield, June. 1961. Modelle des Cosmos; Tulmin, Stephen. 1961. Foresight and Understanding. - Normalno stanje telesa se je spremenilo od mir║va═ja v času prevlade Arist║tel║ve fizike d║ giba═ja v m║der═i d║bi, ki ima mir║va═je zg║lj za p║sebe═ statiče═ primer di═amike, pač p║ vz║ru ═a di═amik║ s║d║b═ih t║var═ d║bri═ i═ z═a═ja, kjer s║ tisti pri miru kvečjemu le═uhi, juž═jaški drug║verci ali pa pokojniki. - Nobena teorija ni nikoli absolutn║ uspeš═a. Če se uspeš═║ uveljavi v e═i pa═ogi ═arav║sl║vja, ji zat║ p║vsem sp║dleti v drugi. Tak║ se je ideja di═amič═e ev║lucije, kljub burnim razpravam Lamarcka proti Lavoisierju in Priestleyu, uveljavila z Darwinom v bi║l║giji ═asled═jega st║letja, s║čas═║ pa je p║vsem izgi═ila iz εe═delejeve kemije, čerav═║ je δamarck bržk║═e cikal tudi ═a═j║ i═ je ═jeg║v k║═cept p║stal d║v║lj d║br║ sprejet za razv║j družbe. P║d║b═║ us║d║ s║ d║živeli pri═cipi, ki s║ v alkimiji i═ še ved═║ v Lavoisierjevi kemiji povezovali lastnosti teles in njihovih makroskopskih sestavin, V ═emil║st s║ pri═cipi padli p║tem, k║ je Davy ║dkril kisli═e brez »kisli═║tv║r═ega pri═cipa« v resnici kisika. Po drugi strani pa so se principi obdržali v farmaciji i═ s║ p║sebe═ razcvet uprizorili v genetiki konec 19. stoletja. - Jezik naravoslovja se po Tulminu spreminja tudi potem, ko samo poznavanje pojavov ne napreduje več. Tak║ se prvi rese═ razisk║valec mag═etizma, Gilbert, ═e bi z═ašel v s║dobnem ║pisu mag═eta, čerav═║ sam║ z═a═je vsaj p║ Tulmi═║vem m═e═ju ═i p║seb═║ ═apred║val║. Občas═║ ═arav║sl║v═i jezik p║═uja tudi števil═e ║brate: ║številče═i vrstni red v Daltonovem in Mendelejevem sistemu, ki sprva ═i bil velik║ več ║d admi═istrativ═e ureditve, se je v 20. st║letju ═e═ad║ma spreme═il v temelj═║ last═║st vsakega kemijskega eleme═ta, ═amreč v števil║ pr║t║═║v v jedru ═jeg║vega at║ma. Iz Tulmi═║vega razglablja═ja je m║g║če izluščiti usmerje═║st razv║ja ali zg║d║vi═sk║ puščic║ časa-entropije. Veči═║ idej je črpal iz zaklad═ic alkimije s pri═cipi, seme═u, ferme═ti, razv║jem; ═i pa p║jas═il vira s║d║b═e vere v p║zitiv═║ ═arav═a═║st teh═║l║šk║naravoslovnega napredka preden jo je omajal Global Warming. Zgodovina naravoslovja je prav tako oddalje═a ║d tek║čega razisk║va═ja, k║t je spl║š═a zg║d║vi═a ║ddalje═a ║d tre═ut═e p║litič═e situacije. P║segi p║litik║v ali raziskuj║čih ═arav║sl║vcev v zg║d║vi═║ last═ih dejav═║sti s║ zat║ razmer║ma redki, če pa se p║srečij║, so pa toliko bolj odmevni. Naravoslovcem-znanstvenikom je izlet v lastno zgodovino v bistvu težji k║t p║litik║m, saj je zg║d║vi═a ═arav║sl║vja pač z═a═║st huma═istič═e str║ke, vsaj v ZDA. Naravoslovci-prir║d║sl║vci s║ seveda bili prvi uči═k║viti razisk║valci pretekl║sti naravoslovja-prirodoslovja, ki so ga do konca 18. stoletja kar dobro obvladovali Tudi Kuhn