
Autonomous Traversal of Rough Terrain Using
Behavioural Cloning

M. Waleed Kadous, Claude Sammut, Raymond Ka-Man Sheh
ARC Centre of Excellence for Autonomous Systems

School of Computer Science and Engineering, University of New South Wales
{waleed,claude,rsheh}@cse.unsw.edu.au

Abstract

Behavioural cloning is a method for acquiring skills by building generalised behaviours based on the
observations of human performance. In this work, we examine the application of behavioural cloning
to autonomous navigation of a robot in an unstructured environment. In particular, we examine the
traversal of the random stepfields, introduced in the Robocup Rescue Robot League competition, by a
tracked vehicle. One critical issue in behavioural cloning is representing the state of the environment
in a manner amenable to machine learning. Our representation and behavioural cloning technique was
evaluated by implementing it on our CASTER advanced mobility robot and training it to traverse a
sequence of two NIST-specification stepfields. Despite being derived from only ten training runs, the
cloned behaviour was able to successfully traverse the stepfield unaided 40% of the time and required
only minor intervention the remaining 60% of the time.

Keywords : Behavioural Cloning, Rescue Robotics, Modelling Terrain

1 Introduction

One commonly cited example where robots can be
of benefit to humanity is urban search and res-
cue (USAR). Robots are deployed at a disaster
site and autonomously search the area, co-ordinate
with each other, deliver assistance to those in need
and assist in rescuing survivors. While distant,
research towards this goal continues.

The robot rescue environment is highly unstruc-
tured. Because of this, approaches to control the
robot have so far focused on tele-operation. How-
ever, in real rescue situations, radio communica-
tion is unreliable, tethered robots have limited range
and operators have limited attention. Clearly, there-
fore, some degree of autonomy is extremely desir-
able. But how can such autonomy be achieved?

One promising technique is behavioural cloning, a
process by which the actions of a human operator
are recorded whilst the robot is being controlled.
This behavioural trace is pre-processed and then
input to a machine learning program that outputs
control rules capable of driving the robot. Be-
havioural cloning has already been demonstrated
in tasks such as piloting aircraft [?] and operating
a container crane [?]. However, in those domains,
the information required to control the systems was
relatively easy to obtain. This is not the case for
robots in an unstructured environment.

In this paper, we propose methods for character-
ising the environment in a way that makes be-
havioural cloning possible. We evaluate the pro-

Figure 1: Top: Example of a Robocup RRL
Standard arena, with the robot currently on a
stepfield.

posed approach on simulated rubble: a NIST-specification
stepfield. Our results show that even with min-
imal training examples (traversing approximately
20 metres of rubble), the learnt clone can perform
well – completing autonomous runs over difficult
terrain 40 per cent of the time and requiring simple
interventions in the remaining 60 per cent. In
one case it outperformed the human operator who
trained it.

2 The Rescue Robot Environment

The annual Robocup Rescue Robot League (RRL)
competition encourages developments in mobility,
sensing, autonomy, mapping and human-robot in-
terfaces. An arena is created in which competing
teams must demonstrate the above skills. Part
of the arena from Robocup Rescue 2005, held in
Osaka, is shown in Figure 1.



One particularly challenging element introduced in
the 2005 competition was the random stepfield,
which consists of 121 wooden blocks of varying
heights (between 4.5cm and 36cm) arranged in a
grid. This is intended as an experimentally repro-
ducible representation of the type of rubble one
would find at a disaster site. The blocks are not
securely fastened, so the terrain can change based
on the actions of the robot. Clearly, analytical
approaches for elements such as stepfield are likely
to be very complex.

Instead, our approach is to record the actions per-
formed by a human operator who controls the robot
as it traverses stepfields and to create a “clone” of
their behaviour. The intended result is a control
policy that can take sensor input and autonomously
control the robot to traverse stepfields. As with
other branches of machine learning, developing a
suitable representation is vital for effective perfor-
mance. We propose a representation that facili-
tates the application of standard supervised classi-
fication techniques.

3 Background

To understand the proposed approach, behavioural
cloning will first be presented followed by a brief
survey of existing approaches to terrain representa-
tion. The hardware platforms under consideration
will also be discussed.