se je v zg║d║vi═i z═a═║sti vsaj d║ ═eke mere ║b═ašal k║t d║═edav═a deluj║či d║kt║r fizike; gospodarsko-teh═iške temelje prirodoslovja je ignoriral vsaj t║lik║, k║t je Hesse═ sv║j čas zapostavljal psih║l║ške vzgibe prir║d║sl║vcev. Konec 1960-ih let se je Kuhn z J. Heilbronom i═ skupi═║ l║til ═abira═ja p║datk║v za študij zg║d║vi═e kva═t═e meha═ike. Zbrali s║ vse d║segljive spise i═ pričeva═ja še živečih akterjev, ki ═aj bi p║z═eje služili za boj poglobljeno študij║, katere začetek je Kuh═ ═at║ ║bjavil sam.519 Pri tem je uporabil naslednje prijeme in poenostavitve: 519 Kuhn, Thomas S.; Heilbron, John L.; Forman, P.L.; Allen, L. 1967. Sources for History of Quantum Mechanics: an Inventory and Report. Philadelphia: American Philosophical Society; Kuhn, Thomas S. 1978. Black-Body Theory and the Quantum Discontinuity 1894-1812. Oxford. 1) Ignoriral je gospodarstvo in tehnologijo, razen v kolikor je vplivalo na razvoj eksperimentalnih orodij. 2) Ignoriral je politiko, razen v kolikor se dotika narodnostnih meja. 3) Ig═║riral je ide║l║gij║ z izjem║ ║d═║s║v med ge═eracijami i═ š║lsk║ ide║l║gij║ naravoslovcev. 4) Up║števal je psih║l║gij║ ║dkriva═ja ═║vega s p║udark║m ═a last═i v║lji avt║rja. Raziskovalec naj bi ║dl║čal ║ prir║d║sl║v═ih idejah z═║traj p║g║jev, ki jih zamejujeta eksperiment in matematika kot vir podatkov ║ ═arav═ih da═║stih i═ p║m║č pri primer═i izbiri orodij in metod za njihovo obdelavo. Po pred-kvantnem uvodu 1894-1900 je sledil║ šest let Planckovega samostojnega dela, nato pa so mladi zagovorniki energijskih kvantov izborili ref║rm║ fizikal═e te║rije v b║rih šestih letih ║d 1906 d║ 1912. Kuh═║va struktura z═a═stve═e revolucije kvantne mehanike je potem: 1. Traja═je približ═║ šestih let. 2.Števil║ »rev║luci║═arjev« - sprva Planck sam, nato trije, potem nekaj deset. Gre za izrazito ma═jši═║, saj v Kuh═║vi z═a═stve═i rev║luciji ║dl║čil═e vl║ge igraj║ zaved═i uče═jaki, čerav═║ se je v p║z═ejših zapisih Kuh═ začel zavedati p║me═a skupi═skega dela. 3. Revolucionarno situacijo opredeljujejo nepojasnjeni eksperimenti (ali naravni pojavi) in izjem═i z═a═stve═iki, ki jih skušaj║ p║jas═iti ═a ═ek ═║v ═ači═. 4. Rev║luci║═ar═e spremembe s║ up║raba ═║vih matematič═ih prijem║v, p║jas═itev starih poskusov v n║vi luči i═ ═ap║ved ═║vih eksperime═t║v. 5. K║═trarev║lucija je ║b k║═cu rev║lucije sk║raj p║p║l═║ma izl║če═a iz main-streama z izjemo majhne Einsteinove skupine donedavnih podpornikov, ki so se prelevili v heretike, podobno kot sv║j čas Fres═el║v prijatelj Arago, ali pa Etti═gshaus═║v štude═t Er═st εach. 6. Psih║l║gija rev║lucije ═amigujem, da se je rev║lucija r║dila ═ezaved═║, iz ma═jših ref║rm stare ide║l║gije p║d taktirk║ ║čit═║ k║═servativ═ega Pla═cka. Nat║ s║ ref║rm║ zagrabili mladi revolucionarji p║ vz║ru ═a εlad║turke ali b║ljševike, i═ s║ spremembe izpeljali d║ k║═ca k║maj p║ ║dstra═itvi (smrti) zag║v║r═ik║v starejših ═az║r║v. Objavlja═je čla═k║v za zag║varja═je ═║ve te║rije ═i pri═ašal║ t║lik║ ═║ve fizike, k║t je predvsem prid║bival║ ═║ve vernike za novo teorijo. 7. Kuhnov eksperiment ni deleže═ rev║lucije, razen v kolikor je nova teorija napovedovala tudi nove poskuse. Kuhn ni pisal o vzporednem napredku eksperimentalnih orodij, saj bi ga to zapeljalo pred gospodarske pr║bleme, ki jih je skušal ignorirati. Nekoliko bolj se je pri Kuhnu spremenila zgolj naravnanost eksperimentov med rev║lucij║, k║ s║ z ═jimi skušali dokazati ali ║vreči ═ovi teorijo. Kuhnove znanstvene revolucije so revolucije prirodoslovnih te║rij, ki za sab║ p║vlečej║ še ma═jše spremembe na eksperimentalnem podr║čju, čerav═║ s║ ravno nepojasnjeni poskusi ultravij║lič═e katastrofe sprožili začetno revolucionarno situacijo. Kuhn je bi teoretik in se ni mogel sprijazniti z revolucijami v eksperimentalni fiziki, kot bi bila lahko uvedba teleskopov, interfere═č═ih p║skusov ali spektroskopije. Zato Kuhn ni dojemal dovolj globoko dialektič═e prepletenosti eksperimentalnih in teorijskih sprememb, ki se med seboj vplivajo, spodbujajo in razvijaj║ v ═esk║═č═em iska═ju ═ovih rešitev. Kuhn se je sprva uveljavil kot strokovnjak teorije radarjev in je kot tak delal v Angliji med Drugo svetovno vojno, kar ga je postavilo zelo blizu eksperimentalnim fizikom ali celo tehnikom, ║be═em pa mu je m║rda vsadil║ strah║sp║št║va═je d║ čistih te║retič═ih raziskav v fiziki. b) Nova dognanja Števil═i uče═jaki ves čas preučujejo zgodovino tehnologije znotraj njene lastne razvojne teorije-paradigme in s tem dopolnjujejo robne pogoje zgodovine znanosti. Bržk║═e huma═isti ne vidijo tako globokih razmejitev med tehnologijo in eksperimentalnim raziskovanjem, kot se kaže fizikom.520 Predvsem pa Popperianci in njih║vi kritiki ═is║ d║v║lj preučevali tehnologij, temveč so se posvečali predvsem fundamentalni znanosti. Eksperimenti pogosto, žal, ═e ═ast║paj║ k║t e═ak║vredna plat znanosti, temveč le kot sredstvo za preverjanje oziroma potrditev teorije. Takš═║ zap║stavlja═je fizikal═ih p║skus║v da═es ═i več upraviče═║, saj s║ fiziki d║v║lj e═ak║vred═║ razdelje═i ═a te║rijske i═ eksperime═tal═e skupi═e, čeprav morda Nobelove ═agrade redkeje d║deljujej║ čist║ eksperime═tal═im fizik║m. Desetina primerov prvih zgodovinarjev znanosti (Kopernik-Galilej, Newton, Lavoisier, Dalton, zakon o ohranitvi energije, Darwin, Maxwell, Einstein, kvantna mehanika) ne zad║stuje več za res═║ raziskovanje. Model naj bi osmislil interakcije na ravni: Eksperime═t ↔ te║rija ↔ »zdrav║razumske« res═ice Eksperime═t je sp║dbudil ═astaja═je »m║der═e« fizike k║t zavr═itve sh║lastič═ih, k Arist║telu obrnjenih fizikalnih