Experts are people who know what they are doing
but don’t necessarily know what they are talking
about. By that, we mean that by the time a task
becomes second nature to a person, most decision
making is subconscious and therefore not accessible
to introspection.

However, it is possible to construct a model of an
expert’s skill by recording the actions of the expert,
along with the corresponding state of the system
at the time of each action. This was first done by
[?]. The method was to record human operators
as they controlled a simulated pole-balancer.

Subsequent work was done by [?] to apply behavioural
cloning to learning to fly an aircraft in a flight
simulator and by [?] to control a container crane.
In these cases, it was relatively easy to define the
inputs to learning. For example, to learn to pilot
an aircraft, we recorded each time the pilot moved
the joystick or adjusted throttle or flaps.

Representing the state of the world, when piloting
an aircraft, is relatively easy since the instruments
in the cockpit provide sufficient information to con-
trol the system. Controlling a ground vehicle in an
unstructured environment is much more complex
since it must negotiate uneven terrain with differ-
ent surface textures. The challenge in modelling

the operator’s behaviour in the case of our rescue
robot has little to do with the learning algorithm.
The greatest difficulty is in finding a representation
of the environment that provides the appropriate
information for learning. By appropriate, we mean
that the information must be sufficient to be able
to learn control rules but it must also be concise
enough not to swamp the learning algorithm with
too much data.

Before moving on to describe our representation,
it is worthwhile contrasting our approach to be-
havioural cloning with apprentice learning [?]. The
key difference between behavioural cloning and ap-
prentice learning is that in the latter, we learn a
model of the system, while in the former, we learn a
model of the operator. The reasoning is that since
we have data of a human controlling the system
and the human has already learned a good control
policy, why not learn directly from the human?

Several groups have addressed the issue of 3D ter-
rain representation in the context of robot control,
although most have done so for the application of
autonomous road vehicles.

Representations such as those used in [?] process
pointclouds sensed at a particular instant in time
and do not make use of an ongoing map. Obsta-
cles are segmented based on their deviation from
the driving surface, which need not be flat but is
considered to be easily traversable.

Other approaches that attempt to segment out in-
teresting features from raw pointclouds include [?]
where a statistical approach was used to classify
sections of pointclouds taken from an autonomous
vehicle in a forest environment and used to detect
such obstacles as trees and wires.

Alternative representations can, instead, consist of
occupancy grid based techniques, with some rely-
ing on map generation. [?] used a 3D scanning laser
to detect solid obstacles hidden amongst sparse
vegetation by maintaining an occupancy grid.

[?] also use an occupancy grid based technique,
with stereo vision on a planetary rover used to
build an occupancy grid map of the terrain around
the robot. This is then analysed for terrain “good-
ness” by observing the roll, pitch and roughness of
patches of ground comparable in size to the robot.

4 Approach

4.1 Platforms

For these experiments, we used the robot CASTER,
which was the basis of our entry in the RRL Com-
petition in 2005, where we came third out of 26
teams. One of the distinguishing features of our
entry was the ability to generate 3D maps of the



arena. CASTER is built on a Yujin Robotics Rob-
haz DT3 base [?]. The robot has two pairs of
differentially driven rubber tracks for locomotion.
The robot is articulated in the center, allowing it
to follow terrain such as stairs. The DT3 robot
base can move in highly unpredictable ways on
unstructured terrain due to its length, suspension
and skid-steering properties. Two main concerns
are getting stuck on an obstacle (e.g. an object
lodging under the body of the robot) and flipping
or rolling the robot when it attempts to climb an
obstacle that is too high.

The core of CASTER’s mapping and 3D sensing
capabilities lies in the range imager [?] and a web
camera. Rather than providing colour values for
each pixel, the range imager provides distances.
The addition of an accelerometer to measure tilt
and roll enables the production of textured, level
3D reconstructions.

Initially the goal of our work is to develop a system
that will be able to safely and autonomously drive
in a straight line over obstacles such as stepfields.
Subsequent work will then examine more complex
issues, particularly turning on the stepfield. Note
that while simplified, driving in a straight line over
a stepfield is a highly non-trivial process as the
terrain will cause the robot to veer from side to side
and at times it may be necessary to aim off-center
to avoid obstacles or to ensure that the robot’s
tracks hook onto desired parts of the terrain.

Our approach is to use the simplest form of be-
havioural cloning, known as “situation-action” be-
havioural cloning. This consists of three stages:
the gathering of training data, building of the clone
and execution of the clone.

During training, at each step the situation is viewed
by the operator. The operator selects an appropri-
ate action which is then executed. The operator is
presented with a new situation for the next step.
This continues until the task is complete. During
this phase, the situation, in the form of an image
from the range imager, and the roll and pitch of
the robot, are recorded along with the operator’s
action taken in response to that situation.

The clone is built by first extracting features from
the recorded situations, in this case the range im-
ages, to form a vector that numerically represents
the situation, amenable to machine learning. The
corresponding actions become class labels and the
problem treated as a supervised classification task.
Standard machine learning algorithms can then be
applied to produce a classifier that can determine
the class – in this case an action – corresponding
to the feature vector from an unseen situation.

Finally, the clone is executed by sensing the situ-
ation, extracting the representative feature vector
from the sensed data, again the range image, ap-
plying the classifier built in the previous stage to
determine the appropriate action, then performing
the action which is then executed. This process re-
peats for each time step until the task is complete.

4.2 Representation of the problem

We represent the actions CASTER can perform as
one of those typical of a vehicle: forward left, for-
ward, forward right, spin left, spin right reverse
left, reverse and reverse right. In practice, this
combination of actions was found to be sufficient
for a human operator to effectively control the robot.

Representing the situation consists of two com-
ponents: representing the state of the robot and
representing the terrain around the robot. The
state of the robot in this case involves the roll and
pitch.

To determine the appropriate representation of the
terrain, we spoke to human drivers about how they
drove the DT31.

Strategies for human control tended to focus on
two types of features of the stepfield directly in
front of the robot, to a distance of about one robot
length. The general layout of the terrain, such as
flat, hill or valley would determine overall strat-
egy. Particular obstacles such as blocks or holes
that deviate from this general shape would then
determine particular actions.

The terrain is captured using the range imager,
which is pointed at the terrain immediately in front
of the robot. After processing, this generates a
cloud of points that lie ahead of the robot as shown
in Figure 2.

The pointcloud obtained from the range imager is
converted into a height map, where the vertical
height above ground level z is a dependant variable
in x and y. To represent the terrain, a plane is
fitted to the points using multivariate linear re-
gression. This gives an equation of the form z =
ax + by + c. Thus, a indicates the tilt of the
terrain around the robot’s roll axis and b the tilt
around the robot’s pitch axis. This gives a general
characterisation of the terrain and the way in which
it is leaning. The values a, b and c become features
in the situation description.

Once this plane is fitted, holes and protrusions can
be detected. The space in front of the robot is

1At the Robocup Rescue 2005 competition, there were 3
DT3-based robots, including CASTER, that had different
sensing, but very similar bases. Thus the strategies for
attacking the stepfields tended to be similar.



Figure 2: A pointcloud generated by the range
imager (top) and the corresponding colour and
range images (bottom). The wall in the upper left
corner and the raised area of the stepfield to the
center-right are visible.

divided into a 3 × 3 grid. Each of the grids is
then divided into a 10 × 10 subgrid. Within each
subgrid square, the average z value is computed
amongst all points bounded by the x and y limits
of that subgrid square. The subgrid square which
has the maximum absolute difference between the
average z value and the z value predicted by the
plane of best fit for the centre of the subgrid square
is found. In a sense, this tries to find the biggest
obstacle (hole or protrusion) in that grid square.
The x and y indices of the subgrid square with
the maximum absolute difference become features
for each grid square. This captures information
about where the biggest obstacle within each grid
square is. For example, if there is a large protrusion
on the right hand side of grid square (0, 1), the x
index would be 9, whereas if the obstacle was on
the outer edge of the stepfield, the x index of the
biggest obstacle would be 0. In addition, the sign
and magnitude of the obstacle is used as a feature.
Thus, for each of the 9 grid squares, 3 features are
generated.

Situation-action clones are essentially Markovian
or reactive: they make the decision as to their ac-
tions based solely on the current state. This means
that the robot has no concept of “getting stuck”,
and it will continually repeat the same action in the
same situation, no matter how many times this has
occurred. In order to prevent this, features were
added that attempted to capture some information
about change over the last interval. The tech-
nique is based on comparing consecutive frames
from the range imager and measuring an average
change per pixel. This is more robust to changes in
lighting and slight movement of the robot than the
visual camera, since fine texture changes will pro-
duce large average differences between pixels. This
difference was also thresholded at approximately

1.5cm/pixel and a count generated of the last time
this threshold was exceeded – this count was used
as an indication of the number of frames during
which the robot had been “stuck” for. This allows
a distinction in the situation space between the
actions taken by the operator when the robot first
becomes stuck and the actions taken to extricate
the robot, even if the situation has not otherwise
changed, while maintaining the simplicity of the
situation-action approach.

Thus, in total, the situation is represented by 3 fea-
tures representing the general situation of the ter-
rain, 27 features representing obstacles in different
grids in front of the robot, 2 features representing
the tilt of the robot and 2 features representing
how long and how much the robot has moved since
the last action. In total, 34 features are used.

5 Evaluation

5.1 Experimental setup

To evaluate the approach, CASTER was modified
for the purposes of the experiment. Rather than
the camera head being mounted on a pan-tilt unit
as usual, it was mounted on the end of a robot arm
and pointed downwards to maximise resolution of
the sensors over the area of interest. A photo of
the configuration is shown in Figure 3. The view
from the robot arm captures the front part of the
robot as well as the area immediate to the sides
and in front of the robot as shown in Figure 2.
The cameras sit at an angle of approximately 15
degrees from straight down and is approximately 1
metre above the ground.

Figure 3: CASTER traversing the stepfield. Note
the position of the arm.

To test the techniques, a sequence of two stepfields
of official NIST construction were prepared. They
were configured to be similar in difficulty to the
Robocup 2005 competition stepfields.

A user interface was developed that allowed the
operator to look at the scene from the top-down
perspective. The operator was instructed to drive
the robot over the stepfield as quickly as possible.
We chose an experienced operator for these exper-



iments who had approximately 50 hours of driving
experience.

Training runs, during which a human operated the
robot, were started with the robot approximately
lined up with the center of the stepfield. The op-
erator, based only on the scene observed through
the range imager and colour camera, chose the
direction to travel in. The robot would proceed
along this path for one second. The operator would
then have to make a choice again. This constituted
a single step of the operation. The experiment
would terminate when the operator reported that
only saw carpet on the screen, which would occur
when the robot had completed traversing the two
stepfields.

For each step, the images seen by both the camera
and the range imager, the pitch and the roll of the
robot and the action performed by the operator
were recorded.

The stepfield was traversed 8 times in this man-
ner to gather sufficient data for training (one run
was not completed due to technical difficulties mid-
way through, but the data up until the point was
recorded). A typical run, including set up and
run time, would take approximately 15 minutes.
Two additional datasets were also collected that
involved the robot being placed in a number of
unusual and potentially dangerous situations (such
as very close to an obstacle or at an unusual angle)
and the operator manoeuvring the robot back to a
safe state. Other research in behavioural cloning
has shown that such “difficult problem” training
can be an advantage. Since a clone may not be
identical in its behaviour to the expert, it may
end up in situations that were not similar to the
training data were it collected from only “normal”
runs. Actions of the operator in less frequent but
still important “difficult situations” can therefore
improve performance significantly in such tasks.

Once the data was collected, feature extraction was
conducted as discussed. This was then processed
using J48 from Weka [?] to produce a decision tree.
In order to increase the amount of data for training,
the data was mirrored along the front-to-rear axis
of the robot. For each training example, the terrain
data, the roll and the action were mirrored. If the
action had no direction element (e.g. forward), it
was set to the same value, while, for example, a
forward-left became a forward-right. This served
to increase the number of examples, while simulta-
neously ensuring that the robot had no conceptual
bias to veer to either the left or the right.

The robot, as for the training cases, was started ap-
proximately in line with the center of the stepfield.
The robot was then allowed to continue operating

Approach Runs Steps Intervns Success
Op 7 75.7 0.14 0.86
BC 5 71.8 0.6 0.40
AF 5 45.5 2.0 0.00

Table 1: Comparison of Operator (Op) vs Be-
havioural Cloning vs Always Forward (AF) strate-
gies

until an observer decided it was irrevocably stuck,
or it reached the other side of the sequence of
stepfields. The operator was not involved in the
operation of the robot except to start the robot
and, when necessary, determine that the robot was
stuck and stop the robot. When the robot be-
came stuck, an “intervention” was recorded and
the robot moved the minimal amount required such
that it could proceed safely.

In order to provide a baseline for comparison, this
method was also compared with a default “always
forward” action. This is because empirically it was
observed that 67 percent of actions taken by the
operator were to drive forward.

5.2 Results

A total of 707 actions over the eight normal and
two “difficult” runs were collected. 67 per cent
of these actions were instructions for the robot
to drive forward (and hence our baseline “always
forward” action seems to be well-founded). In com-
parison to the massive situation space (34 dimen-
sions, many of them continuous) and the complex-
ity of the task, this is a very small training set.

Table 1 shows a comparisons of the different tech-
niques. The obvious measure of success is the num-
ber of times that the stepfield was successfully tra-
versed. As can be seen below, the human operator
was able to traverse the stepfield 86 per cent of the
time – the task is sufficiently difficult that even the
human operator got the robot irrevocably stuck at
one point. The clone was able to complete the
traversal 40 per cent of the time. It required only
three interventions over the 5 runs and each of
these interventions only required minor reposition-
ing of the robot.

The “always forward” controller failed to complete
any traversals, and required constant interventions.
It required an average of 2.0 interventions per run
and many of these were due to the robot becoming
dangerously close to rolling as it collided with the
sidewalls of the stepfield. Clearly this approach is
impractical, and significantly worse that behavioural
cloning.

The clone appears to have acquired some of the
characteristics of the human operator.



5.3 Empirical observations

Several interesting and anomalous behaviours were
observed and noted. Firstly, the best run (in terms
of having zero interventions and minimal steps)
was actually performed by one of the clones – it
completed the stepfield in 48 steps with zero inter-
ventions, while the best human did so in 53 steps.
The operator’s comments on seeing it perform was
that “it drove like I would have!” Secondly, the
robot would also do things that to a human would
appear “strange.” One of such strange actions
is that the robot would sometimes drive forward,
then drive backward, then drive forward again. It
must be remembered that the clones being built
here are purely reactive or Markovian. While the
SR differencing technique helped prevent it from
repeating actions when stuck, it did not help the
robot getting stuck in a loop between two actions.

6 Conclusions and Future work

The experiments reported here show that behavioural
cloning is a promising approach to building a con-
troller for locomotion over rough terrain. For sim-
plicity, these initial experiments adopted the sim-
ple situation-action model of behavioural cloning.

Previous application of behavioural cloning in pi-
loting aircraft have demonstrated that generalisa-
tion can be improved by decomposing the con-
troller into two components. The first determines
the appropriate values for “goal variables” and the
second determines the actions required to achieve
those goal values. Future experiments with loco-
motion will investigate methods for problem de-
composition that will achieve similar improvements
in robustness.

Clearly one possibility is to study the efficacy of
different learning algorithms such as support vec-
tor machines and naive Bayes as possible clones.
It is also worth noting that having to use a propo-
sitional learner because of the noisy and numerical
data that exists in this problem domain imposes
some difficult limitations, such as the fixed 3 × 3
grid representation of the world. Obviously driv-
ing in this domain would benefit from using a re-
lational representation of the obstacles and their
spatial relations to one another, and thus relational
learning could be useful. Unfortunately, relational
learning techniques are not usually capable of han-
dling noise and numerical data of this kind.

Finally, it is not clear whether cloning for one par-
ticular stepfield generalises to other terrains and
stepfields. We therefore plan to collect training
data from multiple stepfields and then test on new
unseen stepfields.