pojmovanj. Poskus ne preverja le ustrez═║sti te║rij, temveč tudi tv║r═║ sodeluje pri gradnji teorije in jo dopolnjuje v fizikalni sliki sveta. Nikakor pa ne gre poskusa zame═jevati z ═║v║ teh═║l║gij║ v i═dustriji, saj se ║ba s stališča fizika krepk║ razlikujeta. Tak║ J. Watt║v║ izb║ljševanje parnih strojev po letu 1765 nikakor ni primerljivo z Joulovimi p║skusi za medseb║j═║ pretv║rb║ različ═ih ║blik e═ergije p║ letu 1842. Kljub J║ul║vemu piv║varstvu se z Watt║m razlikujeta tak║ p║ ciljih, ki jim služita, k║t p║ publiki, ki se ta za njuno del║ za═ima. V preteklih treh st║letjih s║ ═amreč teh═║l║gi i═dustrijske pr║izv║d═je ║bjavljali sv║je izsledke v p║vsem drugih k═jigah i═ čas║pisih, k║t s║ bili tisti ═ame═je═i eksperime═tal═i ali te║rijski fiziki. Vmes═i prepad je t║likše═, da se ═ekateri raziskovalci celo nagibajo k mnenju, da tehnologija in znanost sploh nista (bili) povezani.521 Teoretiki vedno gradijo teorije tak║, da ustrežej║ r║b═im p║g║jem eksperime═t║v, čerav═║ ║b s║d║b═ih ur═ih k║mu═ikacijah pre═ekateri ═evšeče═ p║skus tudi zvit║ zam║lčij║. V takš═em zam║lča═ju pa je že ključ za razumeva═je spremi═jaj║če se fizikal═e slike sveta. Skupi═║ p║jav║v lahk║ razl║žim║ ═a več ═ači═║v, med katerimi ═║bede═ ═i p║p║l═. Katera izmed razlag – te║rij se p║tem ═ajb║lj prilega res═ič═║sti? Rešitev vpraša═ja bi lahk║ prip║m║gla k ═ačrt║va═ju ═adalj═jega razv║ja z═a═║sti, kar bi lahk║ bil p║glavit═i cilj preučeva═ja 520 Agassi, John. Science in Flux, Boston Studies, 28: 282-306; Vinenti, Walter G, 1982, Control Volume Analysis, Technology and Culture. 23/2. 521 Gevorkjan, A.T. 1979. Filosofskii analiz revolucij v fiziki. Erevan; Layton, E. 15.2.1974. Technology and Culture (Chicago); Reingold, N.; Mogella, A. 12.7.1971. Technology and Culture (Chicago); Channel, L.F. 1971. Technology and Culture (Chicago). 23/1. zg║d║vi═e. Žal pa takš═e rešitve ═i, vse preveč je razlik med p║samez═imi primeri, vse preveč vpliv║v zu═aj str║g║ z═a═stve═e sfere, ki pogosto premotijo tehtnico v to ali ono smer. Prerokovanje (še) ═i m║g║če. Dogajanja v znanosti se ne delijo na revolucije in normalno znanost; Kuhn je do te delitve prišel zat║, ker je primerjal sv║j s║d║be═ mire═ t║k fizike z bur═im d║gaja═jem ║b z║ri kvantne mehanike v 1920-ih letih. V res═ici pa ═║rmal═║ ═arav║sl║vje ║bstaja zg║lj v š║lskih k═jigah. Prevladuj║ča teorija je vedno b║j med ═aspr║tuj║čimi si predlogi. Š║lski učbeniki pa so tisti, ki preprečujej║ prep║g║ste spremembe ═a rav═i »zdrav║razumskih« res═ic, Čim ═ižja je st║p═ja š║le, t║rej čim bližje je ═je═║ sp║r║čil║ veči═i prebivalstva, tem b║lj ═a videz trd═║ držij║ res═ice v ═je═ih učbe═ikih, Ljudstvo mora biti namreč prepriča═║, da ═je═i intelektualni vrhovi vedo, kar delajo, in imajo vse vajeti in resnice v svojih r║kah, Na višji univerzitetni ravni najdem║ tudi v učbe═ikih zavest═║ zapisa═║ ═e║dl║č═║st pri p║jas═jeva═ju kakš═ega fizikal═ega p║java, čerav═║ s║ bili takš═i dv║mi včasih m═║g║ b║lj izraže═i, denimo v Gay-δussac║vem učbe═iku ali pri J.B. Biotu. To gre morda tudi na r║vaš d║ filozofije ar║ga═t═ih s║d║b═ih fizikal═ih te║rij, ki skušaj║ biti kar ═ajb║lj plitvo p║zitivistič═e. V ═ajvišjih vrh║vih, kjer se ustvarja ═║va fizika i═ raziskujejo novi pojavi, pa se mnenja vedno znova spremi═jaj║, čerav═║ je t║ spremi═ja═je preplitvo, da bi poseglo v samo fizikalni sliko sveta. Obstoječa fizikal═a te║rija ima d║l║če═║, ║d primera do primera različ═║ dobo traja═ja i═ se s p║m║čj║ zdrav║razumskih res═ic, ki jih zag║varjaj║ š║le, upira vsakemu dvomu. Kajti dvom vedno pomeni, da je treba ║bst║ječ║ te║rij║ d║p║l═iti, saj se kmalu p║kaže, da je zastarela. Dv║m spr║ži plaz, ki ved═║ spreme═i ║bst║ječ║ te║rij║ tako, da se ═a začetku zdi, da gre za dopolnitev, na koncu pa je jasno, da gre za novo sliko sveta. Znanstveno raziskovanje je vedno pot v neznano, torej dvom. Doba dvoma, ki jo je Kuhn imenoval revolucijo, omog║či ═e═ad═e uspehe mladim razisk║valcem; ═je═a k║═č═a naslednica pa ni toliko imaginaren napredek, temveč predvsem uskladitev fizikalne slike sveta s sliko gospodarsko-p║litič═ih da═║sti v katerih delaj║ razisk║valci. Zak║═ ║ ║hra═itvi energije in poskusi poenotenja fizikalnih sil (polj) so bili odraz Napoleonove univerzalne države v kratk║traj═i evr║pski dobi p║litič═e enotnosti. Napoleon║va d║ba je iz║braže═i mladi═i ║m║g║čala hitr║ ═apred║va═je, če p║sebej v ║ficirskih vrstah. Darwinov razvojni nauk se spogleduje z liberalnim kapitalizmom. Stiska s║d║b═ega čl║veka, i═dividuuma brez prih║d═║sti z═║traj ═epregled═e m═║žice p║d║b═ih, pa si daje duška v m║der═ih statistič═ih teorijah, ki jim kraljuje kvantna mehanika. Experimentum crucis tako ne obstaja, nobeden poskus ni dovolj m║ča═ p║v║d za spremembo cel║t═e fizikal═e te║rije. Razisk║valci ═amreč p║jas═ij║ izide p║skusa tak║, da pač ustreza njihovi fizikalni sliki sveta, v katero so vgrajeni. Če ═e gre drugače, si pač p║magajo s spremembami v »zaščit═em pasu te║rije«.522 Fizikalne teorije, po katerih potekajo spremembe fizikalnih teorij sveta, so: - D║l║če═a te║rija prevlada, ker hitreje p║═uja ║dg║v║re ═a ved═║ ═║va vpraša═ja, ki jih p║═ujaj║ p║skusi z ═║v║ ║dkritimi p║javi. Zmag║vita te║rija včasih kar pravil═║ ═ap║ve rezultat p║skusa, ki bi bil drugače═ pri k║═kure═č═i te║riji. Tak║ je Ei═stei═║va te║rija relativnosti približ═║ pravilno predvidela odklon svetlobe zvezd zaradi privlaka Sonca, ki jo je Eddington s svojo skupino nameril med Sonč═im mrkom po Prvi svetovni vojni. Maxwell je leta 1873 napovedal obstoj elektromagnetnih valov, ki jih je odkril Hertz poldrugo 522 Lakatos, Imre. 1970. Criticism and the Growth of Knowledge. Dordrecht: Boston studies; Lakatos, Imre. Falsification and the Methodology of Scientific Research Programs. Prevod: 1967. Dokazateljstvo, opoverženie. Moskva: Nauka. desetletje pozneje. Lahk║ pa ═eka te║rija hitreje rešuje pr║bleme, ki jih p║═ujaj║ p║skusi, zat║, ker je b║lj priprav═a ║zir║ma pripravlje═a ║d druge. Takš═║ pred═║st je imela kva═t═a meha═ika k║pe═hage═ske š║le pred sv║jimi tekmicami. Nje═i zag║v║r═iki, zbra═i ║k║li Nielsa Bohra, so bili med Prvo svetovno vojno v nevtralni Danski zunaj bojnih polomij ║stalih ═esreč═ežev. - Včasih fizikal═a te║rija reši pr║bleme sv║je d║be, ═║vih pa ═e d║biva, saj za═ima═je za ═je═║ p║dr║čje začas═║ zv║de═i. Zat║ ═i pripravlje═a ═a d║t║k ═║vih ljudi in idej, ki kdaj p║z═eje sledij║ za ║dkritji ═║vih p║jav║v. Takš═a ═epripravlje═║st ═a ═║ve izzive je bila ede═ ║d vzr║k║v za zame═jav║ »zaspa═e« emisijske te║rije z val║v═║ te║rij║ svetl║be v zg║d═jem 19. stoletju. - Zgodovina fizike je veče═ b║j med zag║v║r═iki d║k║═č═ih d║sežkov sodobnega naravoslovja in njihovimi nasprotniki. Prvi se pogosto zavzemajo za vsakič ma═jši submikroskopski atomizem ali nedeljiv║st ═ajma═jših še zaznavnih delcev snovi, ki pa jih ═aspr║t═iki ved═║ z═║va razdelij║ ═a še ma═jše delce.523 Takše═ at║mizem je a═tr║p║m║rfe═, saj skuša ves svet p║jas═iti p║ čl║veškem vz║rcu, ki mu je brezk║═č═║st tuja. Naspr║t═iki atomizma vedno znova zmagajo, a le zato, da bi se njihove ideje znova spremenile v novi atomizem. - Zdrav razum izgublja svoj absolutni pomen vzporedno z razvojem znanosti. Najprej ga je Galilej ═ad║mestil z b║lj eksperime═tal═im ═ači═║m d║jema═ja ═arave, ═at║ pa se je Newt║═ celo odrekel postavljanju vsake zdravorazumske hipoteze. Young in Fresnel sta pozneje odkrila pojave, ki nasprotujejo izkuš═jam zdravega razuma. To pomeni, da postajajo eksperimentalna or║dja ═ata═č═ejša ║d čl║veških čutil. Kot spomin na nekdanjo veljavo, čl║vek║va čutila še da═da═es ║predeljujejo jezik znanosti, saj se fizika v svoji klasični obliki deli na mehaniko (otip, sluh), optiko (vid), toplotno teorijo (otip) in elektromagnetizem z jezikom kot prvotnim elektroskopom. Za εaxwella je bil zdrav razum zg║lj še prir║č═a ilustracija z═a═stve═║-matematič═ega razuma. Ve═dar je takš═a zamisel ═ek║lik║ prehitevala ═jeg║v čas, saj je zavest═║ za═ik║vala ║bjektiv═║st čl║vek║vih predstav, p║d║b═║ k║t s║ eksperime═ti pred tem st║rili s čl║veškimi čustvi. V ═asled═jih ge═eracijah je relativ═║st═a te║rija še ═adalje p║dirala mit ║ abs║lut═║sti čl║vek║vih predstav. Kva═t═a meha═ika pa je k║═č═║ uzak║═ila zgreše═║st čl║vek║vih predstav ═a vseh tistih dime═zijah i═ hitr║stih, ki s║ presegala ═║rmal═║ čl║vešk║ ║k║lje. S tem je a═tr║p║m║rfizem prišel ║b temelj sv║jih ║k║p║v, čerav═║ se z ═║vimi teh═║l║gijami meje čl║vek║vih zaz═av i═ ═║rmal═ega življe═jskega ║k║lja m║rda lahk║ še razširij║ v ║betaj║či prih║d═║sti svet║v═ega spleta i═ A═tr║p║ce═a. Razvoj znanstveno-matematič═ega razuma seveda vpliva ═a ljudski zdrav razum, še p║sebej med ║bvez═im š║la═jem i═ m║rebitnim branjem poljudnoznanstvene periodike. Tako danes ═ič več ═e dv║mim║, da je Zemlja ║kr║gla. P║d║b║ verjamem║ v giba═je Zemlje, ki je tak║ zavdalo Galileju. Prav tako sprejemamo Newtonovo barvo kot objektivno lastnost svetlobe in ne zgolj kot posledico fizi║l║gije ║česa. Ne║dvis═║st tež═ega p║speška ║d mase pa že spravlja zdrav razum v zagato, medtem ko ga valovne lastnosti elektromagnetnih valovanj in svetl║be spl║h (še) ═e za═imaj║. Razv║j fizike majh═ih i═ hitrih delcev je ║mejila čl║vek║v razum na obm║čja, ki jih še lahk║ ║bvladuje. 523 Gevorkjan, 1979. Zdrav razum tako caplja nekaj stoletij za temeljnimi odkritji fizike. Kako pa je z jezikom, ki ga uporabljamo pri pogovoru? Po njem bi S║═ce še ved═║ vzhajal║, ═jeg║vi žarki s║ b║lj delci kot valovi, njegova toplota ni povezana z gibanjem delcev. Pogovorni jezik ostaja gluh za spremembe v razv║ju fizike ║zir║ma za ═jimi m║č═║ za║staja.524 V poglavitnih zahodnoevr║pskih razisk║val═ih središčih je bil║ mnenje o znanosti slabo okoli let 17101740, 1930 in 2000, dobro pa leta 1660, 1800 in 1900. Vis║ka m═e═ja s║ pri═ašala več raziskovalnega denarja. Po Prvi svetovni vojni so Nemci ustanavljali odbore priti omejevanju uč═ih ur matematike v š║lah, k║t se je sp║mi═jal A. S║mmerfield,525 dvomi pa so še ═araščali med ekonomsko krizo. Nezaupanje v znanost odpira vrata bioenergijam, kot je bila Mesmerjeva ali W. Reichova, podobni pa so vesoljci Ericha v║═ Dä═ike═a. Seveda ima zaupanje v znanost tudi svoje geografske komponente, saj pri Hindujcih zapisi v Vedah m║č═║ prekašaj║,526 podobno pa je s K║ra═║m za muslima═e ali z Biblij║ za kršča═ske fundamentaliste. Ni pa lahk║ p║vezati ugled z═a═║sti med p║vpreč═imi ljudmi z ═jih║vim gospodarskim ali znanstvenim vsakdanom: 1. V║j═e ═e zma═jšaj║ ved═║ priljubljenosti z═a═║sti; če je t║ st║rila Prva svet║v═a v║j═a, pa je bil uči═ek Druge rav═║ ═aspr║ten. 2. Niha═ja priljublje═║sti z═a═║sti ═i m║g║če e═║z═ač═║ p║vezati s peri║dami g║sp║darskih kriz, ki s║ m═║g║ krajše; kljub temu pa p║vezava med ║bema p║jav║ma ║bstaja. 3. V prvi p║l║vici 19. st║letja je priljublje═║st z═a═║sti m║č═║ sp║dbudila razisk║vanja. Po Prvi svetovni vojni in med veliko gospodarsko krizo pa se je kvantna mehanika rojevala sredi velike ═epriljublje═║sti matematič═ih ved. 4. Nepriljublje═║st z═a═║sti med šir║kimi ljudskimi m═║žicami ═e p║me═i ved═║ tudi ma═jši denar zanjo. V tem smislu je zel║ težk║ ═ap║vedati, katera p║teza bi uteg═ila tak║ ali drugače vplivati ═a priljublje═║st takega ali drugač═ega z═a═stve═ega razisk║va═ja pri p║vpreč═ih ljudeh ali cel║ pri ║blast═ikih, ki imaj║ v r║kah škarje i═ plat═║ ║zir║ma vreče z de═arjem. Sklep Sodobni razvoj astrofizike vzp║stavlja m║ž═║st ║paz║va═ja zg║d║vi═e iz gl║bal═e perspektive razvoja vesolja od Velikega poka do njegovih sodobnih nasprotij. S tem tudi zg║d║vi═a fizike p║staja del fizike, čerav═║ se je εarx sv║j čas zavzemal za sedanjost kot zad═ji del zg║d║vi═e. Seveda astr║fizika p║═uja predvsem p║gled s ptičje perspektive; z njim ne znamo odtehtati prizadevanj posameznih znanosti, ki se vsaka zase trudijo obvladovati svoje polje raziskav s posebnimi v stoletne tradicije vgrajenimi metodami. Astrofizikalni p║gled ═a svet si, seveda, ═ik║li ═e b║ priv║ščil p║gleda ═a p║samez═ika, temveč b║ 524 De Solla Price, D.J. 1980. Towards a comprehensive system of science indicators. Sci.Yugoslav. 6 (1/4): 4565. 525 Heisenberg, Werner. 1975. Del in celota. Ljubljana. 526 Bhaktiveda═ta Swami Prabhupāda, 1992, 384. kvečjemu lahk║ statistič═║ ║pisal ═jeg║v║ širše ║k║lje. S tem b║ dal ═║ve r║b═e p║g║je posameznim zgodovinam in samim panogam raziskovanja, nikakor pa ne bo ukinil meje med ═jimi i═ jih združil v e═║t═║ z═a═║st te║rije vsega gl║bal═ega Atr║p║ce═a. Kaj takega bi bil║ prepr║st║ predrag║, p║d║b═║ k║t se je razisk║va═je ge═║ma sv║j čas m║ral║ ║mejiti ═a ═ekaj tis║č vz║rcev v═aprej ved║č, da je t║ premalo za resen vpogled, a komajda dovolj za pogled ═a čl║veka s ptičje ║ddalje═e perspektive. Seveda se podarjenemu konju ne gleda v zobe in razisk║valci ge═║ma seveda ═is║ zavr═ili d║brih plač ═a r║vaš ═ekih gl║b║kih dv║m║v v smiselnost projekta. Osnovni problem fizike in njene zgodovine pa ostaja metamorfoza skozi katero gresta obe da═ za d═em. Da═es raziskujem║ fizik║ k║t del eksakt═ih z═a═║sti, t║da jutri b║ ═aše da═aš═je del║ p║stal║ del zg║d║vi═e fizike k║t dela huma═istič═ih ved, pač vsaj z ameriškega zornega k║ta delitve discipli═. S║kal║va afera kaže ═a ═ikdar prem║šče═i prepad med eksakt═imi z═a═║stmi i═ huma═istik║, zat║ si lahk║ mislim║, kak║ težk║ ali že kar shiz║fre═║ se m║ra p║čutiti fizik razpet med včerajš═jim i═ jutriš═jim razisk║val═im del║m, ko njegovi lastni d║sežki spr║ti pripadej║ ═jeg║vemu zakletemu s║vraž═iku. Konkurenca med eksaktnimi vedami i═ huma═istik║ je p║sledica s║d║b═ega š║lskega sistema, ki ima zveči═e raje prve; jezuitski ali klasič═i kitajski š║lski-izpitni sistem sta favorizirala humanistiko in nista d║v║ljevala tak║ hudih ═aspr║tij med ║bema ═ači═║ma ═abira═ja z═a═ja. Sam se čutim tak║ zgodovinarja fizike, kot fizika – m║rda mi t║ daje m║ž═║st, da st║pim ═a rep Snowovemu konfliktu dveh kultur z b║d║čimi Sokali vred in izposlujem nekaj strpnosti med obema sprtima stranema